

1,25-Dihydroxycholecalciferol Glycoside (1,25(OH)₂D₃-G) in Broiler Breeder Diets and Its Influence on Broiler Chicken Growth

T. S. Andrade^{a,*}, N. Rohloff Junior^a, B. A. Bebber^a, M. F. C. Pereira^a, M. L. R. Maia^a, G. L. S. Tesser^a, A. A. Calderano^d, B. S. Vieira^b, J. G. Vargas Junior^c, C. Eyn^a, & R. V. Nunes^a

^aDepartment of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil

^bDepartment of Animal Science, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil

^cDepartment of Animal Science, Federal University of Espírito Santo, Alegre, ES, 29500-00, Brazil

^dDepartment of Animal Science, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil

*Corresponding author: thiagoandradefoz@hotmail.com

(Received 21-01-2025; Revised 21-04-2025; Accepted 22-04-2025)

ABSTRACT

This study aimed to investigate the effects of 1,25-Dihydroxycholecalciferol glycoside (1,25(OH)₂D₃-G) supplementation on performance, carcass yield, carcass cuts, intestinal histomorphometry, bone health, and gene expression in broiler chickens from broiler breeders. A total of 1,152 one-day-old male Ross 308 AP chicks were distributed in a completely randomized design with a 2 x 3 factorial arrangement. One of the experimental factors was the presence or absence of 1,25(OH)₂D₃-G (0 or 100 mg/kg) in the diets of broiler breeders between 21 and 30 weeks of age. The second experimental factor consisted of three levels of 1,25(OH)₂D₃-G supplementation (0, 50, and 100 mg/kg) in the broiler chicken diets from day 1 to day 21, followed by a standard commercial diet from day 22 to day 42. The study totaled six treatments with eight replicates and 24 birds per experimental unit. Performance, carcass and cut yields, as well as tibial breaking strength and composition, were evaluated in broiler chickens at 21 and 42 days. Intestinal histomorphometry and gene expression were assessed at 21 days, while tibial dyschondroplasia was analyzed at 42 days. Broiler chickens from broiler breeders supplemented with 100 mg/kg of 1,25(OH)₂D₃-G showed higher hatch weight, better feed conversion, improved intestinal morphology, and greater carcass yield. However, this supplementation did not enhance calcium and phosphorus deposition in the tibia, resulting in reduced bone strength. It is concluded that broiler chickens from broiler breeders supplemented with 100 mg/kg of 1,25(OH)₂D₃-G show better growth performance at 21 and 42 days.

Keywords: carcass yield; growth performance; intestinal health; tibial health

INTRODUCTION

1,25-Dihydroxycholecalciferol glycoside derived from the plant *Solanum glaucophyllum* has emerged as a promising alternative in broiler chicken diets as a source of vitamin D₃ (Vieites *et al.*, 2016, 2018; Nunes *et al.*, 2020). Unlike the fat-soluble form of vitamin D₃, which relies on micelle formation for transport and absorption in the intestine, 1,25-Dihydroxycholecalciferol glycoside, possesses water-soluble properties. This is due to its glycoside linkage. This allows for easy dissolving in intestinal fluids and eliminates the need for micelles for its transport (Souza *et al.*, 2020; Asnayanti *et al.*, 2024).

Studies indicate that dietary inclusion of 1,25-Dihydroxycholecalciferol glycoside has been associated with an increased rate of muscle tissue deposition and improved feed conversion efficiency, both of which are essential for productive performance (Vieites *et al.*, 2016, 2017, 2018; Alves *et al.*, 2018). In the immune system, evidence suggests that 1,25-Dihydroxycholecalciferol glycoside can modulate

the inflammatory response, promote immune cell differentiation, and enhance the resistance of the birds to health challenges (Nunes *et al.*, 2020). Additionally, its role in regulating calcium and phosphorus homeostasis has been shown to be essential for proper bone mineralization, preventing skeletal disorders such as tibial dyschondroplasia, which compromise the structural integrity of the birds (Yavaş *et al.*, 2020; Asnayanti *et al.*, 2024).

On the other hand, there are no studies on the use of 1,25(OH)₂D₃-G in broiler breeders. Although, research on vitamin D₃ (cholecalciferol, synthetic) supplementation showed improved nutrient transfer to the eggs, which results in broiler chickens with better bone mineralization and enhanced ability to support weight throughout growth (Wen *et al.*, 2019; Adhikari *et al.*, 2020; Li *et al.*, 2021; Yusuf *et al.*, 2023). These findings indicate that supplementation with 1,25(OH)₂D₃-G in broiler breeders could yield even more favorable results, given the potential for this compound to act more rapidly in the organism. The potential of 1,25(OH)₂D₃-G underscores

the need for further research to explore its effects and optimize its benefits (Vieites *et al.*, 2016, 2018; Nunes *et al.*, 2020; Asnayanti *et al.*, 2024).

Studying plant-derived 1,25(OH)₂D₃-G as an alternative to its synthetic counterpart is relevant, particularly due to its lower cost and the potential for more efficient absorption in birds (Souza *et al.*, 2020; Kumar *et al.*, 2023). However, there is still no consensus on the optimal dosage of 1,25(OH)₂D₃-G for broiler chickens (Nunes *et al.*, 2020; Wu *et al.*, 2022; Setiyaningsih *et al.*, 2023), and excessive use may lead to complications such as hypercalcemia and tissue calcification, compromising bird health and welfare (Gili *et al.*, 2016; Alves *et al.*, 2018; Trautenmüller *et al.*, 2021, 2022). Therefore, further studies are needed to establish safe guidelines and assess the actual effectiveness of plant-derived 1,25(OH)₂D₃-G in poultry production (Hurst *et al.*, 2020; Barnkob *et al.*, 2020; San *et al.*, 2021; Wang *et al.*, 2021).

This study thus hypothesizes that breeder supplementation with 1,25(OH)₂D₃-G enhances bone mineralization in newly hatched broiler chickens, promoting balanced growth and strengthening the immune system. To test this hypothesis, the study evaluated the effects of 1,25(OH)₂D₃-G supplementation on performance, carcass yield, carcass cuts, intestinal histomorphometry, bone health, and gene expression in broiler chickens from broiler breeders supplemented or not with this metabolite.

MATERIALS AND METHODS

Ethics Committee

The procedures were approved by the Animal Use Ethics Committee of the National Council for Animal Control and Experimentation - UNIOESTE (Protocol No. 01/2021) and were previously sanctioned by the National Council for Animal Control and Experimentation in accordance with Normative No. 37 of February 15, 2018.

Birds, Housing, and Experimental Design

Two breeder houses (G1 and G2) located in the municipality of Pato Branco, Paraná - Brazil, housing 8,000 AP95 (Aviagen) broiler breeders at 21 weeks of age. The houses were identical in terms of physical characteristics, and the management practices were standardized for both. Each house had a dimension of 175 m x 13 m, and was constructed as a metallic structure covered with Brasilit roofing, and the ceiling height was 3 m without insulation. The houses were equipped with bird-proof mesh and white curtains, along with fans to maintain positive pressure ventilation. The nests were mechanical, while the feeding system consisted of automatic chain feeders specifically designed for broiler breeders, and the drinkers were pendular models (Plasson).

The diets provided to the birds in barns G1 and G2 were identical, formulated with corn and soybean meal to meet the nutritional requirements throughout the production period (21 to 30 weeks of age). However,

the broiler breeders in house G1 received a mash diet supplemented with 1,25(OH)₂D₃-G at a dosage of 100 mg/kg starting at 21 weeks of age, while the broiler breeders in house G2 received a mash diet without 1,25(OH)₂D₃-G supplementation. Both breeder groups were housed under the same environmental conditions, with controlled temperature and humidity following standard management practices for broiler breeders.

At 30 weeks of age, the eggs from each barn were collected separately, identified, selected, and sanitized. The eggs were then transported to the hatchery and incubated in incubators (Jamesway Platinum Series), where they remained for 18 days. Incubation conditions were a temperature of 37.5 °C and a relative humidity of 60%. After the 18-day incubation period, the eggs were transferred to the hatching, where they remained at 37.2 °C and a relative humidity of 65% until hatching occurred.

After hatching, the chicks were sexed and vaccinated against Marek's disease, Avian Pox, Gumboro disease, and Infectious Bronchitis. Chicks were then identified based on the origin of the parent stock, considering the supplementation or not of 1,25(OH)₂D₃-G, and subsequently sent to the Poultry Research Center at the State University of Western Paraná, Marechal Cândido Rondon, Paraná, Brazil.

A total of 1,152 one-day-old male Ross 308 AP95 broiler chickens were distributed in a completely randomized design, arranged in a 2 x 3 factorial scheme. One of the factors was the origin of the broiler chickens from broiler breeders fed with or without 1,25(OH)₂D₃-G (0.0 and 100 mg/kg). The second factor was the diet of the broiler chickens. Broiler chickens were fed with three inclusion levels (0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G) up to 21 days of age. This resulted in 6 treatments, with 8 replicates and 24 birds per experimental unit. Performance, carcass and cut yields, tibia breaking strength and composition, were evaluated in broiler chickens at 21 and 42 days. Intestinal histomorphometry and gene expression were assessed at 21 days. Tibial dyschondroplasia was analyzed at 42 days.

Birds were housed in an experimental poultry house measuring 35 meters in length and 13 meters in width, divided into sections containing multiple experimental units. Each experimental unit had an area of 1.96 m² and was equipped with a tubular feeder, nipple drinkers, and a concrete floor. Environmental temperature control was managed by a Smaai IV control panel, which operated the pellet-heating furnace, four exhaust fans, and evaporative cooling panels. The lighting program followed the guidelines of the breed manual. Exhaust fans and evaporative panels ensured environmental cooling and air renewal. Average, minimum, and maximum temperatures and relative humidities were monitored daily and maintained within the thermal comfort range recommended for each growth phase.

Diets and Feeding Management

The experimental broiler chicken diets (Table 1) were isonutritive and isocaloric, based on corn and soybean meal, following the nutritional recommendations

Table 1. Percentual and calculated composition of experimental diets for broiler chickens supplemented or not with 1,25(OH)₂D₃G

Ingredients (g/kg) as fed	Dietary phases for broiler chickens			
	1 to 7 days	8 to 21 days	22 to 35 days	36 to 42 days
Corn (7.88%)	504.76	525.03	589.79	645.33
Soybean meal (46%)	423.88	402.13	333.75	286.41
Degummed soybean oil	29.70	33.66	39.07	36.54
Dicalcium phosphate	17.86	16.37	15.04	11.34
Limestone	9.39	8.64	8.62	7.16
Salt	4.02	3.68	3.36	3.37
Sodium bicarbonate	1.00	1.50	2.00	2.00
Lysine sulphate (60%)	1.70	1.75	-	-
Lysine sulphate (54.7%)	-	-	2.20	2.43
DL-Methionine (99%)	3.27	3.09	2.58	2.23
L-Threonine (99%)	0.47	0.42	0.31	0.24
Choline chloride (60%)	0.50	0.50	0.50	0.45
Adsorbent	1.00	1.00	1.00	1.00
Vitamin premix	1.30	1.00	1.00	1.00
Mineral premix	0.50	0.50	0.50	0.50
Coccidiostat	0.55	0.55	0.20	-
Enramycin	-	0.08	0.08	-
Inert (kaolin)	0.10	0.10	-	-
Calculated nutrient composition (g/kg) as fed				
ME (kcal/kg)	3000	3050	3150	3200
Crude protein	240.471	231.848	205.060	187.327
Digestible lysine	13.000	12.5	11.000	10.000
dMet+Cys	9.620	9.250	8.140	7.400
Digestible threonine	8.580	8.250	7.260	6.600
Digestible valine	10.000	9.630	8.470	7.700
Digestible tryptophan	2.804	2.688	2.323	2.077
Digestible arginine	15.196	14.573	12.619	11.302
Calcium	9.500	8.780	8.220	6.610
Available phosphorus	4.500	4.190	3.840	3.090
Sodium	2.000	2.000	2.000	2.000
Potassium	9.372	9.039	7.995	7.306

Note: Adsorbent: bentonite. Vitamin supplement, composition per kg of diet in the pre-initial feed: Vitamin A (min) 14.300 IU; Vitamin D₃ (min) 5.200 IU; Vitamin E (min) 71.50 IU; Vitamin K3 (min) 3.90 mg; Vitamin B1 (min) 2.99 mg; Vitamin B2 (min) 9.10 mg; Pantothenic acid (min) 15.60 mg; Vitamin B6 (min) 5.20 mg; Vitamin B12 (min) 32.50 mg; Niacin (min) 78.00 mg; Folic acid (min) 2.60 mg; Biotin (min) 0.33 mg; Selenium (min) 0.39 mg. Vitamin supplement, composition per kg of diet initial growth and finishing feeds: Vitamin A 11.000 IU; Vitamin D₃ 4.000 IU; Vitamin E 55 IU; Vitamin K3 3.00 mg; Thiamine (B1) 2.30 mg; Riboflavin (B2) 7.00 mg; Pyridoxine (B6) 4.00 mg; Cyanocobalamin (B12) 25.00 mg; Pantothenic acid (B5) 12.00 mg; Niacin (B3) 60.00 mg; Folic acid (B9) 2.00 mg; Biotin (B7) 0.25 mg; Selenium 0.30 g. Mineral supplement, composition per kg of diet: Iron (min) 50g; Copper (min) 10g; Manganese (min) 65g; Zinc (min) 65g; Iodine (min) 1.000 mg. Coccidiostat: from 1 to 21 days of age, salinomycin 12% (Coxistac 12%) was used, and from 22 to 35 days of age, salinomycin 24% (Salinocox 24%) was used. Enramycin 8% (Enradin 8%). Inert based on kaolin with the inclusion of 1,25(OH)₂D₃-G as a weight-for-weight substitution by the inert. ME: Metabolizable energy, dMet+Cys: Digestible Methionine + Cysteine.

of Rostagno *et al.* (2017). The use of 1,25(OH)₂D₃-G replaced the inert material (kaolin) in the feed, which was used as a non-nutritional component. Kaolin was selected because it is not absorbed by the chickens and does interfere with the nutritional evaluation. The 1,25(OH)₂D₃-G was provided in the feed only up to 21 days of age. Specifically, the supplementation was included in the diets during the phases of 1 to 7 days, 8 to 14 days, and 15 to 21 days. In the phases of 22 to 35 days and 36 to 42 days, the broiler chickens were fed the non-supplemented control diets. Throughout the experimental period (1 to 42 days), the birds had *ad libitum* access to water and feed.

The supplementation period of 21 days was chosen based on evidence indicating that broiler chickens have a high metabolic demand for calcium and phosphorus

during the first 21 days of life. At the same time, the endogenous conversion of vitamin D₃ into its active form is limited (Vieites *et al.*, 2016, 2018; Alves *et al.*, 2018).

The treatments evaluated for the growth of broiler chickens originating from broiler breeders not supplemented with 1,25(OH)₂D₃-G included 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G in the diet. For broiler chickens originating from broiler breeders supplemented with 100 mg/kg of 1,25(OH)₂D₃-G, the broiler chicken treatments consisted of the dietary addition of 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G.

The vitamin source used in this study (1,25(OH)₂D₃-G) was the product Panbonis® 10, produced from *Solanum glaucophyllum* in powder form, standardized with pre-gelatinized wheat starch and wheat middlings. Its analytical composition

includes $1,25(\text{OH})_2\text{D}_3\text{-G}$ (minimum of 10 ppm), moisture (maximum of 14%), crude protein (14%-18%), crude fiber (5.25%-8.75%), ether extract (3%-6%), crude ash (3%-6%), sodium (0.0%-0.7%), lysine (0.6%-0.9%), and methionine (0.2%-0.4%).

Performance, Carcass Yield, and Carcass Yield Cuts

Body weight and feed intake of the birds were recorded at 10, 21, and 42 days to evaluate body weight gain, feed intake, and feed conversion ratio. Weight gain was calculated as the difference between the final and initial body weight of the birds during the evaluated period. Average feed intake was determined by dividing the total feed consumed by the number of live birds in the period. The feed conversion ratio was calculated as the total feed intake divided by the weight gain of the birds and was adjusted for mortality, as described by Sakomura and Rostagno (2016).

At 42 days of age, three broiler chickens per experimental unit close to the average weight of each replicate ($n= 24$), were randomly selected, weighed, identified, and euthanized by electronarcosis followed by bleeding, scalding, plucking, and evisceration. The carcasses were initially weighed, then chilled in ice water for 60 minutes, and subjected to a 10-minute dripping period to remove excess water. Afterward, the chilled carcasses were weighed to calculate the cold carcass yield. The carcasses were then cut into parts, separating the legs (thigh and drumstick), wings, breast fillet, and tenderloin, with each cut individually weighed. Carcass yield was calculated as the carcass weight relative to the live body weight. The cut yield was determined based on the weight of the cuts relative to the cold carcass weight. The liver and abdominal fat (including adipose tissue around the cloaca, gizzard, proventriculus, and adjacent abdominal muscles) were separated and weighed to determine their relative weight to the live body weight.

Intestinal Histomorphometry

At 21 days of age, two broiler chickens per experimental unit, selected to be close to the average weight of each replicate ($n= 16$), were euthanized by cervical dislocation for the removal of the digestive tract and subsequent evaluation of intestinal histomorphometry (villus height, crypt depth, absorption area, and villus: crypt ratio).

The small intestine was exposed, and the jejunum was isolated for sampling. The segment used was the distal section between the duodenal loop and Meckel's diverticulum. A 2 cm fragment of the jejunum was collected 5 cm before Meckel's diverticulum. This fragment was fixed in 10% buffered formalin, dehydrated in a series of increasing ethanol concentrations, and then embedded in paraffin. Semi-serial sections of 5 μm from each segment were placed on glass slides and stained using the hematoxylin-eosin technique (Luna, 1968).

The measurements were performed using the PROPLUS IMAGE 4.1 imaging system. On each slide, the length and width of the villi, as well as the depth and width of the crypts, were recorded. These morphometric

measurements were used to calculate the absorption surface area of the intestinal mucosa (Kisielski *et al.*, 2002). The villus height-to-crypt depth ratio was calculated using the results of villus height and crypt depth measurements.

Tibial Breaking Strength and Composition

The right tibiae from the broiler chickens euthanized at 21 and 42 days of age were used to determine dry matter in an oven with air circulation (105 °C). After this process, they were ashed for 8 hours in a muffle furnace at 600 °C to obtain mineral matter (ash). The calcium and phosphorus contents in the bone were determined as described by Silva and Queiroz (2009). Calcium concentration was measured by flame atomic absorption spectroscopy (FAAS), and phosphorus (P) was measured using ultraviolet-visible (UV-VIS) spectroscopy.

The left tibia was used to determine bone strength using the Brookfield CT3 texture analyzer. This equipment features a base that supports the epiphyseal areas of the bone, applying a force of 5 mm/s with a load of 200 kgf (kilogram-force) to the central region of the bone (diaphysis). During the strength determination, the tibia was always placed on the supports in the same position. The results were expressed in kilogram-force (Ospina-Rojas *et al.*, 2018).

Tibial Dyschondroplasia

After bone strength analysis of day 42 tibia, the bone was used to evaluate degrees of tibial dyschondroplasia, following the method described by Edwards (1989). A transverse cut was made at the upper part of the tibia to expose the central portion of the bone for evaluation of the lesion scores according to the degree of cartilage: 0: Normal cartilage, narrow with minor irregularities; 1: Thickened cartilage or with considerable irregularities; 2: Thickened cartilage with evidence of pre-hypertrophic cartilage that is not calcified and has not been invaded by metaphyseal vessels, with deep irregularities in the cartilage being apparent; 3: Large mass of cartilage at the proximal end of the tibia.

Gene Expression

The gene expression of interleukins (IL-10 and IL-1 β) was analyzed for their role in the immune response, while CALB-D28K (Calbindin-D28K) was evaluated for its function in calcium metabolism. Since $1,25(\text{OH})_2\text{D}_3\text{-G}$ regulates both calcium homeostasis and immune modulation, its effects on these genes help us understand its impact on broiler chickens.

At 21 days of age, one bird per experimental unit received stimulation through the intraperitoneal administration of 1 mg of LPS (lipopolysaccharides from *E. coli*, Sigma) per kg body weight. Four hours later, the birds were euthanized by cervical dislocation, and immediately, a fragment of the jejunum was collected and immersed in the stabilizing solution RNAlater™ (Invitrogen, USA), which was subsequently stored in a freezer at -20 °C until RNA extraction.

Total RNA was extracted using *QIAzol Lysis Reagent* (Qiagen GmbH, Germany). Approximately 70 mg of chicken intestine was weighed, minced, and added to a DNase- and RNase-free microtube containing 500 μ L of Trizol. The samples were homogenized (vortexed) and incubated at room temperature for 5 minutes. Subsequently, 100 μ L of chloroform was added, followed by manual homogenization for 15 seconds. Afterward, the mixture was incubated at room temperature for 3 minutes and centrifuged for 15 minutes at 12,000 \times g at 4 °C.

The aqueous phase was transferred into a new tube and 250 μ L of isopropanol was added, followed by incubation for 10 minutes (at room temperature) with manual homogenization and centrifugation for 15 minutes at 12,000 \times g at 4 °C. The supernatant was discarded, and the pellet was washed with 1 mL of 75% ethanol. The samples were centrifuged once again at 7,500 \times g for 5 minutes, and the supernatant was discarded to dry the pellet for 15 minutes and then resuspended in DNase- and RNase-free ultrapure water and incubated at 60 °C for 15 minutes.

The RNA concentration for IL-1 β , IL-10, CALB-D28K, and β -actin (endogenous control gene) was measured using the NanoDrop™ Lite spectrophotometer (Thermo Fisher Scientific, USA) at a wavelength of 260/280 nm. The integrity of the RNA was assessed on a 1% agarose gel stained with SYBR Safe™ DNA Gel Stain (Invitrogen, USA) and visualized using a transilluminator with ultraviolet light.

For cDNA synthesis, the *QuantiTect Reverse Transcription Kit* (Qiagen GmbH, Germany) was used according to the manufacturer's instructions, considering 1 μ g of RNA and a final volume of 20 μ L. To remove possible genomic DNA residues, each sample was treated with 2 μ L of *gDNA Wipeout Buffer* (Qiagen GmbH, Germany) and incubated at 45 °C for 2 minutes. After the removal of genomic DNA, 4 μ L of *Quantiscript RT Buffer*, 1 μ L of RT Primer Mix, and 1 μ L of *Quantiscript Reverse Transcriptase* were added. The reverse transcription reaction was incubated for 15 minutes at 42 °C, followed by 3 minutes at 95 °C, and then immediately placed on ice. The samples were measured using the NanoDrop™ Lite spectrophotometer (Thermo Fisher Scientific, USA) and stored at -20 °C until use.

The primers/oligonucleotides used in the reactions were obtained from published works on *Gallus gallus*

(Table 2). The primer sequences were aligned using the BLAST (Basic Local Alignment Search Tool) algorithm in the NCBI database (<http://www.ncbi.nlm.nih.gov/BLAST>). The β -actin gene was considered as a reference/housekeeping gene, and its stability among the treatments was assessed using Statistica® 7.0 software. To assess the amplification efficiency of each primer, serial dilutions of the cDNA pool containing all treatments were performed using different primer concentrations. For β -actin, CALB-D28K, and IL-10, 200 ng of cDNA and 400 nM of primer were used, while for IL-1 β , 200 ng of cDNA and 600 nM of primer were utilized.

The qRT-PCR analyses were conducted on a Rotor-Gene Q (Qiagen GmbH, Germany) using the *QuantiNova SYBR Green PCR Kit* (Qiagen GmbH, Germany) in duplicates. The total reaction volume was 20 μ L. The amplification conditions were 95 °C for 2 minutes, followed by 40 cycles at 95 °C for 5 seconds, and 60 °C for 10 seconds. The dissociation curve of the reaction products was obtained to determine the specificity of the reactions.

The relative gene expression data were recorded as Ct (cycle threshold) values and normalized using the mean Ct values obtained for the reference gene in each sample, for each treatment, and for each target gene, as recommended by Vandesompele *et al.* (2002). The 2- Δ Ct method (Livak & Schmittgen, 2001) was used for relative quantification of gene expression (expressed as arbitrary units, AU).

Statistical Procedures

The data were evaluated for residual normality using the Shapiro-Wilk test and variance homogeneity using Levene's test, both conducted through the Univariate procedure. For data with a normal distribution, a two-way analysis of variance (ANOVA) was performed to assess the effects of 1,25(OH)₂D₃-G supplementation in broiler breeders and broiler chickens, as well as potential interactions between these factors. When significant effects were detected, treatment means for broiler breeders were compared using the F-test, while treatment means for broiler chickens were compared using the Student-Newman-Keulstest. These analyses were conducted using the GLM procedure. Non-parametric tests were applied to data that did not exhibit a normal distribution (Tibial

Table 2. Genes and primer sequences for gene expression analysis using qPCR

Gene	Primer sequence (5'->3')	Amplicon size (bp)	References
β -actina	F: TTCTTTGGCGCTTGACTCA R: GCGTCGCTCCAACATGTT	88	Proszkowiec-Weglarcz <i>et al.</i> (2019)
CALB-D28K	F: TTGGCACTGAAATCCCCTGAA R: CATGCCAAGACCAAGGCTGA	116	NM_205513.2
IL-1 β	F: GCTCTACATGTCGTGTGATGAG R: TGTCGATGTCGGCCATGA	80	NM_204524.2
IL-10	F: CATGCTGCTGGCCCTGAA R: CGTCTCCTTGATCTGCTTGATG	94	NM_001004414.4

Note: CALB-D28K: Calbindin D28K; IL-1 β : Interleukin-1 beta; IL-10: Interleukin 10.

dyschondroplasia). All analyses were conducted using SAS for academic software, with a significance level of 5% (SAS, 2014).

RESULTS

Performance

Performance did not show any interaction between the supplementation of $1,25(\text{OH})_2\text{D}_3\text{-G}$ in the diets of broiler breeders and broiler chickens. However, broiler breeders supplemented with 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$ resulted in heavier broiler chickens ($p<0.003$) at one day of age (Table 3). Moreover, at 21 and 42 days of age, the broiler chickens from broiler breeders supplemented with $1,25(\text{OH})_2\text{D}_3\text{-G}$ exhibited lower feed conversion ($p<0.027$ and $p<0.008$, respectively). Regarding the effect of including $1,25(\text{OH})_2\text{D}_3\text{-G}$ in the growth of broiler chickens, supplementation of 50 g mg/kg resulted in lower feed consumption at 42 days of age.

Carcass Yield and Carcass Cuts

Carcass yield exhibited an interaction ($p<0.021$) between the supplementation of $1,25(\text{OH})_2\text{D}_3\text{-G}$ in the diets of broiler breeders and broiler chickens (Table 4). Supplementation with 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$ in the diets of broiler breeders and broiler chickens resulted in a higher carcass yield ($p<0.001$) in broiler chickens at 42 days of age (Figure 1).

Intestinal Histomorphometry

The intestinal histomorphometry of the jejunum in broiler chickens at 21 days of age did not show any interaction between the supplementation of $1,25(\text{OH})_2\text{D}_3\text{-G}$ in the diets of broiler breeders and

broiler chickens. However, broiler chickens from broiler breeders supplemented with 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$ had reduced crypt depth ($p<0.001$) and an increased villus: crypt ratio ($p<0.024$) in the jejunum at 21 days of age (Table 5).

Tibial Breaking Strength and Composition

The tibial breaking strength was lower in broiler chickens at 42 days of age when they were from broiler breeders supplemented with 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$ (Table 6). The calcium concentration ($p<0.032$) in the tibia at 21 days and the phosphorus concentration ($p<0.007$) at 42 days showed a significant interaction between the supplementation

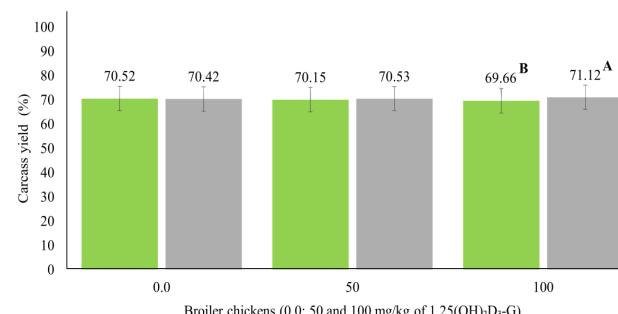


Figure 1. Analysis of the interaction between the supplementation of $1,25\text{-Dihydroxycholecalciferol glycoside}$ ($1,25(\text{OH})_2\text{D}_3\text{-G}$) in the diets of broiler breeders and broiler chickens and its impact on the carcass in the broiler chickens at 42 days of age. ^{A,B} Means followed by uppercase letters differ by the F-test at 5%.

^{A,B} Comparisons between broiler chickens supplemented with 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$ from non-supplemented and supplemented broiler breeders with the same additive ($p<0.001$). Broiler breeders (0.0 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$) (■), Broiler breeders (100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$) (■).

Table 3. Performance of broiler chickens at 21 and 42 days of age fed diets supplemented or not with $1,25(\text{OH})_2\text{D}_3\text{-G}$ from broiler breeders supplemented or not with the same additive

1,25(OH) ₂ D ₃ -G levels (mg/kg)	Variables						
	1 to 21 days				42 days		
	IBW (g/bird)	FI (g/bird)	BWG (g/bird)	FCR (g/g)	FI (g/bird)	BWG (g/bird)	FCR (g/g)
1,25(OH)₂D₃-G in broiler breeders							
0	39.50 ^b	1080	826	1.321 ^b	4327	2884	1.505 ^b
100	39.73 ^a	1093	843	1.297 ^a	4323	2925	1.480 ^a
1,25(OH)₂D₃-G in broiler chickens							
0	39.59	1092	831	1.314	4361 ^A	2904	1.507
50	39.61	1077	833	1.302	4282 ^B	2891	1.492
100	39.63	1091	841	1.310	4334 ^{AB}	2918	1.480
SEM	0.35	41.29	31.15	0.04	79.89	78.03	0.03
P value							
1,25(OH) ₂ D ₃ -G in broiler breeders	0.003	0.309	0.117	0.027	0.749	0.067	0.008
1,25(OH) ₂ D ₃ -G in broiler chickens	0.942	0.536	0.440	0.735	0.024	0.573	0.552
Broiler breeders vs Broiler chickens interaction	0.949	0.849	0.969	0.225	0.227	0.248	0.654

Note: 1,25(OH)₂D₃-G: 1,25-Dihydroxycholecalciferol glycoside; IBW: Initial body weight; FI: Feed intake; BWG: Body weight gain; FCR: Feed conversion ratio; SEM: Standard Error of the Mean; Broiler breeders vs Broiler chickens interaction: Broiler breeders supplemented with 0.0 and 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$ versus Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$; ^{a,b}: Means followed by different lowercase letters in the column differ by F test at 5% significance; ^{A,B}: Means followed by different uppercase letters in the column differ by Student-Newman-Keuls test at 5% significance.

Table 4. Carcass yield, cuts, and relative organ weight of broiler chickens processed at 42 days of age fed diets supplemented or not with 1,25(OH)₂D₃-G from broiler breeders supplemented or not with the same additive

1,25(OH) ₂ D ₃ -G (mg/kg)	Variables						
	CY (%)	LY (%)	BY (%)	BT (%)	WY (%)	RAF (%)	RLW (%)
1,25(OH)₂D₃-G in broiler breeders							
0	70.12 ^b	31.95	27.45	5.44	9.21	1.11	2.14
100	70.70 ^a	32.06	27.50	5.43	9.28	1.04	2.14
1,25(OH)₂D₃-G in broiler chickens							
0	70.47	31.95	27.6	5.49	9.39	1.09	2.10
50	70.53	31.95	27.44	5.36	9.24	1.09	2.17
100	70.72	32.12	27.39	5.44	9.10	1.04	2.15
SEM	1.36	1.15	1.48	0.40	0.76	0.24	0.24
P value							
1,25(OH) ₂ D ₃ -G in broiler breeders	0.013	0.588	0.857	0.880	0.576	0.079	0.914
1,25(OH) ₂ D ₃ -G in broiler chickens	0.901	0.714	0.775	0.257	0.168	0.524	0.330
Broiler breeders vs Broiler chickens interaction	0.021	0.863	0.290	0.859	0.835	0.094	0.655

Note: 1,25(OH)₂D₃-G: 1,25-Dihydroxycholecalciferol glycoside; CY: Carcass yield; LY: Leg yield (thigh and drumstick); BY: Breast yield; BT: Breast tenders; WY: wing yield; RLW: Relative liver weight; RAF: Relative abdominal fat weight; SEM: Standard error of the mean; Broiler breeders vs Broiler chickens interaction: Broiler breeders supplemented with 0.0 and 100 mg/kg of 1,25(OH)₂D₃-G versus Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G; ^{a,b}: Means followed by different lowercase letters in the column differ by F test at 5% significance.

Table 5. Histomorphometry of the jejunum of broiler chickens at 21 days of age fed diets supplemented or not with 1,25(OH)₂D₃-G from broiler breeders supplemented or not with the same additive

1,25(OH) ₂ D ₃ -G (mg/kg)	Variables			
	VH (μm)	CD (μm)	AA (μm ²)	VCR (μm)
1,25(OH)₂D₃-G in broiler breeders				
0	945.46	132.17 ^a	19.22	7.24 ^b
100	917.17	111.26 ^b	17.64	8.14 ^a
1,25(OH)₂D₃-G in broiler chickens				
0	913.56	130.25	20.17	7.15
50	968.06	119.69	17.43	8.14
100	912.31	115.25	17.7	7.82
SEM	167.48	17.71	3.75	1.35
P value				
1,25(OH) ₂ D ₃ -G in broiler breeders	0.561	0.001	0.15	0.024
1,25(OH) ₂ D ₃ -G in broiler chickens	0.565	0.059	0.086	0.114
Broiler breeders vs Broiler chickens interaction	0.382	0.179	0.938	0.686

Note: 1,25(OH)₂D₃-G: 1,25-Dihydroxycholecalciferol glycoside; VH: Villus height; CD: Crypt depth; AA: Absorption area; VCR: Villus: Crypt ratio; SEM: Standard error of the mean; Broiler breeders vs Broiler chickens interaction: Broiler breeders supplemented with 0.0 and 100 mg/kg of 1,25(OH)₂D₃-G versus Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G; ^{a,b}: Means followed by lowercase letters in the column differ from each other by the F test at 5% significance.

of 1,25(OH)₂D₃-G in the diets of broiler breeders and broiler chickens (Table 7). Supplementation (0, 50, and 100 mg/kg) of 1,25(OH)₂D₃-G in the diets of broiler chickens from broiler breeders supplemented with 1,25(OH)₂D₃-G did not increase calcium deposition in the tibia at 21 days of age (Figure 2). Higher calcium concentrations ($p<0.032$) were observed in broiler chickens that did not receive 1,25(OH)₂D₃-G supplementation and were from non-supplemented broiler breeders ($p<0.027$). Moreover, a higher phosphorus concentration (Figure 3) was observed in the tibia of broiler chickens at 42 days of age when they received supplementation (0 and 50 mg/kg) of 1,25(OH)₂D₃-G and were from broiler breeders supplemented with 1,25(OH)₂D₃-G ($p<0.001$).

Tibial Dyschondroplasia

Broiler chickens at 42 days of age did not show significant differences in the results of tibial dyschondroplasia lesions (Table 8).

Gene Expression

The gene expression of calbindin D28K in the jejunum of broiler chickens at 21 days of age did not show any significant interaction between the supplementation of 1,25(OH)₂D₃-G in the diets of broiler breeders and broiler chickens (Table 9). However, broiler chickens from broiler breeders supplemented with 1,25(OH)₂D₃-G exhibited higher levels of calbindin D28K ($p<0.019$) compared to those from broiler breeders that did not receive the supplementation of 1,25(OH)₂D₃-G.

The gene expression of IL-10 and IL 1 β showed an interaction between the supplementation of 1,25(OH)₂D₃-G in the diets of broiler breeders and broiler chickens. Supplementation with 100 mg/kg of 1,25(OH)₂D₃-G in the diets of broiler breeders ($p<0.046$) and broiler chickens ($p<0.054$) reduced the gene expression of interleukin 10 in the jejunum of broiler chickens at 21 days of age (Figure 4). IL-1 β was higher ($p<0.071$) in broiler chickens supplemented with

Table 6. Tibia breaking strength of the tibia expressed in dry matter from broiler chickens fed diets supplemented or not with 1,25(OH)₂D₃-G from broiler breeders supplemented or not with the same additive

1,25(OH) ₂ D ₃ -G levels (mg/kg)	Breaking strength (kgf)	
	21 days	42 days
1,25(OH) ₂ D ₃ -G in broiler breeders		
0	17.78	42.25 ^a
100	17.76	39.49 ^b
1,25(OH) ₂ D ₃ -G in broiler chickens		
0	17.69	39.62
50	17.60	41.69
100	18.00	41.30
SEM	2.93	4.44
P value	0.994	0.037
1,25(OH) ₂ D ₃ -G in broiler breeders	0.923	0.381
1,25(OH) ₂ D ₃ -G in broiler chickens	0.152	0.746
Broiler breeders vs Broiler chickens interaction		

Note: 1,25(OH)₂D₃-G: 1,25-Dihydroxycholecalciferol glycoside; SEM: Standard error of the mean; Broiler breeders vs Broiler chickens interaction: Broiler breeders supplemented with 0.0 and 100 mg/kg of 1,25(OH)₂D₃-G versus Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G; ^{a,b}: Means followed by lowercase letters in the column differ by the F-test at 5% significance.

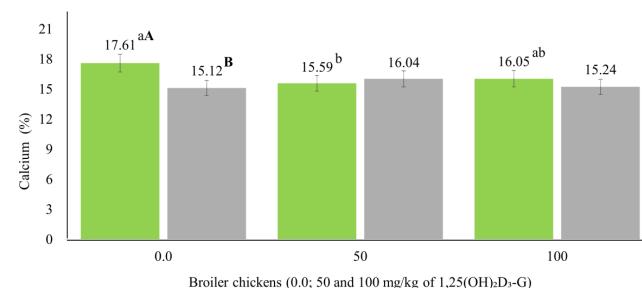


Figure 2. Analysis of the interaction between the supplementation of 1,25-Dihydroxycholecalciferol glycoside (1,25(OH)₂D₃-G) in the diets of broiler breeders and broiler chickens and its impact on the calcium in the bromatological composition of the tibia of broiler chickens at 21 days of age. ^{a,b} Means followed by different lowercase letters differ by the Student-Newman-Keuls test at 5%. ^{a,b} Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G, from broiler breeders not supplemented with 100 mg/kg of the additive ($p<0.036$). ^{A,B} Means followed by uppercase letters differ by the F-test at 5%. ^{A,B} Comparisons between broiler chickens not supplemented of 1,25(OH)₂D₃-G from non-supplemented and supplemented broiler breeders with the same additive ($p<0.001$). Broiler breeders (0.0 mg/kg of 1,25(OH)₂D₃-G) (■), Broiler breeders (100 mg/kg of 1,25(OH)₂D₃-G) (■).

50 mg/kg and when they came from broiler breeders supplemented with 1,25(OH)₂D₃-G in the diet (Figure 5).

DISCUSSION

Broiler breeders supplemented with 100 mg/kg of 1,25(OH)₂D₃-G produced heavier broiler chickens at one

Table 7. Bromatological composition of the tibia expressed in dry matter from broiler chickens fed diets supplemented or not with 1,25(OH)₂D₃-G from broiler breeders supplemented or not with the same additive

1,25(OH) ₂ D ₃ -G levels (mg/kg)	21 days		42 days	
	P (%)	Ca (%)	P (%)	Ca (%)
1,25(OH) ₂ D ₃ -G in broiler breeders				
0	8.05	16.36 ^a	5.73 ^b	15.63
100	8.14	15.47 ^b	6.19 ^a	16.04
1,25(OH) ₂ D ₃ -G in broiler chickens				
0	8.34	16.28	6.24	16.19
50	8.10	15.81	5.88	15.71
100	7.84	15.65	5.75	15.62
SEM	0.61	1.46	0.57	1.14
P value	0.607	0.032	0.007	0.231
1,25(OH) ₂ D ₃ -G in broiler breeders	0.086	0.371	0.053	0.329
1,25(OH) ₂ D ₃ -G in broiler chickens	0.083	0.027	0.001	0.566
Broiler breeders vs broiler chickens interaction				

Note: 1,25(OH)₂D₃-G: 1,25-Dihydroxycholecalciferol glycoside; P: Phosphorus; Ca: Calcium; SEM: Standard error of the mean; Broiler breeders vs Broiler chickens interaction: Broiler breeders supplemented with 0.0 and 100 mg/kg of 1,25(OH)₂D₃-G versus broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G; ^{a,b}: Means followed by lowercase letters in the column differ by the F-test at 5% significance.

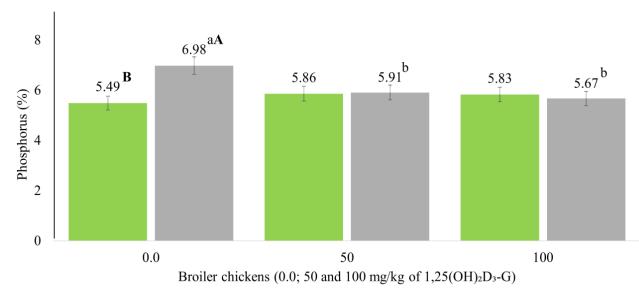


Figure 3. Analysis of the interaction between the supplementation of 1,25-Dihydroxycholecalciferol glycoside (1,25(OH)₂D₃-G) in the diets of broiler breeders and broiler chickens and its impact on the phosphorus in the bromatological composition of the tibia of broiler chickens at 42 days of age. ^{a,b} Means followed by different lowercase letters differ by the Student-Newman-Keuls test at 5%. ^{a,b} Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G, from broiler breeders supplemented with 100 mg/kg of the additive ($p<0.001$). ^{A,B} Means followed by uppercase letters differ by the F-test at 5%. ^{A,B} Comparisons between broiler chickens not supplemented of 1,25(OH)₂D₃-G from non-supplemented and supplemented broiler breeders with the same additive ($p<0.001$). Broiler breeders (0.0 mg/kg of 1,25(OH)₂D₃-G) (■), Broiler breeders (100 mg/kg of 1,25(OH)₂D₃-G) (■).

day of age (Table 3). This probably occurred because 1,25(OH)₂D₃-G, a source of the active form of vitamin D₃, stimulated the production of proteins that facilitate the transport of minerals from the intestinal lumen to the bloodstream (Wang *et al.*, 2021; Shojadoost *et al.*,

Table 8. Tibial dyschondroplasia in broiler chickens at 42 days of age that received feed supplemented or not supplemented with 1,25(OH)₂D₃-G from broiler breeders supplemented or not with the same additive

1,25(OH) ₂ D ₃ -G levels (mg/kg)	Degree of tibial lesions				
	Average score	Exempt (%)	Mild (%)	Moderate (%)	Severe (%)
1,25(OH)₂D₃-G in broiler breeders					
0	0.84	50.72	28.99	5.80	14.49
100	0.93	47.14	27.14	11.43	14.29
1,25(OH)₂D₃-G in broiler chickens					
0	1.00	44.44	28.89	8.89	17.78
50	0.78	54.35	28.26	2.17	15.22
100	0.88	47.92	27.08	14.58	10.42
SEM	0.54	-	-	-	-
P value					
1,25(OH) ₂ D ₃ -G in broiler breeders	0.605	0.672	0.809	0.237	0.972
1,25(OH) ₂ D ₃ -G in broiler chickens	0.584	0.630	0.980	0.100	0.588
Broiler breeders vs Broiler chickens interaction	0.506	-	-	-	-

Note: 1,25(OH)₂D₃-G: 1,25-Dihydroxycholecalciferol glycoside; SEM: Standard error of the mean; Broiler breeders vs Broiler chickens interaction: Broiler breeders supplemented with 0.0 and 100 mg/kg of 1,25(OH)₂D₃-G versus broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G.

Table 9. Jejunum gene expression of 21-day-old broiler chickens fed diets supplemented or not with 1,25(OH)₂D₃-G from broiler breeders supplemented or not with the same additive

1,25(OH) ₂ D ₃ -G levels (mg/kg)	Calbindin D28K	Interleukin 10	Interleukin 1 β
1,25(OH)₂D₃-G in Broiler breeders			
0	0.184 ^b	1.071	0.560
100	0.293 ^a	0.923	0.650
1,25(OH)₂D₃-G in Broiler chickens			
0	0.214	0.895	0.486
50	0.210	0.960	0.645
100	0.291	1.147	0.688
SEM	0.160	0.55	0.28
P value			
1,25(OH) ₂ D ₃ -G in Broiler breeders	0.019	0.405	0.372
1,25(OH) ₂ D ₃ -G in Broiler chickens	0.262	0.613	0.183
Broiler breeders vs Broiler chickens interaction	0.383	0.046	0.022

Note: 1,25(OH)₂D₃-G: 1,25-Dihydroxycholecalciferol glycoside; SEM: standard error of the mean; Broiler breeders vs Broiler chickens interaction: Broiler breeders supplemented with 0.0 and 100 mg/kg of 1,25(OH)₂D₃-G versus Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G; ^{a,b}: means followed by different lowercase letters in the column differ from each other according to the F-test at 5% significance.

2021; Fatemi *et al.*, 2020, 2024, Li *et al.*, 2023). As a result, there might be a higher concentration of calcium and phosphorus in the bodies of the broiler breeders (Araujo *et al.*, 2019; Setiyaningsih *et al.*, 2023). These minerals are essential for the development of bones, both in the broiler breeders and the embryo, as well as for egg mineralization (Barnkob *et al.*, 2020; Li *et al.*, 2021). During egg formation, minerals are transferred from the broiler breeders to the embryo through the yolk and the shell (Wen *et al.*, 2019; Kanaani *et al.*, 2022). Calcium, for example, is incorporated into the eggshell, while phosphorus is distributed in the yolk, playing a crucial role in the development of the chicks skeletal system (Li *et al.*, 2023; Yusuf *et al.*, 2023). When the egg is laid, these nutrients are available to the developing embryo (Fatemi *et al.*, 2021, 2022). As the embryo develops, it uses calcium and phosphorus to form its bones, which directly impacts the bone weight at hatch (Shojadoost *et al.*, 2021; Li *et al.*, 2023).

The reduction in feed conversion ratio observed at 21 and 42 days (Table 3) in broiler chickens from broiler breeders supplemented with 100 mg/kg of

1,25(OH)₂D₃-G suggests a more efficient use of nutrients (Hsiao *et al.*, 2018; Aye-Cho *et al.*, 2020). This may be attributed to the modulation of intestinal metabolism, which enhanced the absorption of essential nutrients without increased feed consumption (Wu *et al.*, 2022). Similar results were observed in the study by Mathis *et al.* (2016), in which the inclusion of up to 1 g/kg of feed improved the feed conversion ratio, indicating that 1,25(OH)₂D₃-G may be a viable alternative in broiler diets without compromising feed efficiency (Han *et al.*, 2022).

The increase in carcass yield (Table 4) observed at 42 days in broiler chickens from broiler breeders supplemented with 100 mg/kg of 1,25(OH)₂D₃-G may be related to better nutrient utilization from the early days of life (Fatemi *et al.*, 2020). Supplementation with 100 mg/kg of 1,25(OH)₂D₃-G in the diet of broiler chickens for up to 21 days contributed to the modulation of physiological processes, promoting muscle growth and lean mass deposition (Figure 1), which resulted in increased carcass yield at 42 days of age.

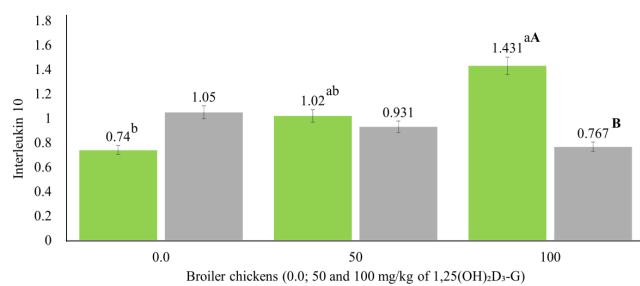


Figure 4. Analysis of the interaction between the supplementation of 1,25-Dihydroxycholecalciferol glycoside (1,25(OH)₂D₃-G) in the diets of broiler breeders and broiler chickens and its impact on the gene expression of interleukin 10 in the jejunum of broiler chickens at 21 days of age. ^{a,b} Means followed by different lowercase letters differ by the Student-Newman-Keuls test at 5%. ^{a,b} Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G, from broiler breeders not supplemented with the same additive ($p<0.049$). ^{a,b} Means followed by uppercase letters differ by the F-test at 5%. ^{a,b} Comparisons between broiler chickens supplemented with 100 mg/kg of 1,25(OH)₂D₃-G from non-supplemented and supplemented broiler breeders with the same additive ($p<0.052$). Broiler breeders (0.0 mg/kg of 1,25(OH)₂D₃-G) (■), Broiler breeders (100 mg/kg of 1,25(OH)₂D₃-G) (■■■).

This is in contrast to other studies that did not observe a significant effect of 1,25(OH)₂D₃-G supplementation on carcass yield. These studies attributed their results to the proper balance of calcium and phosphorus concentrations in the diet (Vieites *et al.*, 2014; Alves *et al.*, 2018; Castro *et al.*, 2018). However, in the present study, even with normal levels of these minerals, supplementation led to higher carcass yield. This suggests that the observed effect may be related to additional mechanisms of metabolic regulation, possibly involving the modulation of nutrient absorption and utilization (Świątkiewicz *et al.*, 2017; Shojadoost *et al.*, 2021).

Broiler chickens from broiler breeders supplemented with 100 mg/kg of 1,25(OH)₂D₃-G exhibited reduced crypt depth and an increased villus-to-crypt ratio in the jejunum at 21 days of age (Table 5). The decrease in crypt depth can be interpreted as an adaptation in the intestinal structure, suggesting a reduced need for cellular renewal. This observation implies greater energy efficiency (Badri *et al.*, 2023; Wei *et al.*, 2024). It can be hypothesized that it likely reflects the modulation of intestinal stem cell activity by 1,25(OH)₂D₃-G, leading to a more efficient intestinal architecture with lower energy expenditure for tissue maintenance (Hsiao *et al.*, 2018; Shojadoost *et al.*, 2021). In addition, the enhanced villus-to-crypt ratio (Table 5) observed at 21 days indicates improved intestinal function. This morphological change, where longer villi and shallower crypts are present, favors efficient nutrient absorption (Nong *et al.*, 2023; Gao *et al.*, 2024). While no changes in villus height or absorption area were noted, the alteration in the villus-crypt ratio suggests a structural adaptation that optimizes nutrient uptake (Babazadeh *et al.*, 2022; Shojadoost *et al.*, 2021).

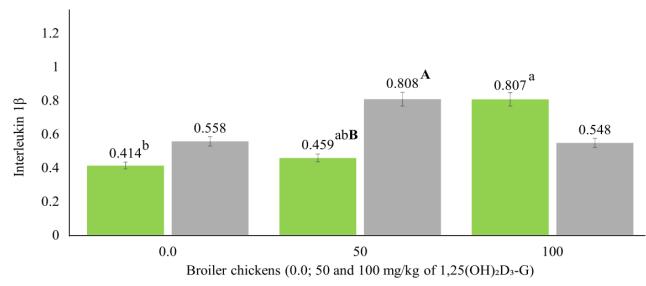


Figure 5. Analysis of the interaction between the supplementation of 1,25-Dihydroxycholecalciferol glycoside (1,25(OH)₂D₃-G) in the diets of broiler breeders and broiler chickens and its impact on the gene expression of interleukin 1β in the jejunum of broiler chickens at 42 days of age. ^{a,b} Means followed by different lowercase letters differ by the Student-Newman-Keuls test at 5%. Broiler chickens supplemented with 0.0, 50, and 100 mg/kg of 1,25(OH)₂D₃-G, from broiler breeders not supplemented with 100 mg/kg of the additive ($p<0.031$). ^{a,b} Means followed by uppercase letters differ by the F-test at 5%. ^{a,b} Comparisons between broiler chickens supplemented with 50 mg/kg of 1,25(OH)₂D₃-G from non-supplemented and supplemented broiler breeders with the same additive ($p<0.041$). Broiler breeders (0.0 mg/kg of 1,25(OH)₂D₃-G) (■), Broiler breeders (100 mg/kg of 1,25(OH)₂D₃-G) (■■■).

However, it is important to note that no significant improvements were observed in the bone health of broiler chickens at 21 and 42 days of age (Tables 7 and 8). Broiler chickens supplemented with 1,25(OH)₂D₃-G, even when originating from broiler breeders that received the same supplementation, did not show enhanced bone mineralization. This was evidenced by lower calcium concentration in the tibia at 21 days (Figure 2) and weaker bones at 42 days (Table 6). Similar findings were reported by Vieites *et al.* (2016), who evaluated the inclusion of 1,25(OH)₂D₃-G in broiler diets at 21 days of age and found no improvements in bone mineralization or strength.

Interestingly, broiler chickens from broiler breeders supplemented with 1,25(OH)₂D₃-G exhibited higher levels of calbindin D28K in the jejunum at 21 days of age (Table 8), suggesting enhanced intestinal calcium absorption. However, this did not result in greater calcium deposition in the bone, which may have limited mineralization and resulted in reduced fracture resistance of the tibia. One possible explanation for these results is the complex regulation of bone mineralization, which depends not only on mineral availability but also on factors such as bone matrix synthesis, osteoblast and osteoclast activity, and interactions with other essential nutrients (Li *et al.*, 2016; Tizziani *et al.*, 2019; Lv *et al.*, 2022; Han *et al.*, 2024).

The higher levels of IL-10 and IL-1β in broiler chickens supplemented with 100 mg/kg of 1,25(OH)₂D₃-G from non-supplemented broiler breeders (Figures 4 and 5) indicate that the observed immune effect is directly related to continuous supplementation during growth, rather than the nutritional contribution provided by the broiler breeders (Rodriguez-Lecompte *et al.*, 2016; Kumar *et al.*, 2017; Ismailova & White,

2022). While supplementation of the broiler breeders contributed to bone mineralization in the chicks, it does not appear to have played a significant role in immune modulation (Araujo *et al.*, 2019; Setiyaningsih *et al.*, 2023).

Direct supplementation of $1,25(\text{OH})_2\text{D}_3\text{-G}$ in broiler chickens during growth influenced immune regulation, particularly through the increase in IL-10 production (Hsiao *et al.*, 2018; Nunes *et al.*, 2020). This anti-inflammatory cytokine plays a crucial role in modulating the immune system by acting as a regulator of the inflammatory response mediated by IL-1 β , a pro-inflammatory cytokine associated with the activation of the innate immune system (Nunes *et al.*, 2020; Abascal-Ponciano *et al.*, 2022). The increase in IL-10 may have controlled the intensity of the inflammatory response induced by the rise in IL-1 β , preventing adverse effects associated with excessive inflammation while maintaining effective immune defense (Nunes *et al.*, 2020; Shojadoost *et al.*, 2021; Kumar *et al.*, 2023).

In broiler chickens from broiler breeders supplemented with $1,25(\text{OH})_2\text{D}_3\text{-G}$, the baseline immune state may have been less responsive to continuous supplementation during growth due to a lower need for immune compensation (Nunes *et al.*, 2020; Chou *et al.*, 2021; Wu *et al.*, 2022). In contrast, in broiler chickens from non-supplemented broiler breeders the immune system was likely in a less developed initial state, making supplementation during growth crucial to promote the balanced production of cytokines such as IL-10 and IL-1 β (Nunes *et al.*, 2020; Shojadoost *et al.*, 2021; Nong *et al.*, 2023).

CONCLUSION

Supplementation with 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$ in the diets of broiler breeders improved the performance of the broiler chickens, resulting in higher birth weight, better feed conversion at 21 and 42 days, and higher carcass yield at 42 days of age. However, the supplementation was not sufficient to improve bone mineralization or tibial break resistance in the broiler chickens. On the other hand, broiler chickens from non-supplemented broiler breeders, when supplemented with 100 mg/kg of $1,25(\text{OH})_2\text{D}_3\text{-G}$, showed better immune response at 21 days of age.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

Abascal-Ponciano, G. A., Leiva, S. F., Flees, J. J., Avila, L. P., Starkey, J. D., & Starkey, C. W. (2022). Dietary 25-Hydroxyvitamin D_3 supplementation modulates intestinal cytokines in young broiler chickens. *Frontiers in Veterinary Science*, 9. <https://doi.org/10.3389/fvets.2022.947276>

Adhikari, R., White, D., House, J. D., & Kim, W. K. (2020). Effects of additional dosage of vitamin D₃, vitamin D₂, and 25-hydroxyvitamin D₃ on calcium and phosphorus utilization, egg quality and bone mineralization in laying hens. *Poultry Science*, 99(1), 364–373. <https://doi.org/10.3382/ps/pez502>

Alves, O. dos S., Calixto, L. F. L., Araujo, A. H. B., Torres-Cordido, K. A. A., Reis, T. L., & Calderano, A. A. (2018). Decreased levels of vitamin D₃ and supplementation with 1,25-dihydroxyvitamin D₃-glycoside on performance, carcass yield and bone quality in broiler chickens. *Ciência Rural*, 48(8). <https://doi.org/10.1590/0103-8478cr20170705>

Araujo, L. F., Araujo, C. S. S., Pereira, R. J. G., Bittencourt, L. C., Silva, C. C., Cisneros, F., Hermes, R. G., Sartore, Y. G. A., & Dias, M. T. (2019). The dietary supplementation of canthaxanthin in combination with 25OHD₃ results in reproductive, performance, and progeny quality gains in broiler breeders. *Poultry Science*, 98(11), 5801–5808. <https://doi.org/10.3382/ps/pez377>

Asnayanti, A., Alharbi, K., Do, A. D. T., Al-Mitib, L., Bühler, K., Van der Klis, J. D., Gonzalez, J., Kidd, M. T., & Alrubaye, A. A. K. (2024). Early 1,25-dihydroxyvitamin D₃-glycosides supplementation: an efficient feeding strategy against bacterial chondronecrosis with osteomyelitis lameness in broiler chickens assessed by using an aerosol transmission model. *Journal of Applied Poultry Research*, 33(3), 100440. <https://doi.org/10.1016/j.japr.2024.100440>

Aye-Cho, T.-Z., Sadiq, M. B., Srichana, P., & Anal, A. K. (2020). Vitamin D₃ enhanced intestinal phosphate cotransporter genes in young and growing broiler chickens. *Poultry Science*, 99(4), 2041–2047. <https://doi.org/10.1016/j.psj.2019.11.038>

Babazadeh, D., Razavi, S. A., Abd El-Ghany, W. A., & F Cotter, P. (2022). Vitamin D deficiency in farm animals: a review. *Farm Animal Health and Nutrition*, 1(1), 10–16. <https://doi.org/10.58803/fahn.v1i1.7>

Badri, F., El-Wardany, I., Anwar, H., Ghonime, M., & Ali, R. (2023). *In ovo* injection of vitamin D₃ to promote post-hatch performance, intestine histomorphology, bone characteristics, and blood constituents of broiler chickens. *Egyptian Journal of Nutrition and Feeds*, 26(3), 365–374. <https://doi.org/10.21608/ejnf.2023.332914>

Barnkob, L. L., Argyraki, A., & Jakobsen, J. (2020). Naturally enhanced eggs as a source of vitamin D: A review. *Trends in Food Science & Technology*, 102, 62–70. <https://doi.org/10.1016/j.tifs.2020.05.018>

Castro, F. L. de S., Baião, N. C., Ecco, R., Louzada, M. J. Q., Melo, É. de F., Saldanha, M. M., Triginelli, M. V., & Lara, L. J. C. (2018). Effects of 1,25-dihydroxycholecalciferol and reduced vitamin D₃ level on broiler performance and bone quality. *Revista Brasileira de Zootecnia*, 47(0). <https://doi.org/10.1590/rbz4720170186>

Chou, P.-C., Lin, P.-C., Wu, S.-W., Wang, C.-K., Chung, T.-K., Walzem, R. L., Lai, L.-S., & Chen, S.-E. (2021). Differential modulation of 25-hydroxycholecalciferol on innate immunity of broiler breeder hens. *Animals*, 11(6), 1742. <https://doi.org/10.3390/ani11061742>

Edwards, H. M. (1989). The Effect of dietary cholecalciferol, 25-hydroxycholecalciferol and 1,25-dihydroxycholecalciferol on the development of tibial dyschondroplasia in broiler chickens in the absence and presence of disulfiram. *Journal of Nutrition* 119:647–652. <https://doi.org/10.1093/jn/119.4.647>

Fatemi, S. A., Elliott, K. E. C., Bello, A., Durojaye, O. A., Zhang, H.-J., & Peebles, E. D. (2020). The effects of *in ovo* injected vitamin D₃ sources on the eggshell temperature and early posthatch performance of Ross 708 broiler chickens. *Poultry Science*, 99(3), 1357–1362. <https://doi.org/10.1016/j.psj.2019.10.055>

Fatemi, S. A., Elliott, K. E. C., Bello, A., & Peebles, E. D. (2021). Effects of the *in ovo* injection of vitamin D₃ and 25-hydroxyvitamin D₃ in Ross 708 broiler chickens subsequently challenged with coccidiosis. I. performance,

meat yield and intestinal lesion incidence^{1,2,3}. *Poultry Science*, 100(10), 101382. <https://doi.org/10.1016/j.psj.2021.101382>

Fatemi, S. A., Elliott, K. E. C., Macklin, K. S., Bello, A., & Peebles, E. D. (2022). Effects of the *in ovo* injection of vitamin D₃ and 25-hydroxyvitamin D₃ in Ross 708 broiler chickens subsequently challenged with coccidiosis: II immunological and inflammatory responses and small intestine histomorphology. *Animals*, 12(8), 1027. <https://doi.org/10.3390/ani12081027>

Fatemi, S. A., Levy, A. W., & Peebles, E. D. (2024). Ross 708 broiler small intestine morphology and immunity improvements in response to *in ovo* Marek's Disease vaccine administration alone or in conjunction with *in ovo* and dietary supplemental calcifiediol. *Poultry Science*, 103(10), 104098. <https://doi.org/10.1016/j.psj.2024.104098>

Gao, H., Zhao, X., Guo, Y., Li, Z., & Zhou, Z. (2024). Coated sodium butyrate and vitamin D₃ supplementation improve gut health through influencing intestinal immunity, barrier, and microflora in early-stage broiler chickens. *Journal of the Science of Food and Agriculture*, 104(7), 4058–4069. <https://doi.org/10.1002/jsfa.13288>

Gil, Á., Plaza-Diaz, J., & Mesa, M. D. (2018). Vitamin D: classic and novel actions. *Annals of Nutrition and Metabolism*, 72(2), 87–95. <https://doi.org/10.1159/000486536>

Gili, V., Pardo, V. G., Ronda, A. C., De Genaro, P., Bachmann, H., Boland, R., & de Boland, A. R. (2016). *In vitro* effects of 1 α ,25(OH)₂D₃ glycosides from Solbone A (*Solanum glaucophyllum* leaves extract; Herbonis AG) compared to synthetic 1 α ,25(OH)2D₃ on myogenesis. *Steroids*, 109, 7–15. <https://doi.org/10.1016/j.steroids.2016.03.002>

Han, J., Wu, L., Lv, X., Liu, M., Zhang, Y., He, L., Hao, J., Xi, L., Qu, H., Shi, C., Li, Z., Wang, Z., Tang, F., & Qiao, Y. (2022). Intestinal segment and vitamin D₃ concentration affect gene expression levels of calcium and phosphorus transporters in broiler chickens. *Journal of Animal Science and Technology*. <https://doi.org/10.5187/jast.2022.e78>

Han, J., Lv, X., He, L., Liu, M., Qu, H., Xi, L., Zhang, L., Ma, B., Shi, C., Yang, G., & Wang, Z. (2024). MAPK signaling pathway participates in the regulation of intestinal phosphorus and calcium absorption in broiler chickens via 1,25-dihydroxyvitamin D₃. *Poultry Science*, 103(10), 104052. <https://doi.org/10.1016/j.psj.2024.104052>

Hsiao, F. S.-H., Cheng, Y.-H., Han, J.-C., Chang, M.-H., & Yu, Y.-H. (2018). Effect of different vitamin D₃ metabolites on intestinal calcium homeostasis-related gene expression in broiler chickens. *Revista Brasileira de Zootecnia*, 47(0). <https://doi.org/10.1590/rbz4720170015>

Hurst, E. A., Homer, N. Z., & Mellanby, R. J. (2020). Vitamin D metabolism and profiling in veterinary species. *Metabolites*, 10(9), 371. <https://doi.org/10.3390/metabo10090371>

Ismailova, A., & White, J. H. (2022). Vitamin D, infections and immunity. *Reviews in Endocrine and Metabolic Disorders*, 23(2), 265–277. <https://doi.org/10.1007/s11154-021-09679-5>

Kanaani, R., Kianfar, R., Janmohammadi, H., W. Olyaei, M. (2022). Influence of vitamin D₃ and lactic acid on performance, egg quality, and hatchability in broiler breeder hens. *Animal Production Research*, 11, 67–81.

Kisielski, K., Willis, S., Prescher, A., Klosterhalfen, B., & Schumpelick, V. (2002). A simple new method to calculate small intestine absorptive surface in the rat. *Clinical and Experimental Medicine*, 2(3), 131–135. <https://doi.org/10.1007/s102380200018>

Kumar, R., Brar, R. S., & Banga, H. S. (2017). Hypervitaminosis D₃ in broiler chicks: histopathological, immunomodulatory and immunohistochemical approach. *Iranian Journal of Veterinary Research*, 18(3), 170–176.

Kumar, R., Singh Banga, H., & Singh Brar, R. (2023). Effects of dietary vitamin D₃ over-supplementation on broiler chickens' health: clinicopathological and immunohistochemical characteristics. *Journal of Veterinary Physiology and Pathology*, 2(2), 20–31. <https://doi.org/10.58803/jvpp.v2i2.21>

Li, J., Yuan, J., Miao, Z., & Guo, Y. (2016). Effects of age on intestinal phosphate transport and biochemical values of broiler chickens. *Asian-Australasian Journal of Animal Sciences*, 30(2), 221–228. <https://doi.org/10.5713/ajas.16.0540>

Li, D., Zhang, K., Bai, S., Wang, J., Zeng, Q., Peng, H., Su, Z., Xuan, Y., Qi, S., & Ding, X. (2021). Effect of 25-hydroxycholecalciferol with different vitamin D₃ levels in the hens diet in the rearing period on growth performance, bone quality, egg production, and eggshell quality. *Agriculture*, 11(8), 698. <https://doi.org/10.3390/agriculture11080698>

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 $-\Delta\Delta CT$ method. *Methods*, 25(4), 402–408. <https://doi.org/10.1006/meth.2001.1262>

Luna, L. G. (1968). *Manual of histologic staining methods of the Armed Forces Institute of Pathology* (3rd ed.). McGraw-Hill.

Lv, X., Hao, J., Wu, L., Liu, M., He, L., Qiao, Y., Cui, Y., Wang, G., Zhang, C., Qu, H., & Han, J. (2022). Age quadratically affects intestinal calcium and phosphorus transporter gene expression in broiler chickens. *Animal Bioscience*, 35(12), 1921–1928. <https://doi.org/10.5713/ab.22.0058>

Mathis, G., Boland, R., Bachmann, H., Toggenburger, A., & Rambeck, W. (2016). Safety profile of 1,25-dihydroxyvitamin D₃ of herbal origin in broiler chicken. *Schweiz Arch Tierheilkd*, 158(12), 819–826. <https://doi.org/10.17236/sat00097>

Nong, K., Liu, Y., Fang, X., Qin, X., Liu, Z., & Zhang, H. (2023). Effects of the vitamin D₃ on alleviating the oxidative stress induced by diquat in Wenchang chickens. *Animals*, 13(4), 711. <https://doi.org/10.3390/ani13040711>

Nunes, R. A., Duarte, M. de S., Campos, P. H. R. F., de Oliveira, L. L., e Silva, F. F., Kreuz, B. S., Mirabile, C. G., Borges, S. O., & Calderano, A. A. (2020). Active vitamin D₃-glycoside preserves weight gain and modulates the inflammatory response in broiler chickens challenged with lipopolysaccharide. *Animal Feed Science and Technology*, 270, 114704. <https://doi.org/10.1016/j.anifeedsci.2020.114704>

Ospina-Rojas, I. C., Murakami, A. E., Duarte, C. R. A., Sakamoto, M. I., Aguihe, P. C., Pozza, P. C., & Santos, T. C. (2018). Tibiotarsus bone characteristics and tibial dyschondroplasia incidence of broiler chickens fed diets supplemented with leucine and valine. *Journal of Animal Physiology and Animal Nutrition*, 102(2). <https://doi.org/10.1111/jpn.12832>

Proszkowiec-Weglarcz, M., Schreier, L. L., Miska, K. B., Angel, R., Kahl, S., & Russell, B. (2019). Effect of early neonatal development and delayed feeding post-hatch on jejunal and ileal calcium and phosphorus transporter genes expression in broiler chickens. *Poultry Science*, 98(4), 1861–1871. <https://doi.org/10.3382/ps/pey546>

Rodriguez-Lecompte, J. C., Yitbarek, A., Cuperus, T., Echeverry, H., & van Dijk, A. (2016). The immunomodulatory effect of vitamin D in chickens is dose-dependent and influenced by calcium and phosphorus levels. *Poultry Science*, 95(11), 2547–2556. <https://doi.org/10.3382/ps/pew186>

Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira, M. L., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., Brito, C. O. (2017). Tabelas brasileiras de aves e suínos: composição de alimentos e exigências nutricionais 4: 448.

Sakomura, N. K., & Rostagno, S. H. (2016). *Métodos de pesquisa em nutrição de monogástricos* (FUNEP, Ed.; Vol. 2).

San, J., Zhang, Z., Bu, S., Zhang, M., Hu, J., Yang, J., & Wu, G. (2021). Changes in duodenal and nephritic Ca and P absorption in hens during different egg-laying periods. *Helijon*, 7(1), e06081. <https://doi.org/10.1016/j.heliyon.2021.e06081>

SAS Institute. (2014). SAS University Edition: Installation Guide for Windows. SAS Institute Inc. Retrieved April 20, 2024, from <https://support.sas.com/documentation/installcenter/en/ueclientswn/67533/PDF/default/sasuniversityedition.pdf>

Setiyaningsih, N., Jayanegara, A., & Wardani, W. W. (2023). Effects of a vitamins D and C supplement on performance, hatchability and blood profiles of broiler breeders. *Journal of World's Poultry Research*. <https://doi.org/10.36380/jwpr.2023.7>

Shojadoost, B., Yitbarek, A., Alizadeh, M., Kulkarni, R. R., Astill, J., Boodhoo, N., & Sharif, S. (2021). Centennial review: effects of vitamins A, D, E, and C on the chicken immune system. *Poultry Science*, 100(4), 100930. <https://doi.org/10.1016/j.psj.2020.12.027>

Silva, D. J., & Queiroz, A. C. (2009). Análise de alimentos: métodos químicos e biológicos (3rd ed), Impresiana. Universitária da UFV, Viçosa, 235 p.

Souza, C. S., Vieites, F. M., Nunes, R. V., Brusamarello, E., Reis, T. L., Lima, C. A. R. de, & Vargas Junior, J. G. de. (2020). Suplemento de 1,25-dihidroxcolecalciferol e redução de cálcio e fósforo disponível para frangos de corte fêmeas. *Research, Society and Development*, 9(7), e119973975. <https://doi.org/10.33448/rsd-v9i7.3975>

Świątkiewicz, S., Arczewska-Włosek, A., Bederska-Łojewska, D., & Józefiak, D. (2017). Efficacy of dietary vitamin D and its metabolites in poultry - review and implications of the recent studies. *World's Poultry Science Journal*, 73(1), 57-68. <https://doi.org/10.1017/S0043933916001057>

Tizziani, T., Donzele, R. F. M. de O., Donzele, J. L., Silva, A. D., Muniz, J. C. L., Jacob, R. de F., Brumano, G., & Albino, L. F. T. (2019). Reduction of calcium levels in rations supplemented with vitamin D₃ or 25-OH-D₃ for broiler chickens. *Revista Brasileira de Zootecnia*, 48. <https://doi.org/10.1590/rbz4820180253>

Trautemüller, H., Genova, J. L., Faria, A. B. B. de, Martins, J. S., Viana, S. C. M., Castilha, L. D., Gonçalves, A. C., Baraldi-Artoni, S. M., & Carvalho, P. L. de O. (2021). Bone traits and gastrointestinal tract parameters of piglets fed cholecalciferol and 1,25-dihydroxycholecalciferol glycoside. *Revista Brasileira de Zootecnia*, 50. <https://doi.org/10.37496/rbz5020210098>

Trautemüller, H., Genova, J. L., Santos, L. B. de A. dos, Leal, I. F., Santos, G. de B., Rupolo, P. E., Nunes, R. V., Oliveira, E. R. de, & Carvalho, P. L. de O. (2022). Partial cholecalciferol replacement with 1,25-dihydroxycholecalciferol glycoside in diets for piglets. *Animal Production Science*, 62(16), 1590-1599. <https://doi.org/10.1071/AN21150>

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology*, 3(7), research0034.1. <https://doi.org/10.1186/gb-2002-3-7-research0034>

Vieites, F. M., Drosghic, L. C. A. B., Souza, C. S., Vargas Júnior, J. G., Nunes, R. V., Moraes, G. H. K. de, Corrêa, G. S. S., & Caramori Júnior, J. G. (2016). Características ósseas de frangos decorte alimentados com rações suplementadas com *Solanum glaucophyllum*. *Semina: Ciências Agrárias*, 37(1), 381. <https://doi.org/10.5433/1679-0359.2016v37n1p381>

Vieites, F. M., Drosghic, L. C. A. B., Souza, C. S., Lima, C. A. R., Moraes, G. H. K., Nunes, R. V., Vasconcellos, C. H. F., & Vargas Júnior, J. G. (2017). 1,25-dihidroxivitamina-D₃ sobre as características ósseas de frangos de corte fêmeas. *Arquivo Brasileiro de Medicina Veterinária e Zootecnia*, 69(5), 1285-1293. <https://doi.org/10.1590/1678-4162-9371>

Vieites, F. M., Brusamarello, E., Corrêa, G. da S. S., Souza, C. S., De Oliveira, C. F. S., De Moraes, G. H. K., & Caramori Júnior, J. G. (2018). 1,25-dihidroxcolecalciferol de origem herbal (*Solanum glaucophyllum*) mantém o desempenho e a qualidade óssea de frangos de corte fêmeas durante restrição de cálcio e fósforo. *Archivos de Zootecnia*, 67(259), 414-419. <https://doi.org/10.21071/az.v67i259.3799>

Wang, Y. B., Chen, F., Gou, Z. Y., Li, L., Lin, X. J., Zhang, S., & Jiang, S. Q. (2021). Requirement of Vitamin D₃ on fast-growing yellow-feathered breeder hens. *Scientia Agricultura Sinica*, 54(16), 3549-3560.

Wei, J., Li, L., Peng, Y., Luo, J., Chen, T., Xi, Q., Zhang, Y., & Sun, J. (2024). The effects of optimal dietary vitamin D₃ on growth and carcass performance, tibia traits, meat quality, and intestinal morphology of Chinese yellow-feathered broiler chickens. *Animals*, 14(6), 920. <https://doi.org/10.3390/ani14060920>

Wen, J., Livingston, K. A., & Persia, M. E. (2019). Effect of high concentrations of dietary vitamin D₃ on pullet and laying hen performance, skeleton health, eggshell quality, and yolk vitamin D₃ content when fed to W36 laying hens from day of hatch until 68 wk of age. *Poultry Science*, 98(12), 6713-6720. <https://doi.org/10.3382/ps/pez386>

Wu, L., Wang, X., Lv, X., He, L., Qu, H., Shi, C., Zhang, L., Zhang, J., Wang, Z., & Han, J. (2022). 1,25-Dihydroxycholecalciferol improved the growth performance and upregulated the calcium transporter gene expression levels in the small intestine of broiler chickens. *The Journal of Poultry Science*, 59(2), 0210019. <https://doi.org/10.2141/jpsa.0210019>

Yavaş, İ., Çenesiz, A. A., & Ceylan, N. (2020). Effects of herbal vitamin D₃ and phytase supplementation to broiler feed on performance, bone development and serum parameters of broiler chickens. *Tarım Bilimleri Dergisi*. <https://doi.org/10.15832/ankutbd.479182>

Yusuf, G. M., Sumiati, S., Mutia, R., Wardani, W. W., Akbar, I., & Putri, N. D. S. (2023). Performance, egg quality, bone health, and immunity assessments of lohmann laying hens supplemented with vitamin D₃ in the diet. *Tropical Animal Science Journal*, 46(4), 461-470. <https://doi.org/10.5398/tasj.2023.46.4.461>