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Abstract 

Balikpapan Bay contains extensive mangrove forests which play an important role as habitat for a range 

of species and in providing a range of ecosystem services. In recent years, the mangrove forests around 

Balikpapan Bay are increasingly being lost and degraded due to development pressures. Thus, change 

detection in mangrove ecosystem has become highly relevant, as it can provide essential information to 

support the conservation practices and coastal management. This study aims to map mangrove forest 

change in Balikpapan Bay, East Kalimantan over a five-year period from Sentinel-2 using machine learning. 

Five machine learning algorithms (Random Forest (RF), Support Vector Machine (SVM), Classification and 

Regression Tree (CART), K-Nearest Neighbors (KNN), and Minimum Distance), implemented on the Google 

Earth Engine platform, were evaluated to determine the most suitable method. The evaluation results 

indicate that RF, SVM, and CART yielded mangrove mapping accuracies of 80% or higher. Notably, the 

CART algorithm surpassed the other tested models, demonstrating the highest overall accuracy of 84% 

and a Kappa coefficient of 0.78. Mapping using the selected CART model shows that, between 2020 and 

2025, mangrove areas in Balikpapan Bay decreased by 21% (2,906.17 ha). Approximately 97% (2,834.49 

ha) of this loss is concentrated in the North Penajam Paser, which has a high rate of land conversion to 

built-up areas. 

Keywords: machine learning, google earth engine, mangrove, Sentinel-2, Balikpapan Bay 

1. Introduction 

Mangrove forests represent a type of coastal vegetation ecosystem commonly found in tropical and 
subtropical regions. This plant community consists of diverse mangrove tree species that can survive 
in the intertidal area, which is the muddy coastal zone routinely influenced by tidal activity (Warsidi 
and Endayani, 2017). This ecosystem serves a dual function: it plays a crucial role in maintaining 
environmental stability while also offering essential resources for life. In addition to providing 
economic benefits such as timber and acting as important habitats for fish and crabs, mangrove 
forests also serve as a significant natural defence. They are effective at dampening wave energy and 
preventing seawater intrusion deep onto the mainland (Takarendehang et al., 2018). 

Despite their importance, mangrove forests in many coastal regions are facing widespread damage. 
Take, for example, Balikpapan Bay in East Kalimantan, which is home to a substantial mangrove area. 
Unfortunately, this region recorded significant mangrove destruction in 2018, totalling 1,092.41 
hectares (Anwar et al., 2021). This damage was triggered by several main factors, including land 
conversion for industrial and port expansion, as well as mining and smelting activities. These 
pressures have led to severe environmental consequences, such as increased sedimentation, coastal 
erosion, and a drastic decline in biodiversity. Key endangered species include proboscis monkeys, 
dolphins, sea turtles, and dugongs (Anwar et al., 2021). Therefore, accurate and timely mapping of 
mangrove forests at a regional scale is an urgent need to effectively monitor the dynamics of 
deforestation. 

The use of remote sensing, especially medium-resolution satellite data like Sentinel-2, has 
significantly improved the ability to monitor mangrove forests over large areas and with greater 
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frequency. Sentinel-2's combination of suitable spatial resolution (10m, 20m, 60m) and spectral 
bands makes it an excellent tool for classifying coastal land cover, allowing researchers to 
successfully identify mangroves that were previously hard to differentiate from other vegetation 
using lower-resolution data. In fact, many studies utilizing Sentinel-2 for mangrove mapping have 
achieved high accuracies, often exceeding 80% (Saputra et al., 2021). 

Mapping mangroves using multiple images with conventional methods often demands repetitive 
processing, requires large storage capacity, and consumes a significant amount of time, especially 
when applied to vast areas. Addressing these constraints, the emergence of cloud-based geo-big 
data processing platforms, specifically Google Earth Engine (GEE), offers a compelling solution 
(Kamal et al., 2020). GEE is a free, cloud-based platform that enables large-scale geospatial analysis 
utilizing Google's cloud infrastructure (Gorelick et al., 2017). This platform provides a very 
comprehensive catalogue of satellite and remote sensing products, in addition to features 
supporting advanced image processing and machine learning algorithms.  

While mangrove mapping using the Google Earth Engine (GEE) platform has been widely conducted, 
many studies tend to rely on Landsat 8 satellite imagery (Fariz et al., 2021a; Husnayaen et al., 2023). 
Conversely, the utilization of medium-resolution Sentinel-2 imagery for mangrove mapping via GEE 
remains largely underexplored, particularly at a regional level such as Balikpapan Bay. Therefore, this 
study attempts to map mangrove forest changes in Balikpapan Bay, East Kalimantan. Furthermore, 
this assessment also includes the evaluation of various classification methods for mangrove mapping 
using Sentinel-2 imagery in the study area. 

2. Methodology 

2.1. Study Area and Data 
This research area is in Balikpapan Bay (Figure 1). Administratively, Balikpapan Bay is located 
within the East Kalimantan Province and is geographically situated between Balikpapan City, 
North Penajam Paser Regency, and a small part of Kutai Kartanegara Regency. The mangrove 
species found at this research location are Avicennia marina, Avicennia alba, and Rhizophora 
apiculate (Pratama et al., 2025). 

 

Figure 1. Map of Research Location for the Coastal Area and Balikpapan Bay. Covering the 
Administrative Regions of Penajam Paser Utara Regency and Balikpapan City, East Kalimantan.  

Data used in this study is Sentinel-2 satellite imagery sourced from the ESA Copernicus 
Harmonized Sentinel-2 MSI: Multi Spectral Instrument, Level-2A (SR) dataset. This image has 
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been pre-processed, already undergone orthorectification and reflectance calibration. The 
Sentinel-2 satellite imagery used in this study consists of scenes from 2020 and 2025, 
covering the period from January to May. This time range was selected since the GEE provides 
cloud removal and median composite algorithms, ensuring that the images are cloud-free 
and representative of the specified period (Fariz and Nurhidayati, 2020). The analysis utilized 
Sentinel-2 spectral bands 2, 3, 4, 5, and 8. Bands 1, 6, and 7 were excluded due to their 
susceptibility to atmospheric interference, which may adversely affect classification accuracy 
(Shelestov et al., 2017). To focus the study the images were subsequently cropped to the 
specific research area. 

2.2. Data Processing  
Data collection and processing were carried out on the Google Earth Engine (GEE) platform using its 
JavaScript API at earthengine.google.com. This work was developed and executed within the GEE's 
web-based Code Editor (an Integrated Development Environment), which is designed for creating 
and running geospatial analysis scripts (Google Earth Engine, 2021). Separately, QGIS software was 
utilized for essential tasks such as filtering data, manipulating attribute tables, and creating the final 
map layouts. 

Mangroves were identified through a land cover classification process that separated the area into 
four categories: mangrove, water bodies, built-up areas, and non-mangrove land cover (which 
included all other vegetation and bare land). To train the classification model, 309 training samples 
were chosen using a purposive random sampling method, informed by visual inspection of high-
resolution Google Earth images. This sample quantity meets the required statistical standards, which 
recommend a minimum of 50 samples per class (Congalton, 2001; Story and Congalton, 1986).  

This study utilized machine learning (ML) techniques, implemented within the Google Earth Engine 
(GEE) platform, for the classification process. ML is highly effective for analysing the high-
dimensional data found in satellite imagery, enabling the efficient categorization of complex land 
features (Maxwell et al., 2018). Although GEE supports several ML algorithms (Farda, 2017; 
Shelestov et al., 2017), this research specifically compares the performance of five well-established 
classifiers available in the platform: Classification and Regression Tree (CART), Random Forest (RF), 
Minimum Distance (MD), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) (Gorelick, 
2021). These specific algorithms were chosen because they have consistently achieved classification 
accuracies greater than 80% in multi-temporal mapping. The classification itself was executed using 
a pixel-based (multispectral) approach (Farda, 2017).  

Every machine learning classifier utilized has unique benefits and drawbacks. The CART algorithm is 
known for its interpretable and easy-to-visualize results, but it risks overfitting the training data 
(Neetu and Ray, 2019). The related Random Forest (RF) classifier improves upon CART using 
ensemble methods for better performance, though this also increases its complexity. The K-Nearest 
Neighbors (KNN) is versatile for multi-class problems and handles various distance measurements, 
but it can suffer from slow prediction times on large datasets because it must calculate the distance 
to every training example. Finally, the Support Vector Machine (SVM) is a powerful and popular 
classifier for both classification and regression. However, its main limitation is the need for careful, 
complex, and computationally demanding tuning of its hyperparameters (like C, gamma, and the 
kernel). 

The Minimum Distance (MD) classifier is valued for its simplicity and speed, as it classifies instances 
based solely on the Euclidean distance to the closest class centroid. Because it requires no complex 
training or parameter tuning, MD is ideal for quick implementation, especially in image processing. 
However, its significant drawback is that it only considers the class mean, completely ignoring class 
variance and covariance. This omission makes it prone to misclassification when class distributions 
overlap or have different spreads. 

2.3. Accuracy Assessment 
To determine how well the machine learning algorithms performed in classifying the land cover, an 
accuracy assessment was carried out using a separate, independent dataset. This test dataset 
consisted of 120 samples—30 for each of the four categories: mangrove, water bodies, built-up 
areas, and non-mangrove land cover. These samples were chosen through purposive random 
sampling. 
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The evaluation was conducted using a confusion matrix to determine both the Overall Accuracy (OA) 
and the Kappa Coefficient. Overall Accuracy is defined as the proportion of correctly classified 
samples across all land cover classes relative to the total number of test samples. The Kappa 
Coefficient provides a statistical measure of agreement between the classified data and the 
reference data, adjusted for the agreement that could occur by chance (Hendrawan et al, 2018). The 
OA and Kappa measures are formulated as follows (Congalton and Green 1999; Congalton and Green 
2009): 

𝑂𝐴 =
∑ 𝑥𝑖𝑖

𝑘
𝑖=1

𝑁
𝑥 100% (1) 

𝜅 =
𝑁 ∑ 𝑥𝑖𝑖−∑ (𝑥𝑖+𝑥+𝑖)𝑘

𝑖=1
𝑘
𝑖=1

𝑁2−∑ (𝑥𝑖+𝑥+𝑖)𝑘
𝑖=1

 (2) 

where xii is the number of correctly classified samples for class i, xi+ represents the total number of 
samples in row i (reference class totals), and x+i_denotes the total number of samples in column i 
(predicted class totals), k is the total number of classes, and N is the total number of test samples. 

3. Results and Discussion 

3.1.  Land Cover Classification Results Using Machine Learning 
The land cover classification results of Sentinel-2 satellite imagery in Balikpapan Bay using machine 
learning are shown in Figure 2 (a) to (e) for the year 2025 and Figure 2 (f) to (j) for the year 2020. 
The classification methods applied sequentially for each satellite image year are RF, SVM, CART, KNN, 
and MD, respectively. The accuracy assessment results using testing data are shown in Table 1. From 
a visual perspective, classification using machine learning on the 2025 image (Figure 2a-2d) yields 
similar outcomes for the building class but differs for the mangrove and non-mangrove classes. 
Specifically, certain classifiers frequently misclassified mangrove regions as general vegetation and 
vice versa. These errors are likely attributable to the spectral similarities in digital number values and 
tonal characteristics between mangrove forests and other vegetation types. 

 

Figure 2. Classification results from Sentinel-2 imagery using machine learning algorithms for 2025 
(upper row): (a) Random Forest, (b) Support Vector Machine, (c) CART, (d) K-Nearest Neighbors, (e) 
Minimum Distance; and for 2020 (lower row): (f) Random Forest, (g) Support Vector Machine, (h) 
CART, (i) K-Nearest Neighbors, (j) Minimum Distance. 
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The classification results for 2020 (Figure 2f–2j) show greater variability compared to other years. 
This variation is most apparent in the output generated by the Mahalanobis Distance (MD) method 
(Figure 2k), especially when classifying non-mangrove areas. The MD method tends to overestimate 
the size of non-mangrove regions when compared to the results from the other classifiers (Figure 
2f–2i). This is likely due to the high spectral variation and diversity within the non-mangrove class. 
Since the MD algorithm considers only the class mean and ignores both variance and covariance, it 
may inadequately reflect the true spectral complexity of that class.  

In terms of accuracy assessment, MD obtained the lowest overall accuracy and kappa coefficient 
values compared to the others (Table 1). In contrast, the other three classifiers, i.e. RF, SVM, and 
CART, yielded an overall accuracy of 80% or higher (Table 1). This implies that at least 80% of the 
total pixels tested were correctly classified by the three classifier models. Furthermore, the kappa 
coefficients of the three classifiers (Table 1) showed a high (significant) level of agreement between 
classification results and the reference data. This suggests that their performance was significantly 
better than merely guessing randomly; in other words, their accuracy was not due to coincidence. 

Table 1. Accuracy assessment results of Sentinel-2 satellite classifications against reference data 
from 2025 in Balikpapan Bay. The best-performing results were obtained using the CART machine 
learning model, as shown in bold.  

Machine Learning 
Accuracy of Sentinel 2025 Satellite 

Overall Accuracy (OA) (%) Kappa Coefficient 

Random Forest 80% 0.74 
Support Vector Machine 81% 0.75 
CART 84% 0.78 
KNN 79% 0.73 
Minimum Distance 76% 0.68 

However, of all the models tested, the CART algorithm demonstrated superior performance (Table 
1). This superiority is primarily due to CART's ability to handle complex spectral data and non-linear 
interactions between features without assuming data distribution (Breiman et al., 1984; Pal and 
Mather, 2003). CART automatically selects important features from Sentinel-2 bands and builds 
efficient decision tree-based classification rules. The tree pruning process also reduces overfitting, 
which improves model generalization (Lillesand et al., 2015).  

The CART classifier's high accuracy is supported by various Indonesian studies. For instance, in Kubu 
Raya, Kalimantan, Fariz et al. (2021a) found that CART was superior to RF, GMO Max Entropy, and 
SVM for classifying mangroves and water bodies. Similarly, a mangrove mapping project in Bali by 
Husnayaen et al. (2023) using CART achieved excellent results (OA of 95.7% and kappa of 0.91). 
Furthermore, CART delivered the highest accuracy for land use mapping in the Sagara Anakan 
Lagoon (Farda, 2017) and for land cover in the Kreo Sub-Watershed (Fariz et al., 2021b), even when 
utilizing lower-resolution Landsat imagery. Given this track record of consistent success, CART was 
chosen for mapping mangrove changes in Balikpapan Bay. 

3.2.  Mangrove Area Changes 
Given the superior classification accuracy, CART was employed to map mangrove areas in 
Balikpapan Bay in 2020 (Figure 3a) and 2025 (Figure 3b) for change detection. The change in 
mangrove areas subtracted from 2020 to 2025 is shown in Table 2, which is divided into two 
parts: the eastern (Balikpapan City) and the western (North Penajam Paser) parts of 
Balikpapan Bay. 

Based on visual interpretation, it is evident that the mangrove class showed a marked change 
between 2020 and 2025, as indicated by a noticeable reduction in green coverage (Figure 3). 
Predictive analysis using the CART model estimated a total decrease in mangrove area within 
Balikpapan Bay of approximately 2,906.17 hectares, representing around 21% of the total 
area. From the Balikpapan Bay mangrove area, the most substantial reduction was observed 
in the western region, which is part of Penajam Paser Utara, accounting for approximately 
97% of the total area change (Table 2). 

The considerable loss of mangrove area can be attributed to a range of factors, both natural 
and human activities. Among the natural causes, excessive sedimentation is a key driver, 
often leading to the burial of mangrove aerial roots and subsequent forest degradation. 
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According to Anwar et al. (2021), dieback symptoms were observed along the Tritip coastline 
in East Balikpapan, where the seaward mangrove zones have deteriorated. The sediment 
responsible for this originates from upstream rivers discharging into the coastal zone of 
Balikpapan City. This process predominantly affects mangroves situated on gently sloping 
shores, where sediment can accumulate more easily and impair root function. 

However, compared to natural factors, human activities such as oil spills, waste disposal, and 
land conversion are believed to have a more substantial impact. Balikpapan City is recognized 
as the largest centre of oil extraction in Indonesia, with drilling operations conducted in both 
coastal and offshore areas (Anwar et al., 2021). Moreover, Balikpapan Bay, particularly the 
North Penajam Paser region, is situated close to the site of the Ibu Kota Negara (IKN) 
construction, which began in July 2022. This has led to extensive land conversion, including 
the replacement of mangrove forests with built-up areas. 

 

Figure 3. Change in mangroves from Sentinel-2 satellite imagery: (a) mangroves in 2020 and (b) 
mangroves in 2025. 

Table 2. Changes in Mangrove Area (ha) between 2020 and 2025 for North Penajam Paser Utara and 
Balikpapan. 

City/Regency 
Mangrove Area (Ha) 

∆ (Ha) 
2020 2025 

North Penajam Paser 13,956.95 11,122.46 2,834.49 
Balikpapan 2,169.22 2,097.54 71.68 

Previous research conducted by Afifah et al. (2024) used Sentinel-2 satellite imagery from 
2016 and 2023 in Balikpapan Bay. Afifah et al. (2024) showed different results from this study, 
reporting a consecutive decline in mangrove forest area of 20,192.72 hectares and 16,173.53 
hectares, with a total decline of 4,019.19 hectares. The differing research results regarding 
the decline in mangrove area may be due to the simultaneous timing of the studies, during 
which the construction of the National Capital City (IKN) begun. 

In contrast, previous research on mangrove changes using satellite imagery in another region 
of Indonesia, the Belitung Archipelago, recorded an increase of 49.03 hectares between 2000 
and 2020 (Cipta et al., 2021). This improvement was attributed to mangrove restoration 
efforts through replanting activities carried out in the early 2000s. The restoration success in 
Belitung Archipelago may serve as a reference for future mangrove rehabilitation initiatives 
in Balikpapan Bay.  

(a) (b) 
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4. Conclusions 
This study produced a map of mangrove areas in Balikpapan with a spatial resolution of 10 
meters from Sentinel-2 imagery using machine learning techniques implemented through the 
Google Earth Engine platform. Among the five classification algorithms evaluated, three 
(Random Forest, Support Vector Machine, and CART) demonstrated strong performance in 
mangrove mapping, each achieving overall accuracies of 80% or higher and Kappa 
coefficients above 0.74, indicating a high level of agreement between classificat ion results 
and reference data. Of these, the CART algorithm showed the best performance, with an 
overall accuracy of 84% and a Kappa coefficient of 0.78 and was therefore selected to map 
mangrove forest changes. Using the CART model, the analysis revealed that mangrove areas 
in Balikpapan Bay decreased by 21% (2,906.17 hectares) between 2020 and 2025. 
Approximately 97% (2,834.49 hectares) of this loss occurred in North Penajam Paser, an area 
experiencing a high level of land conversion to built-up areas. 
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