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INTRODUCTION
	
In the tropical region, the reduction of forage 

quantity and quality is often affected by the dry season, 
causing a decrease in ruminant production (Salmoral 
et al., 2020). To address this challenge, the application 
of silage can help to reduce nutrient loss and increase 
the number of probiotic bacteria in the feed (Huang et 
al., 2021). However, high temperatures and humidity 
in tropical regions promote the growth of yeasts and 
molds, with most forage ensiled in high-moisture silage 
(HMS). This process is conducted because most forage 
is harvested during the rainy season, when the wilting 
process is difficult to conduct due to high rainfall 
intensity and humidity.

Sorghum bicolor (L.) Moench is the alternative 
tropical forage that has adaptation in drought 
conditions (Liu et al., 2024), high biomass production, re-
growth ability (Terler et al., 2021), and elevated content 
of water-soluble carbohydrates (WSC) (Zhang et al., 
2024). In the field, sorghum still contains high moisture 
content despite being harvested with soft or hard dough 
(Orrico Junior et al., 2020; Arriola et al., 2021; Dong et 
al., 2022). Preservation of high-moisture sorghum as 
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ABSTRACT

This study aimed to investigate the effect of the biological and chemical additives on 
fermentation characteristics, aerobic stability, and ruminal digestibility of high-moisture sorghum 
silage. A mixture of Lactiplantibacillus plantarum FNCC 0020 (LP) and Limosilactobacillus 
fermentum BN21 (LF) was used as a biological additive and potassium sorbate as a chemical additive. 
At the milk ripening stage (26.8% of DM), sorghum was harvested, chopped to 3-5 cm length, and 
ensiled into 20 L silo (5 kg) for 100 days. Subsequently, various additives were added, including 
a control group without additives (CON), LF + LP with a ratio of 1:1 at 1 x 105 cfu/g fresh weight 
(INO), potassium sorbate at 1 g/kg fresh weight (PS), and INO + PS (MIX). Each treatment used 5 
silos as replication. The results showed that INO silage had the lowest (p<0.05) pH with the highest 
(p<0.05) contents of lactate and acetate, as well as lactic acid bacteria (LAB) count. PS silage produced 
the minimum contents of lactate and acetate but had lower yeast compared to CON silage. MIX 
silage had lower (p<0.05) lactate and acetate contents than CON silage, with a similar effect on yeast 
inhibition to PS silage. Furthermore, PS and MIX silages had higher (p<0.05) aerobic stability and in 
vitro digestibility of dry matter and organic matter than CON and INO. These results showed that 
combining biological and chemical additives was more effective in improving fermentation, aerobic 
stability, and ruminal digestibility of high-moisture sorghum silage.

Keywords:	Lactiplantibacillus plantarum; Limosilactobacillus fermentum; potassium sorbate; high-
moisture sorghum silage

silage can promote the growth of clostridia bacteria and 
increase butyric acid production (Wan et al., 2021).

The use of homofermentative lactic acid bacteria 
(LAB) was reported to accelerate the pH reduction 
in silage because of their capability to produce 
lactate during fermentation and decrease nutrient 
losses during ensiling (Kim et al., 2021). Moreover, 
heterofermentative LAB was applied due to the acetate 
production as an antibacterial compound to prevent 
yeast and mold when silos were exposed to the air (Ni 
et al., 2016). The combination of homofermentative 
and heterofermentative LAB evidently improved 
the fermentation of silage in several studies, such as 
increased acetate and lactate of mixed grass, high 
moisture corn, and high-moisture sorghum silage 
(Paradhipta et al., 2019; Auerbach and Nadeau, 2020; Da 
Silva et al., 2024). The application of Lactiplantibacillus 
plantarum (L. plantarum) as a homofermentative bacteria 
can improve silage quality through rapid pH reduction, 
increase silage digestibility (Li et al., 2020), and reduce 
NH3-N content (Xie et al., 2020). Furthermore, the 
addition of Limosilactobacillus fermentum (L. fermentum) 
as a heterofermentative LAB is considered to be 
an antibacterial agent due to its ability to prevent 
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contamination by Clostridia and enterobacteria (Zheng 
et al., 2011). The prior studies had proven that the 
inoculation of L. fermentum could enhance acetate 
production and perform longer aerobic stability in corn, 
stylo, and sugarcane tops silage (Puntillo et al., 2020; 
Pitiwittayakul et al., 2021; Chauhan et al., 2024). 

In previous studies, the combination of the homo-
fermentative bacteria L. plantarum and the heterofermen-
tative bacteria L. fermentum was insufficient to prevent 
nutrient loss and improve fermentation characteristics 
in sorghum silage under tropical conditions (Fitriani et 
al., 2024). The addition of potassium sorbate can be used 
to control fungal activity, thereby preventing aerobic 
deterioration (Pahlow et al., 2015) and increasing silage 
fiber digestibility by the degradation of lignocellulose 
(Singh et al., 2021). The combination of PS and LAB in 
silage showed a positive relationship which decreased 
pH as well as increased lactate, acetate, and aerobic 
stability (Hafner et al., 2015; Wang et al., 2023a; Juráček et 
al., 2024). Therefore, this study aimed to investigate the 
effects of biological and chemical additives on fermenta-
tion characteristics, aerobic stability, and ruminal in vitro 
digestibility of high-moisture sorghum silage.

MATERIALS AND METHODS

Inoculum Preparation

Isolate L. plantarum bacteria strain FNCC 0020 
was obtained from the Food and Nutrition Center 
Laboratory of Universitas Gadjah Mada in solid 
culture form. Additionally, L. fermentum bacteria strain 
BN21 was obtained from the Nutritional Biochemistry 
Laboratory, Faculty of Animal Science, Universitas 
Gadjah Mada, in liquid form. Bacteria were recultured 
by growing pure cultures in liquid media using 
De Man-Rogosa-Sharpe (MRS) Broth (Merck KgaA 
Darmstadt, Germany) and incubated at 30oC until the 
bacterial colony reached a minimum of 1 × 10⁸ cfu/mL.

Silage Production

Sorghum bicolor L. Moench variety Samurai-2 
(National Research and Innovation Agency; BRIN) 
was planted in Yogyakarta, Indonesia. Subsequently, 
sorghum forage was harvested at the milk ripening 
stage (26.8% of DM) and chopped into 3-5 cm. 
The chopped forage was divided into 5 treatments 
following: (1) silage without additive, added pure water 
up to 50 µL/g fresh sorghum (CON), (2) silage with a 
combination inoculant L. plantarum FNCC 0020 and 
L. fermentum BN21 ratio 1:1 (1x105 cfu/g fresh matter) 
(INO), (3) silage with addition potassium sorbate 1 g/
kg fresh matter (PS), and (4) silage with combination 
of INO and PS (MIX). Each treatment was sub-sampled 
(500 g) for chemical composition analysis. Subsequently, 
5 kg from each treated forage was put into a 20 L mini 
silo and ensiled with 5 replication for 100 days. After 
100 days of ensiling, 300 g sample was collected for oven 
drying at 55 oC for chemical composition analysis and 
in vitro digestibility. A total of 20 g sample was blended 

with 200 mL pure water for fermentation characteristics 
and microbial analysis (Paradhipta et al., 2021). In the 
end, 3 kg of each silage remained in 20 L mini silo for an 
aerobic stability test.

Chemical Composition

Fresh forage and silage sorghum content was dried 
at 55 °C for 48 h. The dried samples were ground using 
a Willey mill with a 1.0 mm sieve and used for dry 
matter (DM) analysis (AOAC number 934.01; AOAC, 
2005) and organic matter (OM) (AOAC number 942.05; 
AOAC, 2005). The crude protein (CP) contents were 
determined using the Kjeldahl (AOAC number 984.13; 
AOAC, 2005). Ether extract (EE) contents were analyzed 
using Soxhlet (AOAC number 920.39; AOAC, 2005). 
Neutral detergent fiber (NDF) (AOAC number 2002.04; 
AOAC, 2005) and acid detergent fiber (ADF) (AOAC 
number 973.13; AOAC, 2005) analyses were performed 
using fiber analyzer (ANKOM A200, US). Subsequently, 
non-fiber carbohydrate (NFC) contents were determined 
according to Hall (2003). Tannin contents were analyzed 
by subtracting the total phenol content from the non-
tannin phenol content (Makkar, 2003).

Fermentation Characteristics

Silage extraction was prepared to be used for 
measuring pH levels alongside lactate, volatile fatty 
acid (VFA), and ammonia-N (NH3-N). The preparation 
was conducted according to a previous study (Arriola 
et al., 2012), where 20 g silage samples from each silo 
were blended with 200 mL distilled water for 30 sec. The 
mixture was then filtered through a two-layer gauze. 
The silage pH was measured with a pH meter (Mettler 
Toledo LE438, US). Ammonia-N contents were analyzed 
using the colorimetric method (Chaney & Marbach, 
1962). The sample of silage extract was centrifuged 
at 3,000 rpm for 10 min, and the filtrate was used to 
determine lactate and VFA contents through high-
performance liquid chromatography (HPLC; Shimadzu 
LC-2030C 3D Plus, Japan) with a C18 column (Shimadzu 
Shim-pack GIST, Japan) according to Vargas et al. (2020).

Microbial Counts

A total of 20 g of silage sample from each silo 
were diluted into 180 mL sterilized distilled water. The 
mixture was continued to several serial dilutions from 
10-5 to 10-7. The number of LAB was grown on MRS 
agar (Merck KgaA Darmstadt, Germany) and incubated 
at 30oC for 48 h under anaerobic conditions in a CO2 
incubator (Binder GmbH, Germany), whereas yeast and 
mold were grown on potato dextrose agar (PDA; Merck 
KgaA Darmstadt, Germany) and incubated at 30oC for 
72 h in an aerobic incubator (Binder GmbH, Germany). 
Visible colonies were determined using a colony counter 
(Inter-science International, France), and the results 
were transformed into log10 cfu/g of silage (Paradhipta et 
al., 2021).
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Aerobic Stability

A total of 3 kg silage was opened to be exposed 
aerobically and placed at room temperature, which was 
recorded using a sensitive temperature for each hour. 
The aerobic stability of silage was determined as the 
length of hours before the temperature increased by 2 oC 
above room temperature (Auerbach et al., 2020).

In Vitro Ruminal Digestibility

The rumen fluid was collected in the morning 
before feeding from non-pregnant (heifer) Bali Cattle-
fed grass and concentrate with a 6:4 ratio. All animal 
care and in vitro procedures were carried out in line 
with the ethical standards of the Ethics Committee of 
the LPPT, UGM (No. 00007/III/UN1/LPPT/EC/2024). 
A total of 0.5 g samples from each treatment were 
placed into 100 mL in vitro bottles. Rumen fluid was 
placed in a thermos adjusted to a temperature of 39 
°C. Furthermore, in vitro digestibility analysis was 
carried out according to Tilley & Terry (1963). During 
in vitro implementation, the rumen fluid collected from 
healthy cattle was filtered using double-layer gauze and 
artificial saliva solution (McDougall solution) in a ratio 
of 1: 4. When filling the solution into the tube, CO2 gas 
was circulated, ensuring that anaerobic conditions in 
the bottle is incubated. The procedure was conducted 
at three different rumen fluid collection times with 
duplicates. A total of 40 incubation bottles containing 
20 samples with duplicates for each replication were 
incubated at 39 °C for 48 h (Paradhipta et al., 2020). 
After incubation, all bottles were unplugged, and the 
liquids were filtered through a crucible. Residue from 
the sample was collected for dry matter digestibility 
(IVDMD) and organic matter digestibility (IVOMD) 
(Paradhipta et al., 2019). Meanwhile, the supernatant 
was carried out and separated for pH analysis using a 
pH meter (Mettler Toledo LE438, US), ammonia analysis 
(Chaney & Marbach, 1962), and VFA through gas 
chromatography (GC) with flame ionization detector 
(FID) (GC-2010 Plus, Shimadzu, Japan) and a column 
(CP FFAP CB, Shimadzu, Japan).

Organoleptic Appearances

A total of 26 non-expert panelists completed the 
question form based on several indicators. Organoleptic 
appearance indicators included color (dark, young 
green, brownish green), aroma (neutral, sourish, sour), 
and texture (slimy, damp, dampish). The data on 
organoleptic appearance were used to support Principal 
Component Analysis (PCA).

Statistical Analysis

Data were analyzed using one-way Analysis of 
Variance (ANOVA), and significant differences (p<0.05) 
between treatments were determined by conducting 
Duncan’s multiple range test. Subsequently, SAS® 
Studio software was used to perform calculations (Steel 
et al., 1997). The internal relationships between silage 

quality variables were examined using PCA. The silage 
variables examined were organoleptic test, organic acid, 
pH, ammonia, and microbial count (Lê et al., 2008).

RESULTS

Chemical Composition

The mean concentrations of DM, OM, CP, EE, NDF, 
ADF, NFC, and tannin in fresh forage were 26.8, 88.8, 
7.23, 1.42, 69.9, 38.3, and 0.43 %DM, respectively (Table 
1). Based on the results, the contents of DM in PS and 
MIX silages (27.0 and 26.2 %DM) were higher than CON 
silage (22.7 %DM) (p=0.031) (Table 2). Furthermore, the 
contents of OM in PS and MIX silages (88.7 and 88.5 
%DM) were lower than in CON and INO (89.5 and 89.5 
%DM) (p<0.001). The contents of CP in PS and MIX 
silages (7.04 and 6.98 %DM) were higher than in INO 
and CON (6.28 and 6.17 %DM) (p<0.001). In line with 
CP, the contents of NFC in PS and MIX silages (19.6 
and 18.8 %DM) were higher than CON and INO silages 
(16.1 and 14.9 %DM) (p=0.007). Compared to the others, 
NDF contents in PS and MIX silages (58.5 and 58.5 
%DM) were lower than in CON and INO silages (63.33 
and 64.80 %DM) (p=0.013). The content of ADF in PS 
silage (33.3 %DM) was also lower than in CON and INO 
silages (35.7 and 36.9 %DM) (p=0.007), while EE and 
tannins were not affected by the treatments.

Fermentation Characteristics

The pH in INO silage (4.01) was lower than in 
CON silage (4.16), while PS was higher (p<0.0001) 
(Table 3). The concentrations of Ammonia-N in PS and 
MIX silages (0.09 and 0.19 %DM) were lower than in 
CON and INO silages (0.45 and 0.42 %DM) (p<0.001). 
In comparison with pH, the concentration of lactate in 
INO silage (2.56 %DM) was higher than in CON silage 
(1.78 %DM), while PS silage (0.35 %DM) was lower. 
(p<0.001). The concentration of acetate in INO silage 
(3.75 %DM) was also higher than in CON silage (1.26 
%DM) (p<0.001). The ratio of lactate:acetate in INO and 
MIX silages (0.68 and 0.66) were lower than in CON and 
PS silages (1.41 and 1.12) (p<0.001). No propionate or 
butyrate was detected in the analysis.

Microbial Counts

LAB in INO silage (7.90 log 10 cfu/g) had the 
highest, followed by CON, and MIX silage (7.40 and 6.76 

Table 1.	 Chemical compositions of pre-ensiled sorghum forage 
(% DM)

Variables % DM
Dry matter 26.8
Organic matter 88.8
Ether extract 1.42
Crude protein 7.23
Neutral detergent fiber 69.9
Acid detergent fiber 38.3
Tannins 0.43
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log 10 cfu/g, respectively). Meanwhile, PS silage (6.05 
log 10 cfu/g) had the lowest (p<0.001) (Table 4). Yeast 
count was the lowest in PS (6.76 log 10 cfu/g) followed 
by MIX and INO silages (7.21 and 7.43 log 10 cfu/g, 
respectively) and the highest in CON silage (8.01 log 10 
cfu/g, respectively) (p<0.003). Mold population in PS, 
MIX, and INO silages with values of 6.22, 6.31, and 6.55 
log 10 cfu/g, respectively, were lower than CON silage 
at 7.43 log 10 cfu/g (p=0.002).

Aerobic Stability

Based on Figure 1, the aerobic stability of MIX, 
PS, and INO silages (57.8, 57.2, and 52 h) were higher 
than CON silage (48.2 h) (p<0.001). This was further 
supported by the changes presented in Figure 2, which 
showed the temperature fluctuation of HMS when 
exposed to air. Specifically, CON silage was the fastest 
to reach 2 oC above room temperature.

In Vitro Rumen Digestibility

The percentages of IVDMD in MIX and PS silages 
(65.7 and 64.96 %DM) were higher than in INO and 
CON silages (60.25 and 59.7 %DM) (p<0.001). In the 
same line, IVOMD in MIX and PS silages (61.5 and 60.5 
%DM) were also higher than CON and INO silages 
(56.9 and 56.86 %DM) (p<0.001) (Figure 3). In vitro 
rumen digestibility showed that ammonia in PS and 
MIX silages (4.36 and 4.31 mg/100 mL) were higher 
than CON and INO silages (3.84 and 3.94 mg/100 mL) 
(p=0.006) (Table 5). In comparison, the total production 
of ruminal VFA in MIX silage (69.4 mmol) was the 
highest, followed by PS (64.2 mmol), CON silages (58.9 
mmol), and INO (54.3 mmol) (p=0.004). The percentage 
of butyrate in MIX silage (11.5% of total VFA) was the 
lowest, followed by PS, CON, and INO silages (12.1, 
13.5, and 13.7% of total VFA) (p=0.021).

Table 2. Chemical compositions of sorghum silages after 100 days of ensiling with different additives (% DM)

Variables
Treatments

SEM5 p-Value
CON1 INO2 PS3 MIX4

Dry matter 22.7c 23.7bc 27.0a 26.2ab 0.616 0.031
Organic matter 89.5a 89.5a 88.7b 88.5b 0.122 <0.001
Ether extract 3.89 3.57 3.52 4.19 0.133 0.255
Crude protein 6.17b 6.28b 7.04a 6.98a 0.101 <0.001
Neutral detergent fiber 63.3a 64.8a 58.5b 58.5b 0.776 0.013
Acid detergent fiber 35.7ab 36.9a 33.3c 33.6bc 0.475 0.007
Non-fiber carbohydrate 16.1b 14.9b 19.6a 18.8a 0.612 0.007
Tannins 0.82 0.80 0.70 0.74 0.081 0.050

Note:	 a-c Means in the same row with different superscripts differ significantly (p<0.05); ¹CON: sorghum silage without additive (Control); ²INO: 
sorghum silage inoculated with the mixture of L. plantarum and L. fermentum at 1:1 ratio (1x10⁵ cfu/g fresh matter); ³PS: sorghum silage with 
potassium sorbate addition (1 g/kg fresh matter); ⁴MIX: INO + PS; ⁵SEM: standard error of the mean.

Table 3. Fermentation characteristics of sorghum silages ensiled for 100 days with different additives (% DM)

Variables
Treatments

SEM5 p-Value
CON1 INO2 PS3 MIX4

pH 4.13b 4.01c 4.31a 4.16b 0.026 <0.001
Ammonia-N (% DM) 0.45a 0.42a 0.09b 0.19b 0.037 <0.001
Lactate (% DM) 1.78b 2.56a 0.35c 1.36b 1.999 <0.001
Acetate (% DM) 1.26c 3.75a 0.31d 2.31b 3.205 <0.001
Propionate (% DM) ND ND ND ND ND NA
Butyrate (% DM) ND ND ND ND ND NA
Lactate:acetate 1.41a 0.68c 1.12b 0.66 c 0.081 <0.001

Note:	 a-c Means in the same row with different superscripts differ significantly (p<0.05); ¹CON: sorghum silage without additive (Control); ²INO: 
sorghum silage inoculated with the mixture of L. plantarum and L. fermentum at 1:1 ratio (1x10⁵ cfu/g fresh matter); ³PS: sorghum silage with 
potassium sorbate addition (1 g/kg fresh matter); ⁴MIX: INO + PS; ⁵SEM: standard error of the mean. ND: not detected; NA: not applicable.

Table 4. Microbial counts of sorghum silages ensiled for 100 days with different additives (log 10 cfu/g)

Variables
Treatments

SEM5 p-Value
CON1 INO2 PS3 MIX4

Lactic acid bacteria 7.40b 7.90a 6.05c 6.76b 0.210 <0.001
Yeast 8.01a 7.43ab 6.76c 7.21bc 0.136 0.003
Mold 7.43a 6.55b 6.22b 6.31b 0.143 0.002

Note:	 a-c Means in the same row with different superscripts differ significantly (p<0.05); ¹CON: sorghum silage without additive (Control); ²INO: 
sorghum silage inoculated with the mixture of L. plantarum and L. fermentum at 1:1 ratio (1x10⁵ cfu/g fresh matter); ³PS: sorghum silage with 
potassium sorbate addition (1 g/kg fresh matter); ⁴MIX: INO + PS; ⁵SEM: standard error of the mean.
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Organoleptic Appearance

Organoleptic tests of silage included color, aroma, 
and texture. As shown in Figure 4, the silage color 
for all treatments was yellowish green. The aroma of 
INO silage was sour, while the others were less sour. 
Furthermore, the texture for all treated silage was not 
lumpy. 

Relationship between Variables

The relationship between variables was analyzed 
using principal component analysis (PCA), as shown 
in Figure 5. Lactate was strongly negatively correlated 
with pH value (p<0.01) while having a positive 
correlation with LAB (p<0.05). In line with the results, 
acetate tended to be positively correlated with aroma 
and negatively related to pH value (p<0.1). The 
tendency of a positive correlation was also performed 
in yeast and mold (p<0.1). According to Dim1 (58.1% 
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Table 5.	The in vitro rumen digestibility and fermentation characteristic of sorghum silage with different additives after 48 h of rumi-
nal incubation

Variables
Treatments

SEM5 p-Value
CON1 INO2 PS3 MIX4

pH 6.89 6.91 6.93 6.93 0.009 0.152
Ammonia (mg/100 mL) 3.84b 3.94b 4.36a 4.31a 0.096 0.006
Total VFA (mmol) 58.9bc 54.3c 64.2ab 69.4a 1.744 0.004
Acetate (% of total VFA) 57.1 58.0 59.3 62.0 0.897 0.232
Propionate ((% of total VFA) 29.4 28.3 28.6 26.5 0.628 0.439
Butyrate ((% of total VFA) 13.5a 13.7a 12.1ab 11.5b 0.322 0.021
Acetate : Propionate ratio 1.96 2.08 2.36 2.11 0.794 0.364

Note:	a-c Means in the same row with different superscripts differ significantly (p<0.05); ¹CON: sorghum silage without additive (Control); ²INO: sor-
ghum silage inoculated with the mixture of Lactiplantibacillus plantarum and Limosilactobacillus fermentum at 1:1 ratio (1x105 cfu/g fresh matter); 
³PS: sorghum silage with potassium sorbate addition (1 g/kg fresh matter); ⁴MIX: INO + PS; ⁵SEM: standard error of the mean; ⁶IVDMD, in vitro 
dry matter digestibility; ⁷IVOMD, in vitro organic matter digestibility.
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Figure 3.	The in vitro rumen digestibility of sorghum silage with 
different additives after 48 h of ruminal incubation. a-c 
Means with different superscripts differ significantly 
(p<0.05); CON: sorghum silage without additive 
(Control); INO: sorghum silage inoculated with the 
mixture of L. plantarum and L. fermentum at 1:1 ratio 
(1x105 cfu/g fresh matter); PS: sorghum silage with 
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INO + PS. IVDMD ( ): in vitro dry matter digestibility; 
IVOMD   ( ): in vitro organic matter digestibility.
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of total variance), LAB, acetate, and lactate generated 
pH levels in silage. In terms of Dim2 (33.9% of total 
variance), both yeast and mold were considerable to 
generate low texture and color appearance.

DISCUSSION

In this study, the chemical compositions of 
sorghum harvested at the hard dough stage in the 
tropical region were similar to previously published 
ranges (Jardim et al., 2021; Araújo et al., 2023). After 
ensiling, this study showed that the addition of 
potassium sorbate in PS and MIX silages had a higher 
DM content than the other additives. The results 
showed the effectiveness of using potassium sorbate 
in reducing DM loss of high-moisture sorghum silage. 
According to Dai et al. (2022), potassium sorbate as a 
silage additive could inhibit the growth of undesirable 
microbes, which could result in higher DM content 
after ensiling. This opinion was supported by the 
results of PS and MIX silages that performed a lower 
population of yeast and mold in the present study 
(Table 4). Wang et al. (2022) stated that yeast and 
mold utilize soluble carbohydrates to heat, carbon 
dioxide, and H2O during ensiling. Besides, low DM 
loss might be associated with lower carbohydrate use 
by microbes, which is represented by higher NFC 
content (Table 2). In addition, MIX and PS silages in 
the present study also resulted in higher CP content, 
which was in agreement with Dai et al. (2022). The 
application of potassium sorbate as a silage additive 
might inhibit proteolytic bacteria during ensiling, as 
shown by reduced ammonia-N production in both 
MIX and PS silages (Table 3). The high CP content 
with low ammonia production after ensiling shows a 
low rate of proteolysis. Potassium sorbate successfully 
eliminated ammonia production, leading to the effects 
of inhibiting proteolytic microbes, such as clostridia and 
enterobacteria (Auerbach & Nadeau, 2020). Conversely, 
both MIX and PS silages also succeeded in degrading 
fiber fraction in silage. In the same line, Wang et al. 

Figure 4. 	Color, aroma, and texture of sorghum silage ensiled 
for 100 days with different additives. CON: sorghum 
silage without additive (Control); INO: sorghum 
silage inoculated with the mixture of Lactiplantibacillus 
plantarum and Limosilactobacillus fermentum at 1:1 ratio 
(1x10⁵ cfu/g fresh matter); PS: sorghum silage with 
potassium sorbate addition (1 g/kg fresh matter); MIX: 
INO + PS. (a) Color: Yellowish green ( ), Yellowish       
( ), Brownish yellow ( ), Blackish brown ( ); (b) 
Aroma: Very sour ( ), Sour ( ), Less sour ( ), Rotten 
( ); (c) Texture: Not lumpy ( ), Slightly lumpy ( ), 
Lumpy ( ), Very lumpy ( ).
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(2023b) reported that the addition of potassium sorbate 
reduced the content of NDF and ADF in the total mixed 
ration. The most likely explanation for this result was 
shown by Richa et al. (2023), that potassium had the 
ability to break down the cellulose and hemicellulose 
bond with lignin through the pyrolysis mechanism. 
The decrease in NDF and ADF contents observed in this 
study was associated with a high NFC content, which 
served as a substrate for microbial activity. An increase 
in NFC levels in silage indicates optimal lignocellulose 
degradation (Li et al., 2021). Additionally, the high NFC 
content in PS and MIX silages might be obtained from 
limited NFC degradation due to a smaller population of 
bacteria (Auerbach & Nadeau, 2020).

The HMS produced in the present study resulted 
in a good quality, which had a low pH value (<4.2), 
undetected butyrate and propionate, and also produced 
sufficient lactate and acetate, according to Kung et al. 
(2018). This result showed the role of homofermentative 
bacteria in lowering the pH of silage despite the 
high moisture content of the forage and the high 
temperatures, which prevented buffering capacity. 
These findings were supported by the prior observations 
in stylo (Pitiwittayakul et al., 2021) and alfalfa silage 
(Li et al., 2023). Fawzi et al. (2022) explained that the 
acceleration of acidification and decrement in pH 
value in the fermentation process was generated by the 
multiplication of lactate and organic acid as metabolic 
products from LAB.

Silage production with the addition of INO as 
a biological additive appeared to influence lactate 
concentration positively. This increase can be attributed 
to the conversion of carbohydrates into lactate by LAB 
(Muck et al., 2018). Similarly, studies by Wu et al. (2022) 
and Pitiwittayakul et al. (2021) reported high lactate 
levels in Chinensis and Stylo silages inoculated with 
L. plantarum and L. fermentum. This increase was also 
represented by the lower pH in INO silage, as shown in 
Table 3. The results showed a strong negative correlation 
between lactate production and pH decrease (Figure 4b). 
In line with the analysis, Chen et al. (2020) stated that L. 
plantarum was important in boosting lactate production. 
However, the addition of PS significantly decreased 
lactate content. The decrease in lactate content was 
probably related to the antibacterial effects generated by 
PS silage, which inhibited LAB growth (Xie et al., 2020). 

Compared with the other treatments, INO 
silage performed the highest acetate production, 
which was in line with lactate production and pH 
level. This result was coherent with previous reports 
(Paradhipta et al., 2020), which used the combination of 
homo-heterofermentative bacteria to enhance acetate 
production in the corn silage due to longer aerobic 
stability. According to Zhang et al. (2023), high acetate 
restricts dangerous microorganism development, which 
was correlated with this study on inhibiting mold 
growth, as shown in Table 4.

This study showed that INO silage produced a 
higher population of LAB in silage. The improvement 
was consistent with the other studies (Andrada et al., 
2023), which reported the increase of LAB population 
on corn silage due to the inoculation of L. fermentum and 

L. plantarum. Su et al. (2019) stated that LAB played a 
role in fermentation by transforming WSC into organic 
acids to restrict the activity of undesirable bacteria. 
However, PS decreased the LAB population due to 
the inhibition effects on LAB growth (Xie et al., 2020). 
Although PS had an effect on reducing the population 
of LAB, it could restrict the growth of yeast and mold 
effectively. This restrain was further confirmed by a 
prior study in Napier grass silage (Dai et al., 2022) and 
total mixed ratio (TMR) (Wang et al., 2023c). The results 
might be determined from the acidic characteristics and 
effectiveness against bacteria (Dai et al., 2022)

Aerobic stability is one of the crucial parameters 
that shows the defense ability of the silage in aerobic 
exposure. Aerobic damage is more likely to occur 
under tropical conditions because high temperatures 
and humidity promote the development of undesirable 
microbes. Shan et al. (2021) stated that when silage 
was exposed to air, the aerobic microbes consumed 
the lactate and the glucose residue to produce heat, 
CO2, and H2O. In this study, the aerobic stability of 
the silage was determined by the increase of 2 oC of 
silage temperature above the ambient, as suggested 
by Auerbach and Nadeau (2020). Overall, the present 
study showed that all silage treatment produced 
higher silage stability during aerobic exposure. The 
elevated level of stability on INO silage might be 
related to the effects of antibacterial from L. fermentum, 
as heterofermentative bacteria. According to Puntillo 
et al. (2020), heterofermentative bacteria elevated the 
production of acetate in corn silage, which might 
contribute to preserving the nutrient of the silage after 
the silo opening. Danner et al. (2003) explained that 
higher acetate content was correlated with enhancing 
antibacterial activity and inhibiting the growth of 
undesirable microbes. Moreover, potassium sorbate 
addition as a single or combination with biological 
additive also performed higher silage stability during 
aerobic conditions. It was more likely that the stability 
of PS silage was probably related to antibacterial effects, 
which related to the depression of yeast and mold 
population. This result was consistent with previous 
reports that PS performed higher aerobic stability on 
alfalfa silage (Xie et al., 2020). Dai et al. (2022) showed 
that during aerobic exposure, potassium sorbate 
depresses the growth of yeast and mold, thereby 
preserving residual glucose and decreasing ammonia 
production.

The present study found a significant increase of 
IVDMD and IVOMD in PS and MIX silages. This was 
further confirmed by previous studies (Wang et al., 
2023c; Dai et al., 2022) that additional PS performed 
a higher rate of digestibility on TMR silage. A 
probable explanation was that the higher availability 
of carbohydrates and protein in feed was commonly 
accompanied by the growth improvement of ruminal 
microbes and fiber degradation in the rumen (Suharti 
et al., 2021). This result was confirmed by the higher 
CP and NFC content in PS and MIX silages (Table 2.). 
Moreover, the better ruminal fermentation on PS and 
MIX silages was also represented by the enrichment 
concentration of ammonia and total VFA. First, the 
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elevated production of ammonia rumen might be 
explained by the fact that the content of CP was higher 
in PS and MIX silages (Table 2.). In agreement with 
these findings, Shen et al. (2023) verified that enhanced 
ammonia concentration was correlated to the increase 
of protein availability in the feed before digestion. 
Meanwhile, total VFA was increased, probably due to 
the high concentration of NFC and the enriched ruminal 
bacteria caused by the increased substrate for growth. 
According to Li et al. (2023), well-preserved silage 
provided more fermentation substrate for fibrolytic 
bacteria, enhanced rumen fermentation and produced 
high VFA concentration. Guo et al. (2020) explained that 
carbohydrates in the rumen were degraded into pentose 
or hexose and transformed into pyruvate, acetate, 
propionate, and butyrate.

The present study showed a positive correlation 
between LAB, lactate, and acetate. In agreement 
with this result, Andrada et al. (2023) showed that 
the enhanced population of LAB was positively 
correlated to higher productions of lactate and acetate. 
Furthermore, Kung et al. (2018) explained that the 
sweet odor from well-fermented silage was triggered 
by acetate as a secondary product from lactate use. The 
weak correlation between yeast and mold with physical 
appearance (texture and color) was consistent with 
a previous study (Kung et al., 2018), where spoilage-
causing microbes contributed to protein degradation. 
This process was associated with a binding reaction 
between proteins and sugars, leading to a brownish 
color. Yeast deteriorates silage quality by consuming 
nutrients and causing a lumpy texture, leading to 
potential issues in ruminants.

CONCLUSION

In conclusion, the combination of biological 
and chemical additives in HMS improved chemical 
composition, digestibility, and aerobic stability 
while reducing yeast and mold. Therefore, this study 
recommended combining biological and chemical 
additives for optimal silage quality. 
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