SPATIAL DISTRIBUTION OF WHITE-SPOTTED RABBIT FISH Siganus canaliculatus Parak, 1797 ON DIFFERENT SEAGRASS BEDS HABITAT OF THE INNER AMBON BAY
Abstract
White-spotted rabbit fish Siganus canaliculatus is a type of demersal fish that is associated with the seagrass beds, both as a nursery ground, feeding ground and for protection from predators. The purpose of this study was to analyze the spatial distribution of S. canaliculatus in different seagrass beds. The research was conducted from August 2018 until July 2019 in the inner Ambon Bay. Fish samples were collected using beach seines. The measurement of the environmental parameters, was done as well at the same time. Statistic analysis showed in table, histogram, dendrogram, and biplot graphic. The results showed that as many as 1.050 white-spotted rabbit fish individual consisting of 598 males and 452 females, were found during the study. The environmental parameters are generally still supporting the life of S. canaliculatus had different preferences habitat based on its life cycle. The adults size tend to be distributed in monospecific seagrass beds. On the contrary this result was inversely to the adult size that associated to mixed seagrass beds, and juvenile size, which was widely distributed on various habitats type that proves seagrass beds function as a nursery ground.
References
Ambo-Rappe, R. 2016. Differences in richness and abundance of species assemblages in tropical seagrass beds of different structural complexity. J. of Environmental Science and Technology, 9: 246-256. https://doi.org/10.3923/jest.2016.246.256
Ambo-Rappe, R., M.N. Nessa, H. Latuconsina, & D.L. Lajus. 2013. Relationship between the tropical seagrass bed characteristics and the structure of the associated fish community. Open J. of Ecology, 3(5): 331-342. http://doi.org/10.4236/oje.2013.35038
Bengen, D.G. 2000. Teknik pengambilan contoh dan analisis data biofisik sumberdaya pesisir. PSKPL IPB. Bogor. 89 p.
Brouns, J.J.W.M. & F.A.M.I. Heijs. 1991. Seagrass ecosystem in the tropical West Pacific”. In Mathieson and Nienhuis (eds). Intertidal and Litoral Ecosystem. Serie Ecosystem of the World, No. 24. Elsevier Science Pub. New York. 371-390 pp.
Bulmer, R.H., M. Townsend, T. Drylie, & A.M. Lohrer. 2018. Elevated turbidity and the nutrient removal capacity of seagrass. Front. Maranie Science, 5(462): 1-9. https://doi.org/10.3389/fmars.2018.00462
Burhanuddin, A.I. 2019. Biologi kelautan. Lily Publisher. Yogyakarta. 230 p.
Campbell, S.J., T. Kartawijaya, & E.K. Sabarini. 2011. Connectivity in reef fish assemblages between seagrass and coral reef habitats. Aquatic Biology, 13: 65-77. https://doi.org/10.3354/ab00352
Carr, L.A., R.K Gittman, & J.F. Bruno. 2018. Temperature influences herbivory and algal biomass in the Galápagos Islands. Front. Mar. Sci., 5(279): 1-10. https://doi.org/10.3389/fmars.2018.00279
Christianen, M.J.A., J. van Belzen, P.M.J. Herman, M.M. van Katwijk, L.P.M. Lamers, & P.J.M. van Leent. 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS One, 8(5): 1-8. https://doi.org/10.1371/journal.pone.0062413
de la Torre-Castro, M., G.D. Carlo, & N.S. Jiddawi. 2014. Seagrass importance for a small-scale fishery in the tropics: The need for seascape management. Marine Pollution Bulletin, 83: 398–407. http://doi.org/10.1016/j.marpolbul.2014.03.034
Duray, M.D. 1998. Biology and culture of siganids. Aquaculture Department Southeast Asian Fisheries Development Center (SEAFDEC). Tigbauan, Iloilo, Philippines. 62 p.
Effendi, H. 2003. Telaah kualitas air bagi pengelolaan sumberdaya perairan dan lingkungan. Kanisius. Yogyakarta. 258 p.
Erftemeijer, P.L.A. & J.J. Middelburg. 1995. Mass balance constraints on nutrient cycling in tropical seagrass beds. Aquatic Botany, 50(1): 21-36. https://doi.org/10.1016/0304-3770(94)00440-W
Erftemeijer, P.L.A. dan G. Allen. 1993. Fish fauna of seagrass beds in south Sulawesi, Indonesia. Rec. West. Aust. Museum, 16(2): 269-277.
Erftemeijer, P.L.A., R. Osinga, & A.E. Mars. 1993. Primary production of seagrass beds in South Sulawesi (Indonesia): a comparison of habitats, methods and species. Aquatic Botany, 46(1): 67-90. https://doi.org/10.1016/0304-3770(93)90065-5
Floeter, S.R., M.D. Behrens, C.E.L. Ferreira, M.J. Paddack, & M.H. Horn. 2005. Geographical gradients of marine herbivorous fishes: patterns and processes. Marine Biology, 146: 1435-1447. https://doi.org/10.1007/s00227-005-0027-0
Honda, K., Y. Nakamura, M. Nakaoka, W.H. Uy, & M.D. Frotes. 2013. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE, 8(8): 1-10. https://doi.org/10.1371/journal.pone.0065735
Hyndes, G.A., A.J. Kendrick, L.D. MacArthur, & E. Stewart. 2003. Differences in the species and size composition of fish assemblages in three distinct seagrass habitats with differing plant and meadow structure. Marine Biology, 142: 1195-1206. https://doi.org/10.1007/s00227-003-1010-2
Irawan, A. & M.N. Nganro. 2016. Sebaran lamun di Teluk Ambon Dalam. J. Ilmu dan Teknologi Kelautan Tropis, 8(1): 99-114. https://doi.org/10.29244/jitkt.v8i1.12499
Jeyabaskaran, R., J. Jayasankar, T.V. Ambrose, K.C.V. Valsalan, N.D. Divya, N. Raji, P. Vysakhan, S. John, D. Prema, P. Kaladharan, & V. Kripa. 2018. Conservation of seagrass beds with special reference to associated species and fishery resources. J. of the Marine Biological Association of India, 60(1): 62-70. https://doi.org/10.6024/jmbai.2018.60.1.2038-10
Jianguo, D., W. Yanguo, T. Peristiwady, L. Jianji, P.C. Makatipu, H. Ricardo, J. Peilong, L.K. Hoe, & C. Bin. 2018. Temporal and spatial variation of fish community and their nursery in a tropical seagrass meadow. Acta Oceanologica Sinica, 37(12): 63-72. https://doi.org/10.1007/s13131-018-1288-z
Jones, C.M. 2014. Can we predict the future: juvenile finfish and their seagrass nurseries in the Chesapeake Bay. ICES J. of Marine Science, 71(3): 681–688. https://doi.org/10.1093/icesjms/fst142
Junhui, L., H. Yaqin, A.U. Yanu, L. Heshan, M.H. Azkab, W. Jianjun, H. Xuebao, M. Jianfeng, L. Kun, & Z. Shuyi. 2018. An ecological survey of the abundance and diversity of benthic macrofauna in Indonesian multispecific seagrass beds. Acta Oceanologica Sinica, 37(6): 82–89. https://doi.org/10.1007/s13131-018-1181-9
Kuriandewa, T.E., W. Kiswara, M. Utomo, & S. Soemodihardjo. 2003. The Seagrass of Indonesia. pp.173-178. In Green E.P and Short F.T (eds). 2003 World Atlas of Seagrasses. Prepared by the UIMEP World Conservation Monitoring Centre. University of California Press. Berkeley, USA. 298 p.
Kwak, S.N., D.W. Klumpp, & J.M. Park. 2015. Feeding relationships among juveniles of abundant fish species inhabiting tropical seagrass beds in Cockle Bay, North Queensland, Australia. New Zealand J. of Marine and Freshwater Research, 49(2): 205-223. https://doi.org/10.1080/00288330.2014.990467
Lam, T.J. 1974. Siganids: their biology and mariculture potential. Aquaculture, 3(4): 325-354. https://doi.org/10.1016/0044-8486(74)90001-5
Larkum, A.W.D., R.J. Orth, & C.M. Duarte. 2006. Seagrasses: biology, ecology and conservation. Springer. Netherlands. 690 p.
Latuconsina, H., M.N. Nessa, & R. Ambo-Rappe. 2012. Komposisi spesies dan struktur komunitas ikan padang lamun perairan Tanjung Tiram-Teluk Ambon Dalam. J. Ilmu dan Teknologi Kelautan Tropis, 4(1): 35-46. https://doi.org/10.29244/jitkt.v4i1.7804
Latuconsina, H., R. Ambo-Rappe, & M.N. Nessa. 2013. Asosiasi ikan beronang (Siganus canaliculatus Park, 1797) pada ekosistem padang lamun perairan Teluk Ambon Dalam. In: Simanjuntak CPH (eds). Prosiding Seminar Nasional Ikan VII Masyarakat Iktiologi Indonesia (MII) 2012, Makassar Golden Hotel, Makassar 12 Juni 2012. 123-137 pp.
Latuconsina, H. & R. Ambo-Rappe. 2013. Variabilitas harian komunitas ikan padang lamun perairan Tanjung Tiram-Teluk Ambon Dalam. J. Iktiologi Indonesia, 13(1): 35-53. https://doi.org/10.32491/jii.v13i1.110
Latuconsina, H., M.H. Sangadji, & Naudin. 2015. Variabilitas harian ikan padang lamun terkait keberadaan mangrove dan terumbu karang di perairan Pulau Buntal-Teluk Kotania, Kabupaten Seram Bagian Barat. Dalam Atmadipoera et al (eds.). Prosiding Pertemuan Ilmiah Tahunan-XI ISOI. Swiss Belhotel, Balikpapan, 17-18 November 2014. 81-196 pp.
Latuconsina, H., T. Tuasikal, & I. Wali. 2018. Struktur komunitas ikan mangrove Pulau Tatumbu Teluk Kotania, Seram Bagian Barat–Maluku. In: Hadiaty R.K (eds). Prosiding Seminar Nasional Ikan ke X Masyarakat Iktiologi Indonesia (MII) 2018. Cibinong, Bogor 8–9 Mei 2018. Jilid 1. 345 –358 pp.
Latuconsina, H., A. Padang, & A.M. Ena. 2019. Iktiofauna di Padang Lamun Pulau Tatumbu Teluk Kotania, Seram Barat – Maluku. J. Agribisnis Perikanan, 12(1): 93-104. https://doi.org/10.29239/j.agrikan.12.1.93-104
Lee, C.L., C.K.C. Wen, Y.H. Huang, C.Y. Chung, & H.J. Lin. 2019. Ontogenetic habitat usage of juvenile carnivorous fish among seagrass-coral mosaic habitats. Diversity, 11(25): 1-17. https://doi.org/10.3390/d11020025
Livingston, R.J., S.E. McGlynn, & N. Niu. 1998. Factors controlling seagrass growth in a gulf coastal system: Water and sediment quality and light. Aquatic Botany, 60: 135-159. https://doi.org/10.1016/S0304-3770(97)00079-X
Mariani, S. & T. Alcoverro. 1999. A Multiple-choice feeding-preference experiment utilising seagrasses with a natural population of herbivorous fishes. Marine Ecology Progress Series, 189: 295-299. https://doi.org/10.3354/meps189295
McDevitt-Irwin, J.M., J.C. Iacarella, & J.K. Baum. 2016. Reassessing the nursery role of seagrass habitats from temperate to tropical regions: a meta-analysis. Marine Ecology Progress Series, 557: 133–143. https://doi.org/10.3354/meps11848
McCloskey, R.M & R.K.F. Unsworth. 2015. Decreasing seagrass density negatively influences associated fauna. Peer J., 23(3): 1-16. https://doi.org/10.7717/peerj.1053
Muliati, F. Yasidi, & H. Arami. 2017. Studi kebiasaan makanan Ikan Baronang (Siganus canaliculatus) di perairan Tondonggeu Kecamatan Abeli Sulawesi Tenggara. J. Manajemen Sumber Daya Perairan, 2(4): 287-294.
Munira, Sulistiono, & Zairion. 2010. Distribusi spasial ikan beronang (Siganus canaliculatus) di padang lamun Selat Lonthoir, Kepulauan Banda, Maluku. J. Iktiologi Indonesia, 10(1): 25-33. https://doi.org/10.32491/jii.v10i1.175
Nakamura, Y., K. Hirota, T. Shibuno, & Y. Watanabe. 2012. Variability in nursery function of tropical seagrass beds during fish ontogeny: timing of ontogenetic habitat shift. Mar. Biol., 159: 1305–1315. https://doi.org/10.1007/s00227-012-1911-z
Nordlund, L.M., R.FK, Unsworth, M. Gullström, & L.C Cullen-Unsworth. 2017. Global significance of seagrass fishery activity. Fish and Fisheries, 19: 399–412. https://doi.org/10.1111/faf.12259
Ondara, K., U.J. Wisha, & G.A. Rahmawan. 2017. Karakteristik hidrodinamika di perairan Teluk Ambon untuk mendukung wisata selam. J. Kelautan, 10(1): 67-77. https://doi.org/10.21107/jk.v10i1.2170
Ondiviela, B., I.J. Losada, J.L. Lara, M. Maza, C. Galván, T.J. Bouma, & J. van Belzen. 2014. The role of seagrasses in coastal protection in a changing climate. Coastal Engineering, 87: 158-168. http://doi.org/10.1016/j.coastaleng.2013.11.005
Phinrub, W., B. Montien-Ar., J. Promya, & A. Suvarnaraksha. 2015. Fish diversity and fish assemblage structure in seagrass meadows at Sikao Bay, Trang Province, Thailand. Open J. of Ecology, 5: 563-573. https://doi.org/10.4236/oje.2015.512047
Quiros, T.E.A.L., C. Croll, B. Tershy, M.D. Fortes, & P. Raimondi. 2017. Land use is a better predictor of tropical seagrass condition than marine protection. Biological Conservation, 209: 454–463. https://doi.org/10.1016/j.biocon.2017.03.011
Selano, D.A.J., E.M. Adiwilaga, R. Dahuri, I. Muchsin, & H. Effendi. 2009. Sebaran spasial luasan area tercemar dan analisis beban pencemar bahan organik pada perairan Teluk Ambon Dalam. J. Torani, 19(2): 96–106.
Setyobudiandi, I., Sulistiono, F. Yulianda, C. Kusmana, S. Hariyadi, A. Damar, Sembiring, & Bahtiar. 2009. Sampling dan analisis data perikanan dan kelautan; terapan metode pengambilan contoh di wilayah pesisir dan laut. Makaira-FPIK IPB. Bogor. 312 p.
Scott, A.L., P.H. York, C. Duncan, P.I. Macreadie, R.M. Connolly, M.T. Ellis, J.C. Jarvis, K.I. Jinks, H. Marsh, & M.A. Rasheed. 2018. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Frontiers in Plant Science, 9(127): 1-10. https://doi.org/10.3389/fpls.2018.00127
Susilo, E.S., N. Sugianto, Munasik, Nirwani, & C.A. Suryono. 2018. Seagrass parameter affect the fish assemblages in Karimunjawa Archipelago. In Riyadi (eds) Proceedings 3rd International Conference on Tropical and Coastal Region Eco Development (ICTCRED 2017), Eastpark Hotel, Yogyakarta, Indonesia. 2-4 October 2017. IOP Conference Series: Earth and Environmental Science, 116(1): 1-7. https://doi.org/10.1088/1755-1315/116/1/012058
Suardi., B. Wiryawan, A. Taurusman, A.A. Santoso, & J.M. Riyanto. 2016. Variations in size and catch distribution of white spotted rabbit fish (Siganus canaliculatus) on bio-FADs from spatially and temporary point of view, at Luwu District, South Sulawesi, Indonesia. AACL Bioflux, 9(6): 1220-1232.
Syukur, A., Y. Wardiatno, I. Muchsin, & M.M. Kamal. 2017. Threats to seagrass ecology and indicators of the importance of seagrass ecological services in the coastal waters of East Lombok, Indonesia. American J. of Environmental Sciences, 13(3): 251-265. https://doi.org/10.3844/ajessp.2017.251.265
Thangaradjou, T.M. B.K. Prasad, P. Subhashini, S. Raja, E. Dilipan, & E.P. Nobi. 2015. Biogeochemical processes in tropical seagrass beds and their role in determining the productivity of the meadows. Geochemistry International, 53(5): 473–486. https://doi.org/10.1134/S0016702915050055
Unsworth, R.K.F., L.C. Cullen, J.N. Pretty, D.J. Smith, & J.J. Bell. 2010. Economic and subsistence values of the standing stocks of seagrass fisheries: potential benefits of no-fishing marine protected area management. Ocean Coast Manag., 53: 218–224. https://doi.org/10.1016/j.ocecoaman.2010.04.002
Unsworth, R.K.F., S.L. Hinder, O.G. Bodger, & L.C. Culen-Unsworth. 2014. Food supply depends on seagrass meadows in the coral triangle. Environmental Research Letters, 9: 1-9. https://doi.org/10.1088/1748-9326/9/9/094005
Unsworth, R.F.K., L.M. Nordlund, & L.C. Cullen-Unsworth. 2019. Seagrass meadows support global fisheries production. Conservation Letters, 12(1): 1-8. https://doi.org/10.1111/conl.12566
van Katwijk, M.M., M.E.W. van der Welle, E.C.H.E.T. Lucassen, J.A. Vonk, M.J.A. Christianen, W. Kiswara, I. Inayat al Hakim, A. Arifin, T.J. Bouma, J.G.M. Roelofs, & L.P.M. Lamers. 2011. Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: A benchmark from a near-pristine archipelago in Indonesia. Marine Pollution Bulletin, 62: 1512–1520. https://doi.org/10.1016/j.marpolbul.2011.04.007
Waycott, M., K. McMahon, J. Mellors, A. Calladine, & D. Kleine. 2004. A guide tropical seagrass`of Indo-West Pacific. James Cook University. Townsville. Australia. 72 p.
Whitfield, A.K. 2017. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries, 27: 75–110. https://doi.org/10.1007/s11160-016-9454-x
Widianingsih & I. Riniatsih. 2009. Kandungan Klorofil-a Mikrofito-bentos di Padang Lamun Perairan Teluk Awur dan Bandengan, Jepara. J. Ilmu Kelautan, 14(1): 6-13. https://doi.org/10.14710/ik.ijms.14.1.6-13
Woodland, D.J. 2001. Siganidae, Rabbitfishes (spinefoots) p. 3627 – 3650. In Carpenter and Niem (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol.6. Bony fishes part 4 (Labridae to Latimeriidae). Rome, FAO. 3381-4218 pp.
Authors
The author submitting the manuscript must understand and agree that the copyright of the article manuscript must be submitted/transferred to the Jurnal Ilmu dan Teknologi Kelautan Tropis. This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) International License in which the Author and Reader can copy and redistribute the material in any media or format, and remix, modify and build material for any purpose, but they must provide appropriate credit (citing articles or content), provide a link to the license, and indicate whether there is a change. If you mix, change, or create material, you must distribute your contribution under the same license as the original.