Isolation and Characterisation of Sulphur Oxidizing Bacteria Isolated from Hot Spring in Malaysia for Biological Deodorisation of Hydrogen Sulphide in Chicken Manure
Abstract
Keywords
Full Text:
PDFReferences
Baioumy, H., M. Nawawi, K. Wagner, & M. H. Arifin. 2015. Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. J. Volcanol. Geotherm. Res. 290: 12–22. https://doi.org/10.1016/j.jvolgeores.2014.11.014
Bezsudnova, E. Yu., D. Yu. Sorokin, T. V. Tikhonova, & V. O. Popov. 2007. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulphur oxidizing bacterium Thiohalophilus thiocyanoxidans. Biochim. Biophys. Acta. 1774: 1563-1570. https://doi.org/10.1016/j.bbapap.2007.09.003
Cha, J. M., W. S. Cha, & J. H. Lee. 1999. Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing bacteria. Process. Biochem. 34: 659-665. https://doi.org/10.1016/S0032-9592(98)00139-3
Chen, X.G., A. L. Geng, R. Yan, W. D. Gould, Y. L. Ng, & D. T. Liang. 2004. Isolation and characterisation of sulphur-oxidising Thiomonas sp. and its potential application in biological deodorisation. Lett. Appl. Microbiol. 39: 495-503. https://doi.org/10.1111/j.1472-765X.2004.01615.x
Chung, Y. C., C. Huang, & C. P. Tseng. 1996. Biodegradation of hydrogen sulphide by a laboratory-scale immobilised Pseudomonas putida CH11 biofilter. Biotechnol. Prog. 12: 773-778. https://doi.org/10.1021/bp960058a
Chung, Y. C., K. L. Ho, & C. P. Tseng. 2007. Two-stage biofilter for effective NH3 removal from waste gases containing high concentrations of H2S. J. Air. Waste. Manag. Assoc. 57: 337-347. https://doi.org/10.1080/10473289.2007.10465332
De Gusseme, B., P. De Schryver, M. De Cooman, K. Verbeken, P. Boeckx, W. Verstraete, & N. Boon. 2009. Nitrate-reducing, sulphide-oxidizing bacteria as microbial oxidants for rapid biological sulphide removal. FEMS. Microb. Ecol. 67: 151-161. https://doi.org/10.1111/j.1574-6941.2008.00598.x
Dehghanzadeh, R., H. Aslani, A. Torkian, & M. Asadi. 2011. Interaction of acrylonitrile vapours on a bench scale biofilter treating styrene-polluted waste gas streams. Iranian. J. Environ. Health. Sci. Eng. 8: 159–168.
Druschel, G. K., M. A. A. Schoonen, D. K. Nordstrom, J. W. Ball, Y. Xu, & C. A. Cohn. 2003. Sulphur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters. Geochem. Trans. 4: 12-19. https://doi.org/10.1186/1467-4866-4-12
Ehrlich, H.L. & D. K. Newman. 2009. Geomicrobiology of Sulfur. Geomicrobiology. 5th ed. CRC Press, Boca Raton, p. 439-489.
Graff, A. & S. Stubner. 2003. Isolation and molecular characterisation of thiosulphate-oxidising bacteria from an Italian rice field soil. Syst. Appl. Microbiol. 26: 445-452. https://doi.org/10.1078/072320203322497482
Gutarowska, B., K. Matusiak, S. Borowski, A. Rajkowska, & B. Brycki. 2014. Removal of odorous compounds from poultry manure by microorganisms on perlite-bentonite carrier. J. Environ. Manag. 141: 70-76. https://doi.org/10.1016/j.jenvman.2014.03.017
Hassan, S. H. A., W. Steven, V. Ginkel, S. M. Kim, S. H. Yoon, S. H. Joo, B. S. Shin, B. H. Jeon, W. Bae, & S. E. Oh. 2010. Isolation and characterisation of Acidithiobacillus caldus from a sulphur-oxidising bacterial biosensor and its role in detection of toxic chemicals. J. Microbiol. Methods. 82: 151-155. https://doi.org/10.1016/j.mimet.2010.05.008
Ho, K. L., Y. C. Chung, Y. H. Lin, & C. P. Tseng. 2008. Microbial population analysis and field application of biofilter for the removal of volatile-sulphur compounds from swine wastewater treatment system. J. Hazard. Mater. 152: 580-588. https://doi.org/10.1016/j.jhazmat.2007.07.021
Hucker, G. J. 1921. A new modification and application of the gram stain. J. Bacteriol. 6: 395–397.
Kantachote, D., W. Charernjiratrakul, N. Noparatnaraporn, & K. Oda. 2008. Selection of sulphur oxidising bacterium for sulphide removal in sulphate rich wastewater to enhance biogas production. Electron. J. Biotechnol. 11: 1-12. https://doi.org/10.2225/vol11-issue2-fulltext-13
Kim, K. Y., H. J. Ko, H. T. Kim, Y. S. Kim, Y. M. Roh, C. M. Lee, H. S. Kim, & C. N. Kim. 2007. Sulphuric odorous compounds emitted from pig-feeding operations. Atmos. Environ. 41: 4811-4818. https://doi.org/10.1016/j.atmosenv.2007.02.012
Kolmert, Å., P. Wikström, & K. B. Hallberg. 2000. A fast and simple turbidimetric method for the determination of sulphate in sulphate-reducing bacterial cultures. J. Microbiol. Methods. 41: 179-184. https://doi.org/10.1016/S0167-7012(00)00154-8
Kuenen, J. G., L. A. Robertson, & O. H. Tuovinen. 1992. The genera Thiobacillus, Thiomicrospira and Thiosphaera. In: A. Balows, H. G. Truper, M. Dworki, W. Harder, & K. H. Schleifer (Eds). The prokaryotes. New York. Springer-Verlag. p. 2636-2657.
Lee, E. Y., K. S. Cho, & H. W. Ryu. 2000. Characterisation of sulphur oxidation by an autotrophic sulphur oxidiser, Thiobacillus sp. ASWW-2. Biotechnol. Bioprocess. Eng. 5: 48–52. https://doi.org/10.1007/BF02932353
Lin, W.C., Y. P. Chen, & C. P. Tseng. 2013. Pilot-scale chemical-biological system for efficient H2S removal from biogas. Bioresour. Technol. 135: 283-291. https://doi.org/10.1016/j.biortech.2012.10.040
Makzum, S., M. A. Amoozegar, S. M. M. Dastgheib, H. Babavalian, H. Tebyanian, & F. Shakeri. 2016. Study on Haloalkaliphilic sulphur oxidising bacterium for thiosulphate removal in treatment of sulfidic spent caustic. ILNS. 57: 49-57. https://doi.org/10.18052/www.scipress.com/ILNS.57.49
Olguin-Lora, P., S. Le Borgne, G. Castorena-Cortes, T. Roldan-Carrillo, I. Zapata-Penasco, J. Reyes-Avila, & S. Alcantara-Perez. 2011. Evaluation of haloalkaliphilic sulphur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry. Biodegradation. 22: 83–93. https://doi.org/10.1007/s10532-010-9378-4
Oprime, M. E. A. G., O. J. Garcia, & A. A. Cardoso. 2001. Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process. Biochem. 37: 111-114. https://doi.org/10.1016/S0032-9592(01)00179-0
Park, S. J., V. H. Pham, M. Y. Jung, S. J. Kim, J. G. Kim, D. H. Roh, & S. K. Rhee. 2011. Thioalbus denitrifications gen. nov., sp. nov., a chemolithoautotrophic sulphur-oxidising gammaproteobacterium, isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 61: 2045–2051. https://doi.org/10.1099/ijs.0.024844-0
Pokorna, D., & J. Zabranska. 2015. Sulphur-oxidising bacteria in environmental technology. Biotechnol. Adv. 33: 1246-1259. https://doi.org/10.1016/j.biotechadv.2015.02.007
Shi, J., H. Lin, X. Yuan, & Y. Zhao. 2011. Isolation and characterisation of a novel sulphur oxidising chemolithoautotroph Halothiobacillus from Pb-polluted paddy soil. Afr. J. Biotechnol. 10: 4121–4126.
Skirnisdottir, S., G. O. Hreggvidson, O. Holst, & J. K. Kristjansson. 2001a. Isolation and characterisation of a mixotrophic sulphur-oxidising Thermus scotoductus. Extremophiles. 5: 45-51. https://doi.org/10.1007/s007920000172
Skirnisdottir, S., G. O. Hreggvidson, O. Holst, & J. K. Kristjansson. 2001b. A new ecological adaptation to high sulphide by Hydrogenobacter sp. growing on sulphur compounds but not on hydrogen. Microbiol. Res. 156: 41-47. https://doi.org/10.1078/0944-5013-00068
Skirnisdottir, S., G. O. Hreggvidsson, S. Hjorleifsdottir, V. T. Marteinsson, S. K, Petursdottir, & O. Holst. 2000. Influence of sulphide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol. 66: 2835–2841. https://doi.org/10.1128/AEM.66.7.2835-2841.2000
Sorokin, D.Y., V. M. Gorlenko, T. P. Tourova, A. I. Tsapin, K. H. Nealson, & J. G. Kuenen. 2002. Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulphur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). Int. J. Syst. Evol. Microbiol. 52: 913-920.
Sorokin, D. Y., B. Abbas, E. V. Zessen, & G. Muyzer. 2014. Isolation and characterization of an obligately chemolithoautotrophic Halothiobacillus strain capable of growth on thiocyanate as an energy source. FEMS. Microbiol. Lett. 354: 69-74. https://doi.org/10.1111/1574-6968.12432
Spring, S., P. Kämpfer, & K. H. Schleifer. 2001. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulphate-oxidising bacterium isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 51: 1463-1470. https://doi.org/10.1099/00207713-51-4-1463
Takano, B., M. Koshida, Y. Fujiwara, K. Sugimori, & S. Takayanagi. 1997. Influence of sulphur-oxidizing bacteria on the budget of sulphate in Yugama crater lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry. 38: 227–253. https://doi.org/10.1023/A:1005805100834
Ullah, I., G. Jilani, M. I. Haq, & A. Khan. 2013. Enhancing bio-available phosphorous in soil through sulphur oxidation by Thiobacilli. Br. Microbiol. Res. J. 3(3): 378-392. https://doi.org/10.9734/BMRJ/2013/4063
Vardanyan, N. S., & A. K. Vardanyan. 2014. New sulphur oxidising bacteria isolated from bioleaching pulp of zinc and copper concentrates. Univers. J. Microbiol. Res. 2: 27–31.
Vikromvarasiri, N., S. Boonyawanich, & N. Pisutpaisal. 2015. Optimizing sulphur oxidising performance of Paracoccus pantotrophus isolated from leather industry wastewater. Energy. Procedia. 79: 629-633. https://doi.org/10.1016/j.egypro.2015.11.544
Vidyalakshmi, R. & R. Sridar. 2007. Isolation and characterization of sulphur oxidizing bacteria. J. Cult. Collect. 5: 73-77.
Vlasceanu, L., P. Radu, & B. R. Kinkle. 1997. Characterisation of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl. Environ. Microbiol. 63: 3123–3127.
Watsuntorn, W., C. Ruangchainikom, E. R. Rene, P.N.L. Lens, & W. Chulalaksananukul. 2017. Hydrogen sulphide oxidation under anoxic conditions by a nitrate- reducing, sulphide-oxidsing bacterium isolated from the Mae Um Long Luang hot spring, Thailand. Int. Biodeterior. Biodegradation. 124: 196-205. https://doi.org/10.1016/j.ibiod.2017.06.013
Xu, X. J., C. Chen, H. Guo, A. Wang, N. Ren, & D. J. Lee. 2016. Characterization of a newly isolated strain Pseudomonas sp. C27 for sulphide oxidation: Reaction kinetics and stoichiometry. Sci. Rep. 6:21032. http://doi.org/10.1038/srep21032 [22 November 2017]. https://doi.org/10.1038/srep21032
Yang, Z. H., K. Stoven, S. Haneklaus, B. R. Singh, & E. Schnug. 2010. Elemental sulphur oxidation by Thiobacillus spp. and aerobic heterotrophic sulphur-oxidising bacteria. Pedosphere. 20: 71-79. https://doi.org/10.1016/S1002-0160(09)60284-8
DOI: http://dx.doi.org/10.5398/medpet.2017.40.3.178
Copyright (c) 2017 Media Peternakan
Editorial Office
Media Peternakan, Journal of Animal Science and Technology
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
e-mail: mediapeternakan@yahoo.co.id; mediapeternakan@ipb.ac.id
Media Peternakan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.