
January 2026      1    

RODRÍGUEZ-HERNÁNDEZ ET AL. / Tropical Animal Science Journal 49(1):1-18p-ISSN 2615-787X   e-ISSN 2615-790X   
Accredited by Directorate General of Higher Education, Research, 
and Technology, Republic of Indonesia, No. 225/E/KPT/2022

Tropical Animal Science Journal, January 2026, 49(1):1-18
DOI: https://doi.org/10.5398/tasj.2026.49.1.1

Available online at https://journal.ipb.ac.id/index.php/tasj

Copyright © 2026 by Authors, published by Tropical Animal Science Journal. 
This is an open-access article distributed under the CC BY-SA 4.0 License 
(https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

The fast growth of the population has raised the 
demand for food and required the development of 
more efficient food production systems (Hemathilake 
& Gunathilake, 2022). The poultry sector is a leader in 
ensuring global food security in the livestock industry. 
Poultry production substantially contributes to provid-
ing high-quality and affordable protein sources, such as 
eggs and meat. Likewise, with intensive farming tech-
niques, the poultry industry has been able to respond to 
the growing demand for these proteins (Attia et al., 2022; 
Gržinić et al., 2023; Mottet & Tempio, 2017). However, 
although intensive farming methods have improved 
productivity, public concerns have arisen regarding 
the welfare of production animals, particularly laying 
hens, and consumers demand higher animal welfare 
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ABSTRACT

Animal welfare is a crucial issue in animal production, and researchers are seeking optimal 
methods to evaluate animal welfare in the field. In poultry farming, laying hen health and welfare 
are critical to consumer perception of product quality. The aim of the review was to examine 
traditional and advanced measurement trends of animal welfare in laying hens’ farms. Emerging 
technologies have facilitated a more profound comprehension of animal responses to diverse 
scenarios encountered in livestock production systems. Currently, conventional methods, such as 
behavioral observations, are time-consuming and highly dependent on the experienced observer’s 
expertise; likewise, other valuable indicators, including physiological parameters, hormonal levels, 
thermographic changes in the body, and hematological parameters, are widely used but are being 
re-evaluated. Currently, technological advances are developing comparatively non-invasive methods 
for multiple and long-term monitoring, such as machine vision and deep learning algorithms to track 
bird behavior. In addition, molecular techniques have emerged as promising tools to understand 
the cellular responses under internal or external stressful conditions and improve farm animal 
welfare. However, several challenges exist in terms of standardization and implementation of the 
new technologies, especially in developing countries. These challenges include limited access to 
advanced tools, costs, among others, and hinder implementation. In this review, we conclude that 
welfare research requires a holistic and interdisciplinary approach, utilizing both conventional 
measurements and new technologies to enable a more comprehensive assessment of animal welfare. 

Keywords: behavior; omics; physiology; production systems; welfare

standards in all animal production systems (Clark et al., 
2016; Sadeghi et al., 2023). Laying hen´s welfare consti-
tutes an essential issue in the poultry industry and influ-
ences birds’ health and productivity (Ferrante, 2009). 

Several studies highlight the beneficial effects of 
enriched environments on the welfare and egg quality 
of laying hens across different production systems 
(Barnett & Hemsworth, 2003; El-Sabrout et al., 2022; 
Herrera-Sánchez et al., 2024; Tainika & Şekeroğlu, 2021). 
Likewise, hens raised in poor welfare conditions, such 
as overcrowded and suboptimal housing, experience 
increased stress, reduced egg production, and higher 
mortality rates (Lay Jr et al., 2011; Tahamtani et al., 2014).

Assessing and quantifying welfare in laying hens 
is a task that demands a holistic approach. It requires 
a thorough comprehension of cognition, behavior, 
physiology, responses to species-specific stressors, 

https://portal.issn.org/resource/ISSN/2615-787X
https://portal.issn.org/resource/ISSN/2615-790X
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.5398/tasj.2026.49.1.1&domain=pdf


2     January 2026

RODRÍGUEZ-HERNÁNDEZ ET AL. / Tropical Animal Science Journal 49(1):1-18

and molecular processes (Main et al., 2012). Several 
biomarkers and indicators have been employed to 
measure laying hens’ welfare (EFSA AHAW Panel et al., 
2023; Bhanja & Bhadauria, 2018; Li et al., 2020; van Veen 
et al., 2023). However, conventional methods, such as 
behavioral observations, are time-consuming and highly 
dependent on the experienced observer’s expertise and 
accuracy, which are variable (Fujinami et al., 2023). 
Other valuable indicators utilized to evaluate the stress 
status and welfare of laying hens include physiological 
parameters (Barnett et al., 1994; Kim et al., 2021a), 
hormonal levels, especially corticosterone (Downing & 
Bryden, 2008; Lee et al., 2022; Scanes, 2016; Zaytsoff et al., 
2019), thermographic changes in the body of hens (Cai et 
al., 2023; Ouyang et al., 2021), hematological parameters 
as heterophil to lymphocyte ratio (Kim et al., 2021a; Lee 
et al., 2022; Nwaigwe et al., 2020; Scanes, 2016), and the 
comprehensive oxidative stress status (Herrera-Sánchez 
et al., 2024; Oke et al., 2024; Temple et al., 2020; Tilbrook 
& Fisher, 2020; van den Heuvel et al., 2022a). 

Currently, technological advances have enhanced 
our understanding of animal welfare and behavior, 
developing comparatively non-invasive methods for 
multiple and long-term monitoring, such as machine 
vision and deep learning algorithms to track bird 
behavior (Li et al., 2020; Okinda et al., 2020; Paneru 
et al., 2024; Sozzi et al., 2023; Subedi et al., 2023; 
Zaninelli et al., 2018). Likewise, among the innovative 
methodologies, molecular techniques have emerged as 
promising tools to understand the cellular responses 
under internal or external stressful conditions and 
improve farm animal welfare by providing insights into 
genetic structures, disease detection, and phenotypic 
outcomes at a molecular level (Demir et al., 2021; Fabrile 
et al., 2023; Herrera-Sánchez et al., 2024; Rodríguez-
Hernández et al., 2021). The use of molecular tools 
such as transcriptomics, proteomics, and metabolomics 
can provide valuable information on the changes in 
physiological and underlying molecular mechanisms in 
the animal’s production welfare (Carvalho et al., 2022; 
Herrera-Sánchez et al., 2024; Taborda-Charris et al., 
2023). These approaches provide potential instruments 
for monitoring and improving farm laying hen welfare 
while increasing economic efficiency and overall 
animal well-being. Thus, this review aims to describe 
technologies with potential applications for evaluating 
and enhancing the welfare of laying hens.

 
Traditional Measures

Behavioral observation.  Animal behavior refers to the 
actions, reactions, and activities exhibited by animals 
in response to internal or external stimulation (Broom 
& Johnson, 1993; Kokocińska & Kaleta, 2016; Malott & 
Kohler, 2021). The EFSA guidance on animal welfare 
risk assessment defines “response of an animal or an 
effect on an animal” as an animal-based measure. It 
may be taken directly or indirectly from the animal and 
includes animal records. However, evaluation of some 
behaviors may vary according to available resources, 
and behaviors should be assessed together (EFSA 
AHAW Panel et al., 2023)

Understanding animal behavior is crucial in 
assessing their welfare. Behavioral observations can 
provide insight into animals’ physical and mental 
states by identifying patterns and deviations of 
natural behavior (Broom, 2010; Harikrishnan, 2021; 
Pisula, 1999). The natural behavior that animals 
exhibit is a result of their developed cognitive and 
emotional systems that enable them to interact with the 
environment, including performing certain pleasurable 
behaviors and promoting biological functioning 
(Hemsworth & Edwards, 2020; Khullar & Jena, 2021)

Animals experiencing positive welfare are more 
likely to exhibit natural behavior. Deprivation of natural 
behaviors can lead to physiological distress, reduced 
production, and increased mortality. Consequently, 
behavioral observations are crucial in identifying animal 
stress and discomfort, allowing timely intervention 
to enhance animal welfare and reduce stress levels. 
The classical methods used to identify and measure 
behaviors can be complex in a large group of animals, 
but their importance cannot be overstated. It is urgent 
that we address animal stress and discomfort, and 
behavioral observations are a key tool in this endeavor. 

In the case of laying hens, multiple housing 
systems have been developed accommodating large 
groups of hens that exceed 25,000 birds, making it 
unfeasible to observe individual animals through 
conventional methods (Siegford et al., 2016). Therefore, 
the use of new technologies in observing the behavior of 
laying hens is crucial due to the limitations of traditional 
methods (Yang et al., 2023b; Yang et al., 2024). New 
technologies have been reported to improve behavioral 
assessment through continuous automated monitoring, 
offering more accurate and objective insight (Daigle, 
2013; Leroy et al., 2006; Watters et al., 2021). For example, 
studies conducted in laying hens demonstrated that 
thermal imaging cameras could accurately detect 
plumage damage with differences between body regions 
(Pichová & Bilčík, 2017; Schreiter & Freick, 2022). 
Wearable sensors have been successfully utilized to 
monitor laying hen behaviors, providing real-time data 
on behavior and physiological responses (Fujinami et al., 
2023). The sensors can be attached to hens and recognize 
various hen behaviors, categorizing them into different 
intensity levels for optimal management of modern 
poultry systems (Shahbazi et al., 2023). For instance, 
wearable inertia sensor technology and a machine 
learning model (ML) can analyze laying-hen behaviors 
with an accuracy of 90%, allowing early detection of 
stress or distress by identifying and analyzing changes 
in vocalization patterns, such as frequency, duration, 
and intensity (Derakhshani et al., 2022; van den Heuvel 
et al., 2022b). Currently, different technologies have been 
developed to evaluate changes in laying hen´s behavior 
as listed in Table 1.

In summary, knowledge concerning animal 
behavior is essential for improving animal production 
because it allows the design of production systems that 
meet animals’ needs and promote positive welfare, 
which can lead to reducing stress and improving animal 
health in general, generating greater productivity and 
profitability for farmers (Madzingira, 2018; Orihuela, 
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2021). However, behavior observation technologies 
have limitations, in the case of traditional technologies, 
subjectivity, difficulty in quantifying behaviors, 
influence of environmental factors, sampling bias, 
and lack of standardization (Bateson & Martin, 2021; 
Dawkins, 2004; Decina et al., 2019; Fraser & Matthews, 
1997; Jones, 1996; Weeks & Nicol, 2006). In the case of 
new technologies, despite the generation of objective 
data without disturbing the animals, they have 
limitations in terms of implementation at a commercial 
scale (Ben Sassi et al., 2016).

Physiological measures. Physiological measures refer 
to quantitative assessments of biological processes 
within an organism, providing insights into its internal 
state and functioning (Serra et al., 2018). Physiological 
markers offer advantages, such as objectivity, 
comparability between species, and the ability to 
reflect past well-being states with different temporal 
resolutions, allowing a dynamic view of well-being over 
time (Beaulieu, 2024; Filazzola & Cahill Jr, 2021). Some 
examples of physiological markers include endocrine 
and hormonal parameters, metabolic and biochemical 
indicators, oxidative stress markers, cardiovascular and 
respiratory indicators, behavioral and physical health 

observations, immune function, and body temperature 
(Guevara et al., 2022; James et al., 2023). 

Endocrine biomarkers. Endocrine indicators refer to 
hormones that regulate various body functions (Hiller-
Sturmhöfel & Bartke, 1998). For example, hormone 
levels in biological samples such as blood, plasma, 
feathers, eggs, droppings, or urine provide insight into 
the physiological state of the individual (Carbajal et al., 
2014; Downing & Bryden, 2008; Häffelin et al., 2020; 
Rettenbacher et al., 2004; Steckl & Ray, 2018). Thus, 
several hormonal stress biomarkers in birds have been 
described (Table 2). 

Methodologies used to measure hormone 
biomarkers are listed in Tables 3 and 4. This includes 
Enzyme-Linked Immunosorbent Assay (ELISA), 
radioimmunoassay (RIA), Gas Chromatography-Mass 
Spectrometry (GC-MS), Liquid Chromatography-
Tandem Mass Spectrometry (LC-MS/MS), and high-
performance liquid chromatography (HPLC) (Tian et al., 
2018). Also, among these methods, immunoassays such 
as RIA and ELISA are the most used for quantifying 
hormones in biological samples (Nouri et al., 2020). 
Both methods use similar principles for quantifying 
hormones and bioanalytical methods, in which the 

Behavioral changes Application Methodology References
Feeding behavior Monitoring feed intake. Audio technology to collect feed intake 

audio using a voice recorder.
Ji et al. (2018)

Drinking behavior Monitoring locomotion, perching, 
feeding, drinking, and nesting 
behaviors.

3D Computer Vision and Radio 
Frequency Identification.

Nakarmi et al. (2014)

Social behavior Determination of feather pecking 
conditions.

Audio technology collects feed intake 
audio using a voice recorder.

Aydin & Berckmans 
(2016)

Assessing feather damage. Optical flow sensor and Markov models. Lee et al. (2011)
Analyzing the behaviors of laying 
hens to support farmers in managing 
hens in loose housing systems.

Wearable inertia sensor technology and 
machine learning (ML) models.

Derakhshani et al. (2022)

Reproductive
behavior

Tracking movement and nesting 
behaviors in real-time.

Radio Frequency Identification (RFID). Li et al. (2020b)

Tracking overall movement Sensors, often combined with ML 
algorithms.

Resting and sleeping 
behavior

Classifying resting and sleeping 
behaviors of laying hens.

Inertia Sensor and ML Technologies Derakhshani et al. (2022)

Locomotion and 
activity levels

Analyze laying-hen behaviors, such 
as jumps and flight trajectories.

Wearable inertia sensor technology and 
ML.

Banerjee et al. (2014)

Supporting farmers in the 
management of laying hens in loose 
housing systems through behavioral 
analysis

Wearable inertia sensor technology and 
ML model.

Derakhshani et al. (2022)

Evaluating space use and diverse 
behaviors.

Geographic Information Systems (GIS). Daigle et al. (2014)

Stress-related
behavior

Detecting stress. Audio technology and bird vocalizations 
were analyzed using software to extract 
vocalization acoustic parameters.

Pereira et al. (2014)

Health-related 
behavior

Identifying early deviations in health 
and welfare to reduce the subjectivity 
of assessments.

Cameras and microphones. van Veen et al. (2023)

Measuring activity behaviors to 
provide early warning of disease.

Image processing technology. Li et al. (2020b)

Thermoregulatory
behavior

Evaluating thermoregulatory features 
and metabolic changes.

Infrared technologies. Ben Sassi et al. (2016)

Table 1. Technologies for measuring behavioral changes related to the welfare of laying hens
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Hormone biomarkers General responses Measure methods Samples
Glucocorticoids 
(e.g., corticosterone)

Corticosterone levels increase in response 
to severe physiological or psychological 
stressors but return to baseline or decrease 
with prolonged exposure to these stressors 
(Babington et al., 2024)

Commercially available ELISA (Enzo 
Life Sciences Inc).

Feathers (Häffelin et al., 
2020)

Radioimmunoassay technique kit 
(AA-13F1, Biotech-IgG, Copenhagen,  
Denmark).

Egg white and yolk 
(Royo et al., 2008)

Immunoassays. Droppings (Alm et al., 2014)
Prolactin Prolactin levels may decrease in response to 

acute stressors (Schmid et al., 2011).
Radioimmunoassay technique. Plasma and pituitary tissues 

(Talbot & Sharp, 1994)
Estrogen Estrogen levels decline in response to stressors 

(Wang et al., 2017).
Liquid Chromatography-Tandem 
Mass Spectrometry (LC-MS/MS).

Blood or plasma 
(Prokai-Tatrai et al., 2010) 

Progesterone Progesterone levels decrease under heat-stress 
conditions (Anjum et al., 2016).

ELISA Quantitative Diagnostic Kit 
for estradiol or progesterone (North 
Institute of Biological Technology, 
Beijing, China).

Follicular granulosa cells 
(Yan et al., 2022)

Luteinizing
hormone (LH)

Luteinizing hormone (LH) is downregulated 
in response to stressful circumstances; it may 
initially increase due to immediate exposure 
to stress-inducing stimuli but decline with 
prolonged exposure (Babington et al., 2024) 

Enzyme-Linked Immunosorbent 
Assay (ELISA)

Egg (Prastiya et al., 2022)

Table 2. Hormonal biomarkers for assessing welfare in laying hens

Methodologies Principles Hormones 
measured Advantages Disadvantages References

ELISA Antibody-antigen
binding detected by 
enzyme-substrate 
reaction

Corticosterone,
Estradiol,
Progesterone

•	 Exhibits high sensitivity and 
specificity, user-friendly, cost-
effective, and delivers rapid 
results.

•	 Provides a non-invasive 
indicator of physiological 
status.

•	 Suitable for analyzing feather 
puddles from laying hens.

•	 Possesses a limited 
dynamic range, potential 
for cross-reactivity, and 
requires calibration.

•	 Hormonal values vary 
between different types of 
feathers and processing 
methods.

Häffelin et al. 
(2020); Häffelin 
et al. (2021)

RIA Radioactive labeling 
of antigen or 
antibody

Corticosterone,
Estradiol, 
Progesterone

•	 Demonstrates high sensitivity 
and specificity, established 
methodology, and quick 
results.

•	 Facilitates accurate and precise 
measurement of hormonal 
levels in feathers.

•	 Limited dynamic range 
involves handling of 
radioisotopes and is costly.

•	 Lack of standardized 
procedures for feather 
analysis.

•	 Requires species-specific 
validation before 
application.

Alm et al. 
(2014); Häffelin 
et al. (2020) 

GC-MS Separation of 
compounds by gas 
chromatography
followed by mass 
spectrometry

Estradiol, 
Testosterone,
Progesterone

•	 Offers high sensitivity and 
specificity, high-throughput 
analysis, and precise 
quantification of hormonal 
metabolites.

•	 Provides measurements 
of hormone levels in eggs 
from laying hens, a possible 
indicator of stress in laying 
hens.

•	 Enables accurate assessment of 
corticosterone content in eggs, 
indicating a possible stress 
level in laying hens.

•	 Requires specialized 
equipment and expertise, 
incurs high costs, and 
has potential for false 
positives/negatives.

•	 GC-MS sensitivity to 
sample handling, such as 
freeze-thaw cycles.

•	 Requires meticulous 
sample handling to ensure 
precision and repeatability 
of measurements.

Sas et al. (2006)

LC-MS/MS Separation of 
compounds 
by liquid 
chromatography 
followed by mass

Corticosterone, 
Testosterone

•	 High specificity, capable of 
simultaneously measuring 
multiple hormones.

•	 Identifies and quantifies 
cortisol and its metabolites in 
various samples.

•	 Allows evaluation of the effects 
of dietary supplementation on 
hormonal levels.

•	 Expensive and requires 
technical expertise.

•	 Affordability for smaller 
laboratories varies.

Field (2013); 
Stanczyk & 
Clarke (2010)

Table 3. Technologies for measuring hormonal biomarkers in laying hens
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reaction of an antigen (analyte) and an antibody is 
employed to detect and quantify the analyte (Aydin, 
2015; Darwish, 2006). However, detecting the antibody-
antigen complex differs: ELISA uses enzymes, whereas 
RIA uses radioisotopes (Hackney, 2018; Klee, 2003). 
Therefore, because of radioactive isotopes, RIA has been 
replaced by ELISA kits that allow the quantification 
of hormones without radioactivity (Kinn Rød et al., 
2017). For example, RIA has been used to measure 
corticosterone in hens housed in cages, floor, and 
organic systems (Pia Franciosini et al., 2005), and used 
ELISA to measure the effect of chronic exposure to 

high temperatures and ammonia concentrations on 
reproductive hormones in birds (Li et al., 2020a).

However, these types of immunoassays have 
disadvantages, such as providing data for only one 
hormone per run and substantial cross-reactivity 
(Abdel-Khalik et al., 2013). Freeze-thaw cycles of 
samples can significantly decrease corticosterone 
concentrations from their initial values (Häffelin et al., 
2020), and differences in sensitivity between kits and 
techniques can alter the results (Bekhbat et al., 2018).

Nevertheless, other methods could be more 
accurate in measuring hormones. Chromatography is 

Omics techniques Principles Biomarkers measured Advantages Disadvantages References
Genomics (Whole 
Genome Sequencing 
(WGS), Genotyping 
Arrays)

Study of the complete 
set of DNA, including 
all of its genes.

Genetic variants,
SNPs, CNVs

Comprehensive genetic 
information, identification of 
genetic predispositions

High cost, extensive data 
sets requiring complex 
analysis.

   

Epigenomics 
(Bisulfite Sequencing, 
Chromatin 
Immunoprecipitation 
(ChIP)

Analysis of DNA
methylation patterns.

DNA methylation 
status of stress and
immune-related
genes

•	 Provides insights into 
genetic regulation and can 
elucidate the long-term 
effects of stress.

•	 Serves as a potential 
predictive tool for stress 
and contributes to the 
enhancement of animal 
welfare.

•	 Interpreting complex 
and expensive data 
necessitates high-quality 
DNA.

•	 Presents potential 
challenges in elucidating 
the functional 
implications of DNA 
methylation changes 
about general well-being.

Bird (2002); 
Nery da Silva 
et al. (2021); 
Zhang et al. 
(2017) 

Transcriptomics 
(RNA-Seq, 
Microarrays)

Analysis of the
complete set of RNA 
transcripts produced 
by the genome.

Whole transcriptome 
analysis, 
stress-related gene
expression.

•	 Exhibits comprehensive 
coverage, high 
performance, and 
exceptional sensitivity.

•	 Facilitates a detailed 
understanding of the 
biological processes 
and pathways of stress 
response and well-being 
regulation.

•	 Enables the identification 
of potential biomarkers 
associated with 
well-being.

•	 Incur significant costs and 
necessitates considerable 
expertise in data analysis.

•	 Transcriptomic analysis 
produces extensive 
datasets that demand 
advanced bioinformatics 
proficiency.

•	 RNA-Seq is highly 
sensitive to variations 
in sample handling and 
processing.

•	 The financial burden 
associated with RNA-Seq 
experiments is substantial.

Li et al. 
(2015); Wang 
& Ma (2019); 
Wang et al. 
(2009)

Proteomics (Mass 
Spectrometry (MS), 
Protein Microarrays)

Identification and
quantification of 
proteins.

Stress proteins, 
cytokines, and 
other stress-related 
proteins.

•	 Comprehensive 
in detecting post-
translational 
modifications, with high 
performance.

•	 Enables the identification 
and quantification of 
numerous proteins and 
the detection of their 
modifications.

•	 Significant expenses are 
incurred, and experience 
in data analysis and 
intricate sample 
preparation is required.

•	 Requires specialized 
equipment and expertise.

Campbell 
et al. (2022); 
Mann & 
Jensen (2003)

Metabolomics 
(Nuclear Magnetic 
Resonance (NMR), 
Mass Spectrometry)

Analysis of 
metabolites in a 
biological system.

Metabolic changes 
associated with stress.

•	 Delivers functional 
information with high 
performance.

•	 Provides a comprehensive 
overview of the 
physiological state of 
laying hens, facilitating 
the identification of well-
being biomarkers.

•	 Contributes to a more 
holistic understanding 
of laying hen welfare 
by complementing 
other omics approaches, 
including transcriptomics, 
DNA methylation 
analysis, proteomics, and 
miRNAs.

•	 Involves substantial costs 
and demands significant 
expertise in data analysis 
and complex sample 
preparation.

•	 Requires advanced 
analytical techniques and 
experience for accurate 
interpretation.

Alm et al.
(2014)

Table 4. Omics for measuring welfare in laying hens.
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a method characterized by the separation of different 
molecules in a mixture by the distribution between 
two phases, called a stationary phase (SP) and a mobile 
phase (MP) (Coskun, 2016). Gas chromatography-mass 
spectrometry (GC-MS), liquid chromatography-tandem 
mass spectrometry (LC-MS/MS), and high-performance 
liquid chromatography (HPLC) provide good separation, 
sensitivity, and limit of detection for hormones superior 
to immunoassays (Chafi & Ballesteros, 2022; McDonald 
et al., 2011a). The HPLC separates analytes according to 
their distribution between a mobile liquid phase and a 
stationary solid phase (Hell et al., 2014).

Gas chromatography (GC) coupled with mass spec-
trometry (MS) is commonly used for the identification 
of potential steroids and metabolites because of its high 
chromatographic resolution capacity and reproduc-
ible ionization efficiency (Niessen, 2001; Stan, 2005). 
Although GC/MS has better chromatographic resolution 
than LC-MS/MS, it must overcome problems related to 
derivatization (Bowden et al., 2009). Derivatization is the 
process of chemically altering an analyte or analytes. 
Chromatography has been used to determine stress-
related hormone levels in broilers, hens, and ducks from 
serum, feather, egg albumen, and yolk samples under dif-
ferent conditions (Afrouziyeh & Zuidhof, 2022; Caulfield 
& Padula, 2020; Oluwagbenga et al., 2022). The results of 
LC-MS/MS and ELISA methods for measuring stress-re-
lated hormone (corticosterone) concentrations in plasma 
were highly correlated in broiler breeders (Afrouziyeh & 
Zuidhof, 2022). Also, GC-MS has been used to detect ste-
roid hormones in eggs despite being involved in a tedious 
derivatization process (Fritsche et al., 1999; Hartmann et 
al., 1998). In contrast, without derivatization, LC-MS/MS 
has been employed to assess synthetic steroid hormones 
in egg samples derived from eight standard commercial 
poultry layer breeds (Li et al., 2019). Therefore, despite its 
capacity for high throughput and potential, LC-MS/MS 
exhibits several constraints, including sensitivity, specific-
ity, and performance (Adaway et al., 2015; Grebe & Singh, 
2011; McDonald et al., 2011b).

Physiological parameters. On the other hand, heart 
rate has been used to indicate animal welfare to allow 
understanding of some responses to the environment 
and challenges in their environment. It is of interest 
for research on social behavior, animal cognition, and 
individual differences (Wascher, 2021). Heart rate 
and heart rate variability (HR/HRV) are non-invasive 
techniques that can assess welfare, with potential 
applications in real-time monitoring of welfare (Kim et 
al., 2021b; Von Borell et al., 2007; Wascher, 2021). Wearable 
bioelectric recording systems have been used successfully 
to monitor the heart rate and its variability through 
electrocardiography signals in chickens. The backpack 
electrocardiography system used in this study may be 
best suited for application in freely moving poultry 
(Ahmmed et al., 2023), but heart rate is strongly affected 
by social interactions in a wide range of species and 
used to mark and quantify individual levels of stress in 
response to anthropogenic disturbances or environmental 
challenge (Wascher, 2021) which could generate 
individual variations in the measurements.

Likewise, respiratory rate has been used to 
indicate avian stress and health status. However, it is 
pivotal to detect respiratory rates that are contactless 
and stress-free in poultry to avoid alterations due to 
manipulation or external factors. Moreover, with many 
birds in production systems in commercial conditions, 
it is unfeasible to detect a reliable respiratory rate truth 
evaluation with manual measures. Wang et al. (2022) 
compared respiratory rate estimation techniques without 
the video magnification algorithm (RR-D) and with 
the video magnification algorithm (RR-D-EVMGS) to 
improve the detection accuracy of the broiler respiration 
rates. This technique and the algorithm require further 
optimization, but it is a promising prospect to bring 
support for respiratory diseases and stress monitoring.

Animal body temperature, such as respiratory 
and heart rates, is closely related to the physiological, 
metabolic, emotional, and welfare status (Giloh et 
al., 2012). Body temperatures respond to external 
and internal factors and may reflect responses to the 
environment or some internal challenge of the animals. 
Therefore, it is an essential indicator for measuring the 
state of the animal. The body temperature of laying hens 
can be monitored using different technologies, among 
them thermal imaging, as the non-invasive method 
is capable of evaluating the temperature through the 
energy emitted by the animal’s skin surface captured 
by an image visible to the human eye (Morgado et al., 
2022). Giloh et al. (2012) used infrared thermographic 
measurement by infrared thermal imaging of skin 
surface temperature in monitoring the thermal status of 
chickens in a commercial flock. They concluded that this 
methodology requires the selection of specific surface 
sites and correlating their body temperature under 
various environmental conditions, and found that facial 
surface temperature is strongly correlated with body 
temperature, which can provide valuable information 
regarding their thermal comfort and potential heat 
stress (Morgado et al., 2022). In addition, infrared 
measurements have shown acclimation to persistent 
high temperatures, and acclimated birds did not display 
high concentrations of corticosterone, which highlights 
their lower stress level (Giloh et al., 2012). Assessing 
welfare is difficult with a single parameter; doing so only 
by measuring physiological parameters is challenging. 
It is challenging due to the absence of well-defined 
physiological standards for each condition. Different 
rearing conditions, feeds, environments, breeds, densities, 
genetic lines, and immunity status can interact and cause 
response variations depending on the conditions.

 
Environmental parameters.  Environmental conditions 
significantly impact animal welfare, providing the 
necessary conditions for animals to exhibit their natural 
behaviors in their natural habitat (Koknaroglu & Akunal, 
2013). Critical environmental factors that ensure animal 
welfare include temperature, relative humidity, air 
quality, illumination, and noise (González-Salcedo et al., 
2020; Li et al., 2023a). High temperature and humidity 
generate heat stress in laying hens, affecting their 
reproductive performance, eggshell quality, and immune 
function (Mashaly et al., 2004; Nardone et al., 2010). 



January 2026      7    

RODRÍGUEZ-HERNÁNDEZ ET AL. / Tropical Animal Science Journal 49(1):1-18

Thermographic imaging through infrared thermography 
(IR) can indirectly assess physiological activity that 
occurs when animals react to different environmental 
situations and emotional stimuli by measuring the 
surface temperatures of specific regions (comb, beak, eye, 
and head) that are influenced by blood perfusion, tissue 
thermal conductivity, and metabolic heat generation 
(Tattersall, 2016; Travain & Valsecchi, 2021; van den 
Heuvel et al., 2022a).

In addition, the detrimental effects of poor air 
quality, regarding dust and ammonia, on laying 
hen welfare have been reported (David et al., 2015). 
Equipment to measure multiple parameters of air quality 
has been created. The portable monitoring unit (PMU) 
allows the measurement of ammonia (NH3) and carbon 
dioxide (CO2). The iPMU (Intelligent Portable Monitoring 
Unit) was created and has undergone significant 
upgrades, including a new data acquisition and control 
system, wireless data transfer capability, and a new 
commercial NH3 electrochemical sensor (Ji et al., 2016).

Other potential environmental stressors that cause 
stress and distress should be routinely monitored. 
This includes ambient light and noise levels (National 
Research Council (US) Committee on Recognition and 
Alleviation of Distress in Laboratory Animals, 2008). 
Exposing laying hens to levels of continuous noise 
measured as 80 dBA and 100 dBA caused reductions 
in their egg-laying rates and caused changes in the 
rates of abnormal eggs. Continuous noise, increased 
stress hormone cortisol (Lee et al., 2003), and 75 dB 
sound stimulus caused stress and fear in laying hens. 
Noise negatively influences their fearfulness, showing 
increments in the tonic immobility duration (Campo et 
al., 2005). In broilers, noise stimuli of both 80 dB and 100 
dB intensities for 10 min significantly elevated plasma 
corticosterone levels (Chloupek et al., 2009). Some noise-
related technologies include sound meters and loggers to 
measure and record decibel levels in hen housing. Then, 
sensor technologies can obtain objective, continuous, 
and contactless measures of animal behavioral and 
physiological welfare indicators.

 
Health status. Animal health assessment is non-invasive 
and can be performed through cage-side or pen-side 
visual observation and/or physical examination of an 
animal (Cohen & Ho, 2023). Nonetheless, it is crucial to 
recognize that animal health encompasses more than 
merely the absence of illnesses and injuries. The Swiss 
Animal Welfare Act not only focuses on the health of 
animals but also seeks to safeguard their dignity and 
overall well-being (Thomann et al., 2023). Assessing the 
health of laying hens for welfare purposes involves the 
evaluation of health indicators, such as infectious and 
parasitic diseases, production diseases, physical damage, 
and mortality (Erensoy et al., 2021). New technology, 
such as computer vision or deep learning models, allows 
monitoring of the spatial distribution of cage-free hens 
and some behaviors to indicate a flock’s health and 
welfare (Yang, 2023a; Yang et al., 2022a).

Radio Frequency Identification (RFID) is a 
technology employed to monitor the movement behavior 
of hens and predict individual health status, such as 
infections (Welch et al., 2023). Likewise, respiratory 

diseases can be detected by changes in vocalizations and 
ground throat vocalizations or sneeze detection (Banakar 
et al., 2016; Carpentier et al., 2019; Mahdavian et al., 2021). 
The onset of specific viral diseases like Newcastle (Cuan 
et al., 2022), avian influenza (Astill et al., 2018; Cuan et 
al., 2020), and infectious bronchitis can be detected by 
vocalizations. The reactions to vaccines in hens can also 
be differentiated by acoustic technology (Ginovart-
Panisello et al., 2024).

Physical damage, such as plumage condition, 
feather pecking, cannibalism, and injuries, is the most 
critical factor affecting feather conditions in laying 
hens (Erensoy et al., 2021). Using machine vision (RGB 
and RGB-D cameras), Lamping et al. (2022) assessed 
plumage conditions on commercial white-laying hen 
farms from a deep convolutional neural network called 
ChickenNet (Lamping et al., 2022). This system provides 
a holistic assessment of the plumage by computing a 
plumage condition score for each hen detected. The best 
result obtained among all tested configurations was a 
mean average precision of 98.02% for hen detection. In 
comparison, 91.83% of the plumage condition scores 
provide a sufficient basis for automated monitoring of 
plumage conditions in commercial laying hen farms. 

Another technology widely used to measure feather 
cover quality is IR. This useful tool is not biased by the 
subjective component and provides higher precision than 
feather damage scoring (Pichová & Bilčík, 2017). The 
IR is a tool that can evaluate the changes in the surface 
temperature, derived from an inflammatory process 
that would make it possible to objectively determine the 
depth of the damage to the dermis Zhang et al. (2023) 
demonstrated that the proposed RGB-D-T model based in 
the deep learning was more efficient than the other three 
traditional stereo matching algorithms in the detect the 
region of feather damage and assess the depth of feather 
damage (Zhang et al., 2023). In addition, automated 
image processing and statistical analysis using optical 
flows and Markov models for predicting feather damage 
in laying hens allow the identification of flocks with the 
probable prevalence of damage and injury later in the lay 
(Lee et al., 2011). Some behaviors of birds reveal health 
problems in the flock, which are related to diseases such 
as lameness (de Alencar Nääs et al., 2021). Yang et al. 
(2024) used multiple chicken trackers developed using 
six convolutional neural networks to monitor activity 
in cage-free chickens, and the results indicate that the 
average accuracy is between 80% and 94% (Yang et al., 
2024). This tracker can detect piling and smothering 
behaviors and footpad problems in cage-free chicken 
environments. It can be a valuable tool for detecting early 
problems in the flock in real-time and a handy tool for 
evaluating multiple welfare parameters. 

Finally, evaluating mortality rates and pathological 
changes in laying hens has been widely used to assess 
welfare in flocks (Erensoy et al., 2021). The flock’s 
health status can be assessed using management-based 
measures, which are based on records. In this case, the 
total mortality of the flock is a pivotal indicator at the end 
of production and allows the welfare of the farm and the 
production system to be assessed (EFSA AHAW Panel et 
al., 2023). 
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Preference tests. Preference tests have been used as a tool 
in the study of animal welfare by establishing animals’ 
preferences for shared resources and enrichments (Fraser 
& Matthews, 1997) A behavioral preference indicates the 
outcome when a bird chooses, e.g., between different 
foraging, nesting, or dustbathing substrates or for 
perches of different characteristics (EFSA AHAW Panel  
et al., 2023) under different situations and used as a 
welfare indicator. Several studies have evaluated animal 
preferences through choice tests that involve repeated 
measurements of stimulus choices, such as food items, 
to understand captive animals’ preferences (Lewis et 
al., 2022; Turner et al., 2023). In laying hens, preference 
tests remain a valuable tool in welfare assessments, 
establishing preferences for resources and enrichment 
environments (Nicol, 2023). However, obtaining a feasible 
measure of these tests without making inferences about 
what animals prefer is complex. Moreover, early chick 
environments, such as the provision of litter and perches, 
can predict laying hen welfare. In the study conducted 
by Skånberg et al. (2021), Leghorn classic chicks were 
presented with six different types of litter (crushed 
straw pellets, hemp shavings, peat, sand, straw, wood 
shavings) and six different types of perches (narrow or 
wide forms of rope, flat or round wood) (Skånberg et al., 
2021). The study showed that different litter types were 
preferred for different chicks’ behaviors. Dust bathing 
occurred on sand and peat, but chicks foraged more on 
wood shavings, hemp shavings, and sand than peat 
and pellets. The study also found that perch width and 
shape affected perch use and balance, measured as the 
likelihood of successful or problematic landings, and 
suggested that presenting several litter types could better 
fulfill laying hens’ chicks’ behavioral needs. Additionally, 
other preference studies showed a hen’s preferences for 
sunlight-filtering shade cloth shelters about different 
sunlight wavelengths on the range of commercial free-
range laying hens. They showed hens prefer shelters 
that block more sunlight, especially with high sunlight 
intensity (Rana et al., 2022). Therefore, preference studies 
are essential to determine birds’ comfort based on their 

perception and to adjust situations or infrastructure that 
improve the flock’s welfare.

Omics Technologies To Measure Animal Welfare

Utilizing omics methodologies provides a 
comprehensive strategy for thoroughly examining 
biological systems by analyzing and assessing enormous 
amounts of data representing a specific biological 
system’s composition and operational mechanisms 
within a particular context or level (Dai & Shen, 2022). 
In animal welfare, omics technologies have the potential 
to provide novel insights into the general biological 
understanding of the interactions between various 
physiological systems that participate in stress resilience, 
behavior, and production (Kasper et al., 2020). Among the 
emerging technologies for animal welfare assessment, 
genomics, epigenomics, transcriptomics, proteomics, and 
metabolomics have been included because of their ability 
to comprehensively study biological systems (Suravajhala 
et al., 2016).

Genomics involves the study of whole genomes, 
including coding and non-coding components (Nguyen, 
2024). Approaches used for genomic research include 
whole-genome sequencing, whole-exome sequencing, 
and targeted sequencing to acquire detailed data, as 
well as the use of bioinformatics tools for genome 
assembly, annotation, detection of structural variations, 
and comparative analysis between species (Cammen 
et al., 2016; Satam et al., 2023). This offers the potential 
to understand the host genetic factors that influence 
susceptibility, resistance, and immune responses to 
infectious diseases, creating an excellent opportunity to 
enhance the genetic well-being of animals by improving 
the precision of breeding values for the selection of 
candidates or related individuals, even in the absence of 
additional stressors (Brito et al., 2020; Nguyen, 2024).

Genomics has the potential to address a variety of 
welfare concerns by improving the fitness of the animal 
for the given environment, which might lead to increased 
contentment and decreased stress of birds in those 

Figure 1.  Omics to evaluate the hen´s responses to external and internal factors as a tool to assess animal welfare 
(Created with BioRender.com)
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production environments (Muir et al., 2014). Genomic 
selection is an emerging tool that can be used for effective 
and rapid selection under different environmental 
conditions (Budhlakoti et al., 2022). In breeding programs 
for layers, genomic selection can increase the efficiency 
of breeding programs regarding genetic progress and 
economic gain by enhancing selection accuracy or 
shortening the generation interval (Sitzenstock et al., 
2013). Similarly, Alemu et al (2016) indicated that genomic 
selection for socially affected traits is a promising tool for 
improving survival time in laying hens with intact beaks 
(Bahrndorff et al., 2016).

Genome-wide association studies (GWAS) are an 
approach used in genomics that allows the identification 
of genomic regions associated with groups of individuals 
with a particular phenotype (e.g., diseases, traits, 
behavioral outcomes) across a population to understand 
the genetic architecture of the phenotype better 
(Sitzenstock et al., 2013; Uffelmann et al., 2021). By GWAS, 
animal breeding programs can improve animal welfare 
by contributing to better health care and management 
by identifying genetic markers associated with desirable 
traits such as disease resistance, temperament, and 
physical characteristics, thus allowing selective breeding 
programs to improve (Baker et al., 2019). Lutz et al. (2017) 
used GWAS to identify genetic factors associated with 
feather pecking and aggressive pecking, discovering that 
numerous genes with minor effects were responsible 
for controlling these behaviors; however, no single 
nucleotide polymorphism (SNP) had a significant impact 
that justified its use in marker-assisted selection (Lutz et 
al., 2017).

Epigenetics is the study of changes in gene function 
that are mitotically and/or meiotically heritable, yet 
potentially reversible, molecular modifications to DNA 
and chromatin without altering the underlying DNA 
sequence (Wu & Morris, 2001). Epigenetic mechanisms 
include but are not limited to DNA methylation/
demethylation and hydroxymethylation, histone 
acetylation/deacetylation, histone phosphorylation/
dephosphorylation, noncoding RNA, microRNAs, and 
transcriptome actions, which play essential roles in 
modulating genomic function and stability (Ibeagha-
Awemu & Yu, 2021; Steiger & Thaler, 2016). These 
mechanisms function as intermediates between the 
genome and the environment, regulating various cellular 
processes and expressing the phenotype (Ibeagha-
Awemu & Yu, 2021).

Among the techniques employed in the examination 
of epigenomics are DNA methylation profiling, 
chromatin accessibility mapping, histone modification 
analysis, chromatin conformation analysis, and the 
merging of DNA methylation profiles with RNA-seq 
data (Satam et al., 2023). Research is being conducted in 
epigenetics to identify epigenetic markers of long-term 
stress in production animals (Nery da Silva et al., 2021). 
Epigenetic biomarkers are particularly promising for 
analyzing animal welfare and other attributes of interest 
in the animal agriculture industry because they integrate 
multidimensional context-dependent information. They 

could be applied to animal health and environmental 
exposure monitoring, two critical aspects of animal 
welfare assessments (Whelan et al., 2023).

Several studies showed epigenetic changes in hens 
in different conditions. For example, Pértille et al. (2020) 
used a study of the epigenome through methylome 
(Pértille et al., 2020). They identified stress-associated 
DNA methylation profiles from male White Leghorn 
chickens subjected to social isolation compared to 
controls across different biomes to detect whether a 
standard stress-related epigenetic profile is a potential, 
and obtained some candidate genes for stress diagnosis 
across layer populations of chickens reared in different 
conditions. Likewise, Guerrero-Bosagna et al. (2020) 
concluded that relative DNA methylation differences 
in the nidopallium are responsible for the non-genetic 
factors involved in the emergence of differential 
behavioral patterns in hens (Guerrero-Bosagna et al., 
2020). 
Transcriptomics refers to the study of the structure, 
function, and evolution of the ‘transcriptome,’ i.e., the 
complete set of all the ribonucleic acid (RNA) molecules 
(called transcripts) expressed in some given entity, such 
as a cell, tissue, or organism (Skerrett-Byrne Anthony et 
al., 2023). Some of the goals of transcriptomics include 
cataloging the entirety of transcriptome components, 
such as mRNAs, ncRNAs, and small RNAs (excluding 
rRNAs), investigating post-transcriptional modifications, 
and quantifying fluctuations in transcript expression 
during developmental stages and diverse conditions 
(Skerrett-Byrne Anthony et al., 2023).

Currently, transcriptome research studies have 
become a popular methodology due to technological 
advances and high sensitivity, throughput, and 
accuracy techniques used to quantify mRNA (Long, 
2020; Rodríguez-Hernández et al., 2021). Transcriptome 
research has been studying stress and stress factors due 
to their capacity to elucidate stress mechanisms and 
their influence on the production based on a genetic 
level (Herrera-Sánchez et al., 2023; Li et al., 2011), which 
could help to improve animal welfare evaluation (Wang 
& Ma, 2019). The production systems and stress factors 
during poultry production can evoke changes in gene 
transcription related to productivity and metabolism, 
among others (Chen et al., 2021; Herrera-Sánchez et al., 
2024), and could affect protein synthesis, producing 
changes in internal and external egg quality (Rodríguez-
Hernández et al., 2024).

For example, through transcriptome analysis of 
heat-treated and control layers, it is possible to identify 
the differentially expressed genes (DEGs) related to the 
layer’s response to stressors and may serve as targets 
for genetic selection to improve heat tolerance in layers 
(Wang et al., 2021). Another example of transcriptome 
use includes using the brain transcriptome study using 
RNA-seq to identify genes and biological pathways 
responsible for feather pecking (Falker-Gieske et al., 2020). 
In our studies, we have evaluated the transcriptome of 
caged and cage-free hens, finding statistically significant 
differences in the hypothalamus (138 DEGs), in liver 
tissues (209 DEGs) and spleen (19 DEGs), between 
hens from both egg production systems, in the liver 



10     January 2026

RODRÍGUEZ-HERNÁNDEZ ET AL. / Tropical Animal Science Journal 49(1):1-18

transcriptome of hens housed in the conventional cage 
versus cage free production system, genes such as 
TENM2, GRIN2C, ACACB, and SH3RF2 were identified, 
which can modulate fat synthesis in the liver, indicating 
that the production system would produce changes 
in triglyceride production in birds, demonstrates the 
influence of the production system and production 
conditions on genetic regulation under these conditions 
(Herrera-Sánchez et al., 2025).

Proteomics refers to the study of the proteome, i.e., 
the entire complement of proteins, including different 
posttranslational modifications (PTMs) expressed by 
cells or homogeneous tissues at a specific time (Conti 
& Alessio, 2015). The main proteomic approaches 
encompass the study of a specific proteome in a cell type 
or tissue, including information on protein abundance, 
their variations, and modifications, together with the 
analysis of protein-protein interactions with partners and 
networks to understand gene function (Liang et al., 2002). 
Proteomics using biomarkers is a very suitable method 
in animal breeding for understanding physiological 
processes and adaptation to environmental conditions, 
including stress and welfare (Adnane et al., 2024). 

Some studies have used proteomics to measure 
the influence of feed components, additives, or 
environmental or microbial challenges in hens. Ding et 
al (2020) identified by proteomics analysis the effects of 
tea polyphenol supplementation on the mechanism of 
albumen quality by regulating the antioxidant activity 
of proteins that affect egg weight, Haugh Units, albumen 
height, strength, hardness, gumminess, and chewiness 
of albumen. Likewise, (Liang et al., 2024) found that 
HSP90, XDH, and POSTN proteins in chicken serum may 
be optimal biomarkers for detecting heat stress levels 
in chickens. Also, Shen et al. (2021) identified critical 
proteins in chicken serum that may play a role in follicle 
development during reproductive phase transitions.

In addition, Kang & Shim (2020) carried out a 
proteomic analysis of chronic and early heat exposure 
in one-day-old chicks. They found that acute heat stress 
caused significant changes in the expression of 97 filtered 
proteins compared with the control. Early exposure 
to heat improved the expression of 62 proteins after 
chickens were subjected to acute heat stress. Zheng et 
al. (2021) challenged broiler chickens with Escherichia 
coli lipopolysaccharide (LPS) and determined that 111 
proteins were differentially expressed in the liver of 
broiler chickens, which triggered alterations in their 
hepatic proteome. This study provided new insights into 
the mechanisms by which immune challenge impairs bird 
growth or productivity.

Metabolomics has emerged as a powerful tool to 
elucidate biochemical processes and principles in 
organisms. This technique studies all low molecular 
weight molecules (metabolites) within a biological 
sample (cell/tissue/organelle) following a specific cellular 
process (Færgestad et al., 2009; Lee et al., 2024). Unlike 
other “omics” technologies, metabolomics serves as a 
direct biomarker of biological systems by investigating 
the changes of metabolites over time after stimulation 

or perturbation of biological systems, such as mutation 
of a particular gene or environmental change (Patti et al., 
2012).  Metabolomics, a relatively new field that emerged 
in response to genetics and proteomics, can illustrate the 
physiological state of an organism by monitoring changes 
in endogenous metabolites (Huang et al., 2022).

Techniques used in metabolomics, such as Nuclear 
Magnetic Resonance spectroscopy (NMR), Fourier 
transform-infrared spectroscopy (FT-IR), and MS coupled 
with liquid chromatographic separation techniques, 
including GC-MS, LC-MS, FT-MS, and UPLC-MS, can be 
used for large-scale metabolomics analysis (Tolani et al., 
2021). Among the analytical platforms in metabolomics, 
GC–MS and LC-MS techniques are the most used (Sun 
& Xia, 2023). Metabolomics studies have been used to 
measure health status and hen welfare. Metabolomics 
identifies metabolic changes in hosts in response to 
disease. Lee et al. (2024) employed a metabolomics 
approach to explore differentially expressed amino acids 
and rewired metabolic networks under multiple Eimeria 
species challenges in laying hens. 

It has also been shown that restrictive and non-
restrictive production systems can affect the metabolism 
of birds. Yang et al. (2022b) showed that restrictive 
and non-restrictive production systems can affect the 
metabolism of birds using Jianghan hens reared in 
caged and cage-free groups, resulting in differences in 
glycolipid and lipid metabolism and altered levels of 
intramuscular fat content and other flavor precursors. 
Pathways such as glycerolipid metabolism, adipocytokine 
signaling, and metabonomic pathways such as linoleic 
acid, glycerophospholipid, arginine, proline, and 
β-alanine metabolism may be responsible for the meat 
quality and flavor change, and the cage-free system 
showed a positive effect on the improvement of chicken-
muscle-eating quality.

Likewise, animal husbandry can be improved by 
identifying how metabolic pathways change due to 
diet, environmental stress, health, and mental state. 
This will define management strategies to improve 
animal welfare in food-producing animals (Fabrile et 
al., 2023).  Lee et al. (2022) investigated the effect of an 
animal-friendly raising environment on chicken thighs’ 
quality, storage stability, and metabolomic profiles in 
two different environment-raising systems. They resulted 
in the differential regulation of metabolic pathways and 
physicochemical quality, especially in Glycolysis-related 
products. The results indicated that the animal welfare 
environment could influence the metabolomic properties 
of breast thigh meat in broilers, which may affect the 
sensory quality of meat. Another example is the use 
of metabolomics to examine the influence of rearing 
methods (floor and cage) on bone quality parameters in 
chickens using metabolomics analysis using LC-MS/MS. 
Li et al. (2023b) identified 257 differential metabolites 
and 15 metabolic pathways responsible for bone quality 
parameters; these results suggest that the cage-rearing 
system deteriorates bone quality parameters.  

In laying hens, for example, (Huang et al., 2022) 
combined analysis of transcriptomics and metabolomics 
to identify differential metabolites and genes potentially 
regulating egg production with correlations and 



January 2026      11    

RODRÍGUEZ-HERNÁNDEZ ET AL. / Tropical Animal Science Journal 49(1):1-18

integrated gene-metabolite between two groups of laying 
hens with high and low egg production, the Ninghai 
indigenous chicken and Wuliangshan black-boned 
chicken. Analyses of metabolomics and transcriptomics 
found the genes that potentially regulate egg production 
processes, including P2RX1, INHBB, VIPR2, and 
FABP3, as well as the essential ovarian metabolites 
17α-hydroxyprogesterone, iloprost, spermidine, and 
adenosine. They identified two essential metabolite 
pairs through gene and metabolite association analysis, 
namely, VIPR2–Spermidine and P2RX1–Spermidine 
during egg production.

The use of omic sciences allows for a closer approach 
to biological processes in birds. New studies that involve 
correlations between transcriptomic and metabolomic 
data are valuable data that, together with productive 
parameters and other indicators of welfare, can give a 
more holistic view of poultry welfare status.

Currently, omics methods are routinely used to 
identify genes involved in host-pathogen interactions, 
assess environmental resistance and fitness traits, and 
pinpoint animals with disease resistance. However, 
several challenges remain in implementing these 
technologies, particularly in developing countries, 
including limited access to advanced tools, high costs 
of laboratory tests, and the need for continued research 
on animal welfare in specific contexts to discover new 
biomarkers. Moreover, research using these technologies 
requires a holistic and interdisciplinary approach 
integrating ethology, neuroscience, data analysis, and 
evolutionary biology to enable a more comprehensive 
evaluation of animal welfare  (Choudhary et al., 2024; 
Neethirajan, 2025).

CONCLUSION

Consumer concern for animal welfare in production 
worldwide requires establishing precise animal welfare 
parameters through reliable methodologies and criteria 
adjusted to the type of production, animal breed/line, 
short/long-term exposure to a stressor, and environmen-
tal conditions. The measurement of animal welfare in 
the case of production should be as constant as possible 
since the welfare state is dynamic according to internal 
or external situations or challenges in production, mainly 
when environments are not controlled. Although the sci-
ence of animal welfare is relatively new, it is important 
to include new technologies used in biomedical sciences, 
especially omics, which allow a better approach to the 
evaluation at the molecular and cellular level of the res-
ponses of organisms to different environments, internal 
or external situations, and which, together with other 
traditional welfare indicators in birds and production 
parameters, will allow us to understand the physical, 
physiological and behavioral response of animals and in 
this case of hens and possibly their feelings.
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