Optimization of Madura Cattle Performance Fed Ammoniated Rice Straw and Concentrate Containing Hibiscus tiliaceus Leaf
Abstract
The leaves of Hibiscus tiliaceus, known for their flavonoid and fumaric acid contents, may support more stable rumen fermentation by promoting propionic acid production and helping maintain a healthy pH in high-concentrate diets. When paired with ammoniated rice straw, this supplement could improve how cattle utilize nutrients while lowering the risk of subacute ruminal acidosis in feedlot settings. This study evaluates the effectiveness of H. tiliaceus leaf flour as a dietary supplement in feedlot Madura cattle. Fifteen cattle (initial weight 264.43 ± 22.68 kg) were assigned to three diet treatments: rice straw plus concentrate (RSC), ammoniated rice straw plus concentrate (ARSC), and ammoniated rice straw plus concentrate supplemented with HTLF (ARSC+H) and statistically analyzed using a completely randomized design. Concentrates were fed at 2.5% of body weight, while rice straw and ARS were provided ad libitum. Ammoniation involved treating rice straw with 5% urea and 2.5% cassava pulp. The treatments significantly (p<0.01) increased digestibility parameters (dry and organic matter digestibility (DMD, DMO), crude fat digestibility (CFD), crude protein digestibility (CPD), crude fiber digestibility (CFD), and nitrogen retention (NR)), microbial protein synthesis (MPS) and production (MPP), energy utilization (energy digestibility (ED), metabolizable energy output (MEO), energy retention (ER)), volatile fatty acid (VFA) production, average daily gain (ADG), and feed efficiency (FE). RSC showed lower values compared to ARSC and ARSC+H (p<0.01), while differences between ARSC and ARSC+H were not significant (p>0.05). The highest MPS, MPP, and ADG were observed in ARSC+H, with the best FE also in ARSC+H. In conclusion, ARSC+H enhances nutrient digestibility, MPS, and fattening performance in Madura cattle, indicating its potential as an effective feed strategy.
Full text article
References
Aguiar, G. F. M., Batista, B. L., Rodrigues, J. L., Silva, L. R. S., Campiglia, A. D., Barbosa, R. M., & Barbosa, F. (2012). Determination of trace elements in bovine semen samples by inductively coupled plasma mass spectrometry and data mining techniques for identification of bovine class. Journal of Dairy Science, 95(12), 7066–7073. https://doi.org/10.3168/jds.2012-5515
Ampapon, T., & Wanapat, M. (2021). Mitigating rumen methane and enhancing fermentation using rambutan fruit peel powder and urea in lactating dairy cows. Journal of Animal Physiology and Animal Nutrition, 105(6), 1014–1023. https://doi.org/10.1111/jpn.13526
AOAC. (2019). Official methods of analysis of AOAC International (21st ed., Vol. 1). AOAC International.
Arowolo, M. A., & He, J. (2018). Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Animal Nutrition, 4(3), 241–249. https://doi.org/10.1016/j.aninu.2018.04.010
Balcells, J., Guada, J. A., Peiro, J. M., & Parker, D. S. (1992a). Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography. Journal of Chromatography, 575, 153–157. https://doi.org/10.1016/0378-4347(92)80517-T
Balcells, J., Parker, D. S., & Seal, C. J. (1992b). Purine metabolite concentrations in portal and peripheral blood of steers, sheep and rats. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 101(4), 633-636. https://doi.org/10.1016/0305-0491(92)90351-Q
Balcells, J., Aris, A., Serrano, A., Seradj, A. R., Crespo, J., & Devant, M. (2012). Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets 1. Journal of Animal Science, 90, 4975–4984. https://doi.org/10.2527/jas.2011-4955
Bata, M., & Hidayat, N. (2010). Penambahan molases untuk meningkatkan kualitas amoniasi jerami padi dan pengaruhnya terhadap produk fermentasi rumen secara in-vitro. Agripet, 10(2), 27-33. https://doi.org/10.17969/agripet.v10i2.641
Bata, M., & Rahayu, S. (2016). Study of Hibiscus tiliaceus leaf extract carrier as additive in the diets for fattening of local cattle (In vitro). Pakistan Journal of Nutrition, 15(11), 969–974. https://doi.org/10.3923/pjn.2016.969.974
Bata, M., & Rahayu, S. (2017). Evaluation of bioactive substances in Hibiscus tiliaceus and its potential as a ruminant feed additive. Current Bioactive Compounds, 13(2), 157-164. https://doi.org/10.2174/1573407213666170109151904
Bata, M., Sumaryadi, M. Y., Rahayu, S., & Marung, N. (2020). Improving performance of heifer buffalos fed with urea-treated rice straw with cassava pulp supplemented with concentrates. Journal of Animal Production, 22(2), 61–73. https://doi.org/10.20884/1.jap.2020.22.2.48
Bata, M., Rahayu, S., & Oktora, M. (2021). Efisiensi metabolisme rumen pakan berbasis jerami padi amoniasi dan konsentrat yang disuplementasi ekstrak daun waru (Hibiscus tiliaceus) (In-Vitro). Jurnal Agripet, 21(2), 113–121. https://doi.org/10.17969/agripet.v21i2.19463
Brunes, L. C., Baldi, F., Lopes, F. B., Lôbo, R. B., Espigolan, R., Costa, M. F. O., Stafuzza, N. B., & Magnabosco, C. U. (2021). Weighted single‐step genome‐wide association study and pathway analyses for feed efficiency traits in Nellore cattle. Journal of Animal Breeding and Genetics, 138(1), 23–44. https://doi.org/10.1111/jbg.12496
Chen, D., Chen, X., Tu, Y., Wang, B., Lou, C., Ma, T., & Diao, Q. (2015). Effects of mulberry leaf flavonoid and resveratrol on methane emission and nutrient digestion in sheep. Animal Nutrition, 1(4), 362–367. https://doi.org/10.1016/j.aninu.2015.12.008
Chen, X. B., & Gomes, M. J. (1992). Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives. In X. B. Chen & M. J. Gomes (Eds.), Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives – An Overview of Technical Details. International Feed Resources Unit, Rowett Research Institute.
Cole, H. H., & Ronning, M. (1974). Animal agriculture: The biology of domestic animals and their use by man (1st ed.). W. H. Freeman & Co.
DeClerck, J. C., Reeves, N. R., Miller, M. F., Johnson, B. J., Ducharme, G. A., & Rathmann, R. J. (2020). Influence of dietary roughage level and Megasphaera elsdenii on feedlot performance and carcass composition of thin cull beef cows fed for a lean market. Translational Animal Science, 4(1), 159–169. https://doi.org/10.1093/tas/txz180
Donadio, G., Mensitieri, F., Santoro, V., Parisi, V., Bellone, M. L., De Tommasi, N., Izzo, V., & Dal Piaz, F. (2021). Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics, 13(5), 660. https://doi.org/10.3390/pharmaceutics13050660
Du, H., Erdene, K., Chen, S., Qi, S., Bao, Z., Zhao, Y., Wang, C., Zhao, G., & Ao, C. (2019). Correlation of the rumen fluid microbiome and the average daily gain with a dietary supplementation of Allium mongolicum Regel extracts in sheep. Journal of Animal Science, 97, 2965–2877. https://doi.org/10.1093/jas/skz139
Eckel, E. F., & Ametaj, B. N. (2016). Invited review: Role of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows. Journal of Dairy Science, 99(8), 5967–5990. https://doi.org/10.3168/jds.2015-10727
Flachowsky, G., & Lebzien, P. (2012). Effects of phytogenic substances on rumen fermentation and methane emissions: A proposal for a research process. Animal Feed Science and Technology, 176(1), 70–77. https://doi.org/10.1016/j.anifeedsci.2012.07.009
Guan, L. L., Nkrumah, J. D., Basarab, J. A., & Moore, S. S. (2008). Linkage of microbial ecology to phenotype: Correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiology Letters, 288(1), 85–91. https://doi.org/10.1111/j.1574-6968.2008.01343.x
Hao, X., Zhang, X., Yang, D., Xie, Y., Mu, C., & Zhang, J. (2023). Effects of sea-buckthorn flavonoids on growth performance, nutrient digestibility, microbial protein synthesis, and plasma antioxidant capacity of finishing lambs. Animal Feed Science and Technology, 305. https://doi.org/10.1016/j.anifeedsci.2023.115783
Hassan, F. U., Arshad, M. A., Li, M., Rehman, M. S. U., Loor, J. J., & Huang, J. (2020). Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: Mechanistic insights and prospects. Animals, 10(11), 1–24. https://doi.org/10.3390/ani10112076
Huo, J., Wu, Z., Sun, W., Wang, Z., Wu, J., Huang, M., Wang, B., & Sun, B. (2022). Protective effects of natural polysaccharides on intestinal barrier injury: a review. Journal of Agricultural and Food Chemistry, 70(3), 711–735. https://doi.org/10.1021/acs.jafc.1c05966
Katsande, S., Baloyi, J. J., Nherera-Chokuda, F. V., Ngongoni, N. T., Matope, G., Zvinorova, P. I., & Gusha, J. (2016). Apparent digestibility and microbial protein yield of Desmodium uncinatum, Mucuna pruriens, and Vigna unguiculata forage legumes in goats. African Journal of Range & Forage Science, 33, 53–58. https://doi.org/10.2989/10220119.2015.1043646
Kern, R. J., Lindholm-Perry, A. K., Freetly, H. C., Kuehn, L. A., Rule, D. C., & Ludden, P. A. (2016). Rumen papillae morphology of beef steers relative to gain and feed intake and the association of volatile fatty acids with kallikrein gene expression. Livestock Science, 187, 24–30. https://doi.org/10.1016/j.livsci.2016.02.007
Kim, E. T., Guan, L. L., Lee, S. J., Lee, S. M., Lee, S. S., Lee, I. D., Lee, S. K., & Lee, S. S. (2015). Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australasian Journal of Animal Sciences, 28(4), 530–537. https://doi.org/10.5713/ajas.14.0692
Krause, M., Beauchemin, K. A., Rode, L. M., Farr, B. I., & Nørgaard, P. (1998). Fibrolytic enzyme treatment of barley grain and source of forage in high-grain diets fed to growing cattle. Journal of Animal Science, 76(11), 2912–2920. https://doi.org/10.2527/1998.76112912x
Lee, S. H. Y., Humphries, D. J., Cockman, D. A., Givens, D. I., & Spencer, J. P. E. (2017). Accumulation of citrus flavanones in bovine milk following citrus pulp incorporation into the diet of dairy cows. EC Nutrient, 7(4), 143–154.
Lewis, G. E., Hunt, C. W., Sanchez, W. K., Treacher, R., Pritchard, G. T., & Feng, P. (1996). Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. Journal of Animal Science, 74(12), 3020–3028. https://doi.org/10.2527/1996.74123020x
Li, M., Hassan, F., Peng, L., Xie, H., Liang, X., Huang, J., Huang, F., Guo, Y., & Yang, C. (2022). Mulberry flavonoids modulate rumen bacteria to alter fermentation kinetics in water buffalo. PeerJ, 10, e14309. https://doi.org/10.7717/peerj.14309
Li, Y., Meng, Q., Zhou, B., & Zhou, Z. (2017). Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacterial community composition in finishing steers. BMC Microbiology, 17(1), 1–9. https://doi.org/10.1186/s12866-017-1011-9
Liu, J., Tian, K., Sun, Y., Wu, Y., Chen, J., Zhang, R., He, T., & Dong, G. (2020). Effects of the acid–base treatment of corn on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed high-concentrate diet. Animal, 14(9), 1876–1884. https://doi.org/10.1017/S1751731120000786
Mao, S. Y., Huo, W. J., & Zhu, W. Y. (2016). Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environmental Microbiology, 18(2), 525–541. https://doi.org/10.1111/1462-2920.12724
Matthews, C., Crispie, F., Lewis, E., Reid, M., O’Toole, P. W., & Cotter, P. D. (2019). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 10(2), 115–132. https://doi.org/10.1080/19490976.2018.1505176
Meissner, S., Hagen, F., Deiner, C., Günzel, D., Greco, G., Shen, Z., & Aschenbach, J. R. (2017). Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis. Journal of Dairy Science, 100(8), 6662–6675. https://doi.org/10.3168/jds.2016-12262
Min, B. R., & Solaiman, S. (2018). Comparative aspects of plant tannins on digestive physiology, nutrition and microbial community changes in sheep and goats: A review. Journal of Animal Physiology and Animal Nutrition, 102(5), 1181–1193. https://doi.org/10.1111/jpn.12938
Nagaraja, T. G., & Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. Journal of Dairy Science, 90(S), E17–E38. https://doi.org/10.3168/jds.2006-478
Nozière, P., Glasser, F., & Sauvant, D. (2011). In vivo production and molar percentages of volatile fatty acids in the rumen: A quantitative review by an empirical approach. Animal, 5(3), 403–414. https://doi.org/10.1017/S1751731110002016
Orzuna-Orzuna, J. F., Dorantes-Iturbide, G., Lara-Bueno, A., Chay-Canul, A. J., Miranda-Romero, L. A., & Mendoza-Martinez, G. D. (2023). Meta-analysis of flavonoids use into beef and dairy cattle diet: Performance, antioxidant status, ruminal fermentation, meat quality, and milk composition. Frontiers in Veterinary Science, 10, 1–18. https://doi.org/10.3389/fvets.2023.1134925
Paniagua, M., Crespo, J., Arís, A., & Devant, M. (2019). Citrus aurantium flavonoid extract improves concentrate efficiency, animal behavior, and reduces rumen inflammation of Holstein bulls fed high-concentrate diets. Animal Feed Science and Technology, 258. https://doi.org/10.1016/j.anifeedsci.2019.114304
Paniagua, M., Crespo, J. F., Arís, A., & Devant, M. (2022). Supplementing Citrus aurantium flavonoid extract in high-fat finishing diets improves animal behavior and rumen health and modifies rumen and duodenum epithelium gene expression in Holstein bulls. Animals, 12(15). https://doi.org/10.3390/ani12151972
Plaizier, J. C., Li, S., Danscher, A. M., Derakshani, H., Andersen, P. H., & Khafipour, E. (2017). Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microbial Ecology, 74(2), 485–495. https://doi.org/10.1007/s00248-017-0940-z
Rahayu, S., Bonat, V. R., & Bata, M. (2021). Feed intake, blood parameters, digestibility and live weight gain of male Bali cattle (Bos javanicus) fed ammoniation rice straw supplemented by waru (Hibiscus tiliaceus) flower extracts. Animal Production, 23(3), 171–179. https://doi.org/10.20884/1.jap.2021.23.3.12
Ryle, M., & Ørskov, E. R. (1990). Energy nutrition in ruminants. Springer Dordrecht. https://doi.org/10.1007/978-94-009-0751-5
Saadullah, M., Haque, M., & Dolberg, F. (1981). Effectiveness of ammonification through urea in improving the feeding value of rice straw in ruminants. Tropical Animal Production, 6(1), 30-36.
Sarwar, M., Ajmal Khan, M., & Mahr-un-Nisa. (2004). Effect of organic acids or fermentable carbohydrates on digestibility and nitrogen utilisation of urea-treated wheat straw in buffalo bulls. Australian Journal of Agricultural Research, 55(2), 223–228. https://doi.org/10.1071/AR03044
Sarwar, M., Khan, M. A., & Nisa, M. (2003). Nitrogen retention and chemical composition of urea treated wheat straw ensiled with organic acids or fermentable carbohydrates. Asian-Australasian Journal of Animal Science, 16(11), 1583–1592. https://doi.org/10.5713/ajas.2003.1583
Seradj, A. R., Gimeno, A., Fondevila, M., Crespo, J., Armengol, R., & Balcells, J. (2018). Effects of the citrus flavonoid extract Bioflavex or its pure components on rumen fermentation of intensively reared beef steers. Animal Production Science, 58(3), 553–560. https://doi.org/10.1071/AN15146
Van Soest, P. J. (2006). Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology, 130(3-4), 137–171. https://doi.org/10.1016/j.anifeedsci.2006.01.023
Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2014). Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Current Medicinal Chemistry, 22(1), 132–149. https://doi.org/10.2174/0929867321666140916113443
Yesudhas, A. J. R., Ganapathy Raman, P., Thirumalai, A., Saxena, S., & Subramanian, R. (2023). Production of propionic acid through biotransformation of glucose and d-lactic acid by construction of synthetic acrylate pathway in metabolically engineered E. coli. Biocatalysis and Biotransformation, 41(1), 26–37. https://doi.org/10.1080/10242422.2021.2020760
Yi, X., Wu, B., Ma, J., Cui, X., Deng, Z., Hu, S., Li, W., A, R., Li, X., Meng, Q., Zhou, Z., & Wu, H. (2023). Effects of dietary capsaicin and yucca schidigera extracts as feed additives on rumen fermentation and microflora of beef cattle fed with a moderate-energy diet. Fermentation, 9(1). https://doi.org/10.3390/fermentation9010030
Yu, S., Li, L., Zhao, H., Zhang, S., Tu, Y., Liu, M., Zhao, Y., & Jiang, L. (2023). Dietary citrus flavonoid extract improves lactational performance through modulating rumen microbiome and metabolites in dairy cows. Food Function, 14, 94–111. https://doi.org/10.1039/D2FO02751H
Zhan, J., Liu, M., Wu, C., Su, X., Zhan, K., & Zhao, G. Q. (2017). Effects of alfalfa flavonoids extract on the microbial flora of dairy cow rumen. Asian-Australasian Journal of Animal Sciences, 30(9), 1261–1269. https://doi.org/10.5713/ajas.16.0839
Zhang, T.-G., Zhao, Y.-L., Li, L., & Zhou, D.-H. (2020). Antagonistic effects of nano-selenium on broilers hepatic injury induced by Cr(VI) poisoning in AMPK pathway. Environmental Science and Pollution Research, 27(33), 41585–41595. https://doi.org/10.1007/s11356-020-08501-0
Zhang, X., Liu, X., Xie, K., Pan, Y., Liu, F., & Hou, F. (2025). Effects of different fiber levels of energy feeds on rumen fermentation and the microbial community structure of grazing sheep. BMC Microbiology, 25(1), 180. https://doi.org/10.1186/s12866-024-03644-3
Zhao, Y., Zhang, Y., Khas, E., Ao, C., & Bai, C. (2022). Effects of Allium mongolicum Regel ethanol extract on three flavor-related rumen branched-chain fatty acids, rumen fermentation and rumen bacteria in lambs. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.978057
Authors
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.