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Abstract

Mangroves, known for their high productivity, play vital roles in physical, ecological, and economic aspects
that benefit human life. However, these ecosystems are currently threatened by climate change and
human activities. To address this challenge, Indonesia aims to rehabilitate 600,000 hectares of mangroves
by 2024. Effectively monitoring changes in mangrove dynamics is crucial for achieving this goal. This study
focuses on understanding the dynamic change of the mangrove land cover in Aceh Tamiang from 2000 to
2023. Mangrove dynamics in Aceh Tamiang are important because it has the largest mangrove area in
East Aceh, which is decreasing due to conversion to the oil palm industry. The classification using random
forest (RF) algorithm by utilizing VWB-IC (Vegetation-Water-Built-up Index Combined), which area NDVI,
SAVI, ARVI, GNDVI, SLAVI, and EVI as vegetation indices; MNDWI and ANDW!I as water indices; and NDBI
as built-up index. The employment of this combination is necessary to enhance the accuracy of
classification due to the addition of more input parameters to machine learning. The image data are
acquired through Landsat 5 for 2000 and 8 and 9 satellites for 2023. The observed dynamics include
mangroves transitioning into fishponds (768 ha) and plantations (2,679 ha) between 2000 and 2023. The
processed data indicates a decrease in the Aceh Tamiaang mangrove area from 13,270 ha in 2000 to 9,386
ha in 2023. These results can be used to determine mangrove rehabilitation policies in Aceh Tamiang,
Indonesia.

Keywords: Mangrove dynamics change, Random forest, Spatiotemporal

1. Introduction

Mangroves consisting of various groups of ground ferns, herbs, shrubs, palms, and trees
growing in the intertidal zone along tropical and subtropical coastlines act as one of the most
productive ecosystems [1-3]. The complex canopy morphology and robust interconnected
root system in the mangrove ecosystem support its physical function as a buffer zone that
maintains the stability of the coastline from tidal waves, cyclones, and high tides and
minimizes the impact of natural disasters such as tsunamis [4,5]. The root structure of
mangrove vegetation serves as a habitat for various marine organisms, providing breeding
grounds, shelter, nesting sites, and feeding areas [6,7]. Mangroves store carbon stocks in
above-ground biomass carbon, below-ground root biomass carbon, and soil sediment
carbon, making them four times larger carbon stores compared to various other types of
terrestrial forests [8,9]. As for the economic sector, mangrove forests can be used directly for
forest products in the form of wood for firewood, charcoal, construction, furniture, and
fishing tools, as well as the use of non-timber forest products in the form of fishing nets,
natural clothing dyes, animal feed, organic fertilizer, medicines, food, nipa roofing, honey,
and drinks [10—-15]. Currently, mangroves are very vulnerable to climate change and human
activities [16—18]. Every year, mangrove areas experience a decrease in area; during the
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2000-2020 period, the world's mangrove area experienced a decrease in area of 284
thousand hectares, with Asia being the region that experienced the most significant loss of
mangrove area [17-19]. Indonesia, the country with the largest mangrove area in the world,
is estimated to have a mangrove deforestation rate of 18,209 Ha/year (2009-2019 period)
[20,21]. The main drivers of global mangrove loss during 2000-2020 are anthropogenic
factors, contributing 72.1%, including aquaculture development, land conversion to
agriculture, and infrastructure development [22,23].

In 2024, the Indonesian government plans a very ambitious target for mangrove
rehabilitation, namely 600,000 Ha [20]. Efforts that need to be made to achieve this target
are paying attention to the sustainable management of mangrove forests [21,23]. A critical
aspect in determining sustainable mangrove forest management policies is monitoring
changes in mangrove areas [21,24,25]. Effective monitoring is done using a remote sensing
approach [25]. Remote sensing spatiotemporal monitoring can provide valuable data for
experts involved in determining policies at a low cost, easy to repeat, fast, accurate, and
wide-scale compared to field measurements [25,26]. Several studies have been carried out
related to spatiotemporal monitoring of the dynamics of mangrove changes in Indonesia,
starting from Junianto [27], Irawan [28], Aritonang [29], Febrianto [30], Febriandi [31], Haikal
[32], Raynaldo [33], until Ramandalush [34].However, these studies do not show in detail the
dynamics of changes that occur in mangrove areas, to be precise, they do not clearly show
what areas of lost mangroves have changed into. Meanwhile, research on mapping the
dynamics of mangrove changes in Aceh Tamiang is still minimal; monitoring research based
on remote sensing has yet to be found In addition, over the past two decades, mangrove
ecosystems around the world have undergone many changes, mainly due to climate change
and anthropogenic factors [16,35]. Therefore, it is crucial to conduct this research to provide
data on the dynamics of change in mangrove areas, especially Aceh Tamiang, over the past
two decades, whose sustainability is already threatened by human activities [36]. This
research is useful in revealing detailed information on the loss or increase of mangrove areas
in Aceh Tamiang Regency, ranging from the severity to the factors that cause changes.

2. Materials and Methods
2.1. Study area

Administratively, the research location was in Aceh Tamiang Regency, Aceh Province.
Meanwhile, geographically, the research location was at geographic coordinates 03° 53'
18.81" —04° 32'56.76" North Latitude and 97° 43' 41.51” — 8° 14' 45.41" East Longitude. The
research location bordered East Aceh Regency and Langsa City in the north; in the west, it
bordered East Aceh Regency and Southeast Aceh Regency; in the east, it bordered North
Sumatra Province; and in the south, it bordered Gayo Lues Regency (Figure 1). The data used
were from 2000 and 2023, a period chosen to capture significant changes and trends.
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Figure 1. Map of the study area, located between Langsa City, East Aceh Regency, and Langkat
Regency.

2.2. Research flow

The research began with taking spatial data from Landsat 5, 8, and 9 satellites. Next, the data
underwent a preprocessing stage in setting the time for 2000 and 2023, applying cloud
masking techniques to clear the data, and cutting the focus of the research area or creating
an area of interest (Aol). The modified spatial data is taken in part to create a dataset. The
dataset consisted of training data and validation data. Training data was used in the random
forest method. The results of the random forest algorithm operation were tested using
validation data. This process was successful using the Google Earth Engine platform.
Furthermore, the research was carried out using ArcMap software to map the classification
data so that interpretation and assessment of changes in mangrove dynamics could be
carried out. A more detailed research flow can be seen in Figure 2.
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Figure 2. Research flowchart from data collection up to the suggestion.

2.3. Data

The data used in this research are spatial data obtained using remote sensing methods.
Spatial data is information about a particular location on the earth's surface, including
coordinates and the shape of geographic features in the form of the earth's shape [37]. The
dataset that has been obtained was then processed using the land cover classification
method. The classification process involved creating a dataset taken from spatial data in the
form of training data and validation data. Training data is reference data for the random
forest algorithm (the classification method used in this study) as teaching material that trains
the random forest algorithm in predicting land cover types in the study area [38]. Generally,
the more training data samples used, the better the performance of the classification
algorithm [39-42]. However, the random forest method does not require massive data, it is
proven that changing the training data sample size does not significantly affect the
performance of the random forest algorithm [42—44]. Another dataset used is validation data
which is useful for evaluating the work results of the random forest algorithm so that it can
assess the accuracy of the algorithm [38,45]. The number of datasets used can be seen in
Table 1.
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Table 1. The amount of training and validation data used in the classification using machine learning
for each type of land cover; In 2000, no training or validation data was used for the agroforestry or
built-up area land cover types because in that year neither land cover was found in the study area.

. 2000 2023
No. Variable (land use type) — — — —
training sample validation  training sample validation

Water body 1165 1717 674 371
Mangrove 1192 1726 627 36
Plantation 923 241 617 198
Agriculture 363 398 454 56
Bare land 1197 736 6 184
Agroforestry - - 29 81
Built-up area - - 51 55

The spatial data this research uses comes from Landsat 5 satellite imagery for data needs in
2000 and Landsat 8 and 9 for 2023. The Landsat satellite is a remote sensing satellite with
the first systematic collection of images of the Earth's appearance in the world launched by
NASA (National Aeronautics and Space Administration) [46]. Landsat measures the reflection
of light waves from objects on the earth's surface from 1972 until now, so that the resulting
image data can be used to map changes in the earth's surface for specific periods. For 51
years, eight Landsat series launch missions have been successful and continue to improve
with each launch. In this research, the Landsat satellite series used was Landsat 5, launched
on March 1, 1984, equipped with 7 TM and 4 MSS spectral bands [47]. The consideration for
using Landsat 5 for data analysis in 2000 was because it could provide cloud-free image data
and was operational in 2000. Another series of Landsat satellites used in this research were
Landsat 8 and 9. Landsat 8 was launched on February 11, 2013, and it consists of two
instruments, namely the Operational Land Imager (OLI) and the Thermal Infrared Sensor
(TIRS) [48]. OLI is an instrument with four mirror telescopes useful for collecting invisible,
near-infrared, shortwave infrared wavelength regions, and panchromatic band data. It is
equipped with Quality Assurance, which detects the presence of terrain shadowing, data
artifacts, and clouds [48,49]. The TIRS instrument is the newest heat sensor with a 100-m
spatial resolution to reduce the number of cross-track pixels needed in applications [50].
Landsat 9 was launched on September 27, 2021, with an improved nine-band OLI-2 and two
spectral band TIRS-2 instrument, which has satellite transmit data with higher radiometric
resolution to increase sensitivity in detecting subtle changes [51]. The Landsat image bands
used in this research are described in Table 2.

Table 2. Characteristics of the landsat-5 band used in the research [52].

Satellite Band Number Band Number - Band Description Wavelength Range (hm) Resolution (m)
Landsat 5 TM B2 Visible Green 520 -600 30

B3 Visible Red 630-690 30

B4 Near-Infrared (NIR) 760 —900 30

B5 Shortwave Infrared (SWIR) 1 1550-1750 30

B6 Thermal 10400 — 12500 120 * (30)

B7 Shortwave Infrared (SWIR) 2 2080 — 2350 30
Landsat 8 B2 Visible Blue 452 -512 30
Landsat 9 OLI B3 Visible Green 533-590 30

B4 Visible Red 636 -673 30

B5 Near-Infrared (NIR) 851-879 30

B6 Shortwave Infrared (SWIR) 1 1566 — 1651 30

B7 Shortwave Infrared (SWIR) 2 2107 — 2294 30
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2.4. Data analysis

This research was carried out by analyzing the spatiotemporal dataset of mangrove change
dynamics using the Google Earth Engine (GEE) cloud computing-based Application
Programming Interface (API) (Figure 2). GEE is a geospatial platform that provides access to
geospatial databases that reach a global scale based on Google storage and facilitates tools
to process this data through coding [53-55]. GEE enables the use of climate, temperature,
and geospatial model data obtained from Landsat, Sentinel, and MODIS satellites on a large
scale (petabytes) [53,56,57]. This research was conducted using the Javascript programming
language to run the random forest classification algorithm using a combination of various
indices. The combination used is VWB-IC (Vegetation-Water-Built-up Index Combined), which
consists of NDVI, SAVI, ARVI, GNDVI, SLAVI, and EVI as vegetation indices; MNDW!I and
ANDWI as water indices; and NDBI as built-up index. This combination of indices helps the
algorithm in learning the spectral characteristics of the land cover well, so that it can better
interpret the overall land cover. The random forest algorithm is a non-parametric supervised
classification and regression tree (CART) method with a working mechanism in the form of
multiple decision tree ensemble treatment of a randomly selected subset of training data
[58,59]. The random forest classification algorithm was chosen in this research because it has
been proven in many studies to be able to outperform the Binary Hierarchical Classifier (BHC),
Linear Discriminant Analysis (LDA), Artificial Neural Network (ANN) classifiers, and decision
tree classifiers [58]. Random forest can process multidimensional data better than other
methods with fewer parameter settings, and its performance is faster compared to support
vector machines (SVM) [60,61].
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Figure 3. View of the GEE platform used in land cover change analysis, where the different colors
shown indicate different land cover types.

The random forest algorithm in this study uses a combination of indices to identify the type
of mangrove land cover in the study area. The index combination used is VWB-IC (Vegetation-
Water-Built-up Index Combined), which has been proven to be able to display land cover
types better than using a single index or band [62,63]. The selection of the index is based on
consideration of the index function that adapts to the specific characteristics of the mangrove
ecosystem. The vegetation index detects mangrove density [64]. In this research, the
vegetation index was also applied to detect plantation land cover as one of the aspects that
drives mangrove changes [65]. Meanwhile, the water index is involved because the effects of
sea tides affect the physical condition of mangrove vegetation in the intertidal zone [63]. The
built-up index studies mangrove land conversion due to urban expansion and development.
The index used in detail is shown in Table 3.
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Table 3. List of indices used, complete with formulas and references.

No Method Formula Reference
1 Normalized Difference Vegetation Index NDVI = (NIR - Red) / (NIR + Red) Rouse et al. (1974)
(NDVI)

2 Enhanced Vegetation Index (EVI) EVI = ((NIR - Red) / ((NIR + 6) * (Red - 7.5) Huete et al. (2002)
* (Blue + 1))) * 2.5

3 Soil Adjusted Vegetation Index (SAVI) SAVI = ((NIR - Red) / (NIR + Red +0.5)) * Rouse jr et al. (1974)
(1.0+0.5)

4 Specific Leaf Area Vegetation Index (SLAVI) SLAVI = NIR / (Red + SWIR2) Lymburner et al. (2000)

5 Atmospherically Resistant Vegetation Index ARVI = (NIR - (Red - (1 * (Red - Blue)))) / Kaufman et al. (1992)

(ARVI) (NIR + (Red - (1 * (Red - Blue))))
6 Modified Normalized Difference Water Index MNDWI = Green - SWIR2 / Green + Xu (2006)
(MNDWI) SWIR2
7 Augmented Normalized Difference Water ANDWI = (Blue + Green + Red - NIR - Rad et al. (2021)
Index (ANDWI) SWIR1 - SWIR2) / (Blue + Green + Red +
NIR + SWIR1 + SWIR2)
8 Green Normalized Difference Vegetation Index GNDVI = (NIR - Green) / (NIR + Green) Gitelson et al. (1996)
(GNDVI)
9 Normalized Difference Built-up Index (NDBI) NDBI = (SWIR - NIR) / (SWIR + NIR) Zha et al. (2003)
Where :

Blue : Blue band, Green : green band, Red : red band, NIR: near-infrared band, SWIR : shortwave-infrared band

2.5. Accuration assesment

The results of the random forest classification algorithm sometimes need to match actual
conditions. Therefore, it is essential to test the results of processing classification algorithms
to determine the feasibility of the resulting data [66]. The accuracy assessment used in this
research involves a confusion matrix table, which includes the overall accuracy (OA) and
kappa statistics values as a test of the accuracy of the results of algorithm operations. The
confusion matrix table summarizes the overall testing results of training data against
validation data for each land cover class. Meanwhile, overall accuracy describes the quality
of land cover classification results by calculating the proportion of samples predicted
correctly by the algorithm with the total of all samples [67]. Kappa statistics is on of
thestandard matrix test to assess the accuracy of classification [68]. The equation of overall
accuracy and kappa statistics can be seen in formulas 1 and 2.

Overall Accuracy (OA) = %ZleXii X 100% (1)

o1 Xii—2ieg Xii Kig X X4) 2)
N2 3T X (Xig X Xy)

Kappa =
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3. Results and Discussion
3.1. Results

3.1.1. Mangrove identification

The results of mangrove detection using guided classification techniques showed that the
mangrove ecosystem is distributed at river mouths and along the coastline, as shown in
Figure 1. Based on Figure 1, Aceh Tamiang Regency has many river estuaries. Two rivers that
flow into the coast of Aceh Tamiang Regency are the Mati River and the Tamiang River, which
have a high diversity of fish species. In general, mangroves are distributed on the coast, both
along coastlines and estuaries.

3.1.2. Dynamic change of mangrove
1. Mangrove status change over two decades

The results of the overlay analysis of mangrove land cover classification in Aceh Tamiang for
the period 2000 to 2023 revealed three categories of status change: increase in area,
decrease in area, and no change. The recapitulation of this change status is visualized in detail
using a bar graph presented in Figure 4. The mangrove cover area was recorded at 13,270.85
hectares at the beginning of the period. However, the 2023 data shows a decrease to
11,871.63 hectares. The dynamics of this change are characterized by a reduction in
mangrove area of 3,882.24 hectares, offset by adding new areas of 2,485.62 hectares.
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Figure 4. The bar graph showing the area of the mangrove ecosystem in three statuses is marked by
an increase in area in line with the increase in color brightness.

2. Dynamics of land cover change from mangrove to other land cover types

The final change of mangroves in 2023 is presented as a dynamic map of mangrove use for
2000-2023, as shown in Figure 5. From 2000 to 2023, an area of 9386.01 ha of mangroves
was intact (permanent) or unchanged. Other changes in mangrove areas in the same year
period were into water bodies, ponds, plantation, and barren land with an area of 362.91 ha
respectively, 768.57 ha, 2679.68 ha, and 71.07 ha. The changes in the status of mangrove
land shown in Figure 4, the dynamics of which can be seen in Figure 5.
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Figure 5. Distribution of the dynamics of mangrove land cover change to other land cover in Aceh
Tamiang that occurred in the period 2000-2023.

3. Distribution of mangrove change status area

Over the course of two decades, mangroves that experienced land reduction were identified
as changing into various types of land cover such as plantations, ponds, water bodies, and
open land. The overall distribution of changes in mangrove status over two decades can be
seen in Figure 6, which is dominated by the closer it is to the mainland, the more mangrove
land is found to be damaged.
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Figure 6. Distribution of changes in mangrove land status includes increase, reductions, and intact.
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A comparison of mangrove land cover between the two decades can be seen in Figure 7. It is
clear that the remaining mangrove land cover is located close to water bodies. In terms of
area, how much has changed to other types of land cover is shown in Figure 8. The overall
dynamics of the mangrove ecosystem in Aceh Tamiang over two decades (2000-2023) is a
form of degradation phenomenon.

98°4'0"E 98°8'0"E 98°12'0°E 98°16'0"E 98°4'0"E 08°8'0"E 98°12'0"E 98°16'0"E
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98°4'0"E 98°8'0"E 98°12'0"E 98°16'0"E 98°4'0"E 98°8'0"E 98°12'0"E 98°16'0"E

Figure 7. Distribution of mangroves in two different years two decades apart classified by machine
learning classification method.

4. Area change transition over two decades

The transition of mangrove and non-mangrove land change over two decades is shown in the form
of a Sankey diagram dominated by the change of mangrove land cover reduction to non-mangrove
land cover class type plantation.

Mangrove

. Non Mangrove Plantation .

Figure 8. Sankey graphic shows the dynamics of mangrove change in Aceh Tamiang, characterized
by land cover in 2000 on the left, and 2023 on the right.

3.1.3. Accuracy assessment

Accuracy assessment tested the performance of machine learning in carrying out something
in the case of mangrove area detection or land classification. An accuracy assessment was
done using the confusion matrix method in Tables 2000 and 2023. Based on the assessment
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results, the overall accuracy for detection in 2000 was 97.11%, with a kappa statistic of
95.98%. Meanwhile, the overall accuracy for 2023 was lower than in 2000, 79.10%, and the
kappa statistic is 73.10%. However, user and producer accuracy in land classification 2023

was still relatively high, namely 94.61% and 100%.

Table 4. Confusion matrix and accuracy measures on 2000.

Land use land cover

Classification

Sum (User’s)

Water body Mangrove Agriculture Bare land Plantation
Water body 1,717 0 0 0 0 1,717
Mangrove 0 1,633 3 0 0 1,636
Agriculture 0 74 388 5 29 496
Bare land 0 0 4 236 0 240
Plantation 0 19 10 0 734 763
Sum (Producer’s) 1,717 1,726 398 241 763

User’s accuracy (%)

Producer’s accuracy (%)

Water body 100.00 100.00
Mangrove 94.61 100.00
Plantation 97.48 78.22
Agriculture 97.92 98.33
Bare land 96.19 96.19
Plantation
Overall accuracy (OA) 97.11 %
Kappa statistics 95.98 %
Table 5. Confusion matrix and accuracy measures on 2023.

Land use Classification Sum

land cover ~ Water body = Mangrove Plantation Agriculture Built up area Agroforestry Bareland (user’s)
Mangrove 371 0 0 0 0 0 0 371
Water body 0 36 12 0 1 0 0 49
Plantation 0 0 180 0 1 38 20 239
Agriculture 0 0 4 56 26 0 82 168
Built up 0 0 0 0 27 0 12 39
area
Agroforestry 0 0 2 0 0 40 4 46
Bare land 0 0 0 0 0 3 66 69
Sum 371 36 196 56 50 81 184
(produser)

User’s accuracy (%) Producer’s accuracy (%)

Water body 73.46 100.00
Mangrove 100.00 100.00
Plantation 75.31 91.83
Agriculture 33.33 100.00
Built up area 69.23 54.00
Agroforestry 89.95 49.00
Bare land 95.65 35.00
Overall accuracy (OA) 79.10 %
Kappa statistics 73.10 %

3.2. Discussion

3.2.1. Mangrove identification

The coast of Aceh Tamiang district has several river estuaries that can carry sediment. The
types of mangroves found on the coast of Aceh Tamiang are quite diverse, originating from
the genera Acrostichum sp, Acanthus sp, Avicennia sp, Bruguiera, Melastoma sp., Rhizophora
sp., Sonneratia sp., and Xylocarpus sp. [69]. According to Darmarini et al. [70] reported that
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there were ten types of mangroves found in the Lubuk Damar Coastal area, Aceh Tamiang,
consisting of true and associated mangroves, namely Avicennia alba, Bruguiera parviflora,
Bruguiera sexangula, Sonneratia alba, Rhizophora apiculata, Acrostichum aureum, Aegiceras
floridum, Excoecaria agallocha, Xylocarpus granatum, and Acanthus ilicifolius. The
community often uses the types of vegetation in the mangrove ecosystem for their produce,
such as mangrove leaves (Rhizophora sp.), mangrove bark (Rhizophora sp.), pada fruit
(Sonneratia sp.), api-api fruit (Avicennia sp.), noirish (Xylocarpus granatum), Nipah leaves
(Nypa fruticans), and honey [71]. Mangroves found at river mouths have excellent conditions
because they have a source of nutrients from river sediments. This is why most estuary river
deltas have good-quality mangrove vegetation [72]. Factors that influence the biophysical
characteristics of mangroves are climate and geographic factors. The climatic factor that
most influences the condition of mangroves is rainfall because it causes puddles and affects
salinity and organic material carried by rivers [73]. Geographical conditions influence the
distribution of mangrove species found in an ecosystem [74].

The mangroves in this area are classified as severely damaged, exhibiting a tree density of
merely 230 trees/ha. This degradation has led to significant ecological consequences,
including a decline in the quality of potable water for local residents [75]. Darmarini et al.
[76], and Arico et al. [77] also found from direct observations at the location that the
mangroves in this area had experienced severe damage in the last 20 years due to human
activities. The change in mangroves into water bodies can be caused by several factors,
including climate change and the cutting down of mangroves around river areas; for example,
the research of Asy'Ari et al. [78] revealed that there was damage to mangroves in the Subang
Regency area due to logging. Climate change, which results in sea level rise, increased storms,
changes in rainfall patterns, and increased temperatures, impacts mangrove forests, ranging
from vegetation damage to loss of mangrove area [16]. Rising sea levels are the main factor
in converting mangroves into water bodies because they increase flooding duration, which
can lead to mangrove death [16,79]. Typhoons with increasing intensity impact mangrove
forests because large waves can uproot mangrove trees, while strong winds can damage tree
canopies (breaking branches and defoliating the canopy) [80—82]. The loss of mangroves at
the outer limits causes changes in the coastline so that the land area decreases [83]. Changes
in rainfall patterns will have an impact on the growth and distribution of mangroves;
decreased rainfall with increased evaporation will result in increased salinity, decreased net
primary productivity, changes in competition between mangrove species, decreased
diversity of mangrove zones, decreased mangrove area [84—86]. Changes in precipitation
patterns due to climate change can also cause increased pluvial sedimentation, which can
increase freshwater input, resulting in loss of mangroves [16]. An increase in temperature
can affect mangrove composition, productivity, phenology, and mangrove distribution
because increasing temperature results in increased evaporation, which affects increasing
salinity and aridity [16,80,87].

The dynamics of mangrove changes were also related to converting mangrove land into
ponds. On a global scale, converting mangroves into ponds contributes the most significant
percentage of world mangrove loss [17]. However, the results of this research found a
different reality: the leading cause of mangrove loss was not aquaculture development but
plantations. The same thing was also expressed by Arico et al. [77]. Even though pond
construction is not the main factor causing mangrove loss in Aceh Tamiang, the conversion
of mangroves into ponds in this study area is still relatively large because it reached 768.57
ha. Zulham et al. [88] reported an increase in the pond area in Aceh Tamiang in the 2017-
2019 period with an expansion rate of 0.3% per year, where the expansion of the pond area
has been proven to be carried out by the community towards mangroves in protected zones.
The conversion of mangroves into ponds also occurs in several other mangrove areas close
to the study location area, such as North Sumatra [89].

The dynamics of changing mangroves into plantations in Aceh Tamiang are generally
converted into oil palm plantations. This can not only be revealed from direct observations
resulting from satellite image data collection but also by Arico et al. [77]. Hasri et al. [75]found
that in 2010, as many as 1940.95 ha (62.25%) of mangrove forests had been converted into
oil palm plantations. However, changing mangroves into plantations can only sometimes be
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considered harmful for changes in mangrove forest areas. The positive and negative impacts
of mangrove conversion due to plantations must be viewed from various other factors, such
as increasing climate temperatures, marine typology, sea waves, and sediment supply [90].
Based on the results of this research analysis, it appears that plantations on the east coast
have a positive impact. In contrast, plantations in other areas, such as Palembang, do not
experience positive or negative changes (are stagnant) due to human activities such as
mining, so the number of mangrove areas increases is the same as the number of areas.
Mangroves are decreasing [91]. Plantation can have a positive impact because the results of
the analysis found a change in non-mangrove areas into mangroves, as seen in Figure 8. The
opening of plantations can result in the addition of appropriate sedimentation, thereby
allowing propagules to spread more widely, ultimately increasing the area of mangroves
[78,92].

This mangrove degradation causes a decline in the population of sea tuntong (Batagor
borneoensis) as an endemic species of Aceh Tamiang because it eliminates the original
habitat of this species [93]. The existence of fish, shrimp, and crabs is also threatened due to
the destruction of the mangrove ecosystem as the habitat on which their lives depend. The
community around the Aceh Tamiang mangroves plays a role in the dynamics of mangrove
change. It is a disadvantaged party because the people of Aceh Tamiang are accustomed to
cutting down mangrove trees to make firewood (charcoal) [76,77]. Meanwhile, as the
disadvantaged party, the community experiences a decrease in economic income from
fishing because the abundance of fish decreases due to the decrease in mangrove forest area.

This showed that under these conditions, the bias in detecting mangrove areas is still
relatively low, so the performance of machine learning for detecting mangrove areas was
relatively high. Detection of mangrove areas using various vegetation, water, and built-up
indices has relatively high capabilities. The research resulted of Rahmawati and Asy’Ari [94]
showed that using several indices in detecting mangrove areas with random forest algorithm
has relatively high accuracy, reaching 96.50% and kappa statistics of 93%. Apart from that,
this research also revealed that the SLAVI and RVI threshold values did not overlap, so it can
be assumed that this index is quite sensitive to the presence of mangroves. Asy'Ari et al. [78]
also reported that a combination of vegetation, water, and built-up indices could detect
mangrove areas better than a combination of one type of index alone. Several indices have
different abilities in detecting mangroves. Using the water index alone in detecting
mangroves tends to overestimate while using the vegetation index tends to underestimate
the size of the mangrove area [63].

The discovery revealed areas that have remained mangrove for two decades. This means
these areas are classified as primary mangroves, which are more urgent to be preserved.
Therefore, the findings of this study can be used as a basis for the study of mangrove land
conservation zoning in Aceh Tamiang.

4. Conclusion

Spatiotemporal analysis using random forest classification and ArcMap revealed a decrease
in mangrove area in Aceh Tamiang from 13,270.85 ha in 2000 to 9,386.01 ha in 2023. The
changesin other mangrove areas in the same period were to water bodies, ponds, plantation,
and barren land with an area of 362.91 ha; 768.57 ha; 2679.68 ha; and 71.07 ha, respectively.
The dynamics of mangrove change in the form of mangrove area reduction include the
conversion of mangrove forests into water bodies (non-ponds), plantations, ponds, and open
land. Mangrove conversion into water bodies is driven by two factors: anthropogenic
activities and climate change. Anthropogenic activities such as logging can reduce the area of
mangroves close to the river. Climate change affects changes in the area of the outer
mangroves due to the regression of the coastline. Climate change also affects the physiology
of mangrove tree vegetation, resulting in a decrease in the ability/resilience of the forest.
The conversion of mangroves to ponds in the study area was not a major factor in the decline
of the mangrove area (in contrast to the global scale). The conversion of mangroves to oil
palm plantations in the case of the study area is classified as having a positive impact in the
form of additional sedimentation, making it easier for propagules to spread more widely.
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Eventually, the dynamics of mangrove change that occurred over two decades resulted in
more mangrove area lost than mangrove area gained. This led to the mangrove forest's
degradation, affecting the original habitat's biodiversity and the surrounding coastal
communities.
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