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Abstract

The present work aims at assessing vegetation patterns and of the recovery process over the long term
(2006 to 2025) in the Sundarbans mangroves based on the NDVI and SAVI. Landsat 5 TM and Landsat 8
OLI surface reflectance images were processed in Google Earth Engine to derive seasonal composites for
the dry season (December—February). A supervised classification method was used to delineate five land-
cover classes, namely water bodies, bare soil, sparse, intermediate, and dense vegetation. Accuracy
assessment was carried out by visual interpretation of the sample points by using Google Earth Pro where
overall accuracy was in the 88—93% over the entire study period. In 2006, dense vegetation was the most
dominant (~68%) and sparse and intermediate other categories had low frequency and water bodies
covered 21% of plots. For post-Sidr in 2008, nearly all plants showed more severe damage (76-79%). Post-
Aila (2010) data suggested continuous intermediate (46%) and sparse (25%) vegetation cover but with
negligible closed canopy. During 2015, the dense vegetation recovered to 60%, and dynamic changes
among dense, intermediate, and sparse vegetation areas emerged, and the area of dense vegetation was
up to 67% in 2025 indicating that the long-term restoration exhibits space heterogeneity. NDVI was
effective for monitoring the overall trend of large scale canopy, while SAVI was able to capture very small
scale regeneration and understory growth. The findings show the impressive resilience of the Sundarbans
and the significance of such key ecological processes as canopy recovery and succession, and the need for
more adaptive management to improve mangrove resilience in cyclone-prone coastal areas.

Keywords: Mangrove forest, Cyclone, NDVI, SAVI, Landsat 7 ETM+, Change detection

1. Introduction

Mangrove ecosystems are globally recognized for their ecological significance, particularly in
carbon sequestration (Rahman et al., 2024), shoreline stabilization (Morris et al., 2023;
Chatterjee and Bhandari, 2025), and biodiversity conservation (Rahman et al., 2024). Among
them, the Sundarbans—the prime connecting mangrove forest in the world —spans southerly
Bangladesh and eastern India, forming a crucial barrier counter to tropical cyclones and tidal
surges in the Bay of Bengal (Giri et al., 2011; Rahman et al., 2010). The forest, developed
through the convergence of the Ganges, Brahmaputra, and Meghna rivers, spans
approximately 6,017 km? on the Bangladesh side, with about 4,143 km? of land and 1,874
km? of water bodies (Iftekhar and Saenger, 2008).

Due to its low elevation and geographic location, Bangladesh is highly exposed to climate-
induced usual calamities, as well as cyclones and coastal flooding (Ali, 1999; Dasgupta et al.,
2010; Ashrafuzzaman, 2023; Morshed et al., 2025). Cyclone Sidr, which struck in November
2007, was among the most devastating in recent history, inflicting extensive damage on the
Sundarbans' vegetative cover (Giri et al., 2011). Mangrove forests such as the Sundarbans
play a vital role in mitigating such impacts through their dense root networks and structural
complexity (Alongi, 2008). However, recurrent cyclones, sea-level rise, and anthropogenic
pressures continue to threaten the forest's integrity (Das and Kundu, 2021; Hossain and
Ahsan 2019).
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Monitoring changes in forest structure and health is essential for sustainable management,
particularly in post-disaster scenarios (Chen, 2023). Remote Sensing (RS) and Geographic
Information System (GIS) knowledges provide cost-effective, large-scale tools for temporal
analysis of vegetation change (Jensen, 2007). Among vegetation indices, the Normalized
Difference Vegetation Index (NDVI) stands extensively practiced to detect variations in
canopy greenness and density (Tucker, 1979). The Soil-Adjusted Vegetation Index (SAVI)
enhances interpretation in areas with sparse vegetation or exposed soil by minimizing the
effect of soil intensity on flora measurements (Huete, 1988).

This work primarily aims to evaluate the three-dimensional and time-based changing aspects
of mangrove vegetation in the Sundarbans following Cyclones Sidr and Aila, using NDVI and
SAVI indices. It focuses on evaluating vegetation loss, regeneration, and resilience across
various vegetation classes over a period of nearly 20 years.

Although immediate cyclone impacts on mangroves are well-documented, long-term
recovery assessments using multi-temporal satellite data remain limited. Landsat-derived
NDVI and SAVI are effective for tracking changes but are underused in extended post-cyclone
studies and local conservation planning. Additionally, the influence of human activities on
mangrove regeneration is not sufficiently explored, leaving gaps in understanding ecosystem
recovery.

2. Materials and Methods

2.1. Study Area

The Sundarbans mangrove forest, located among 21230'N and 22230'N latitude and 89200'E
to 89955'E longitude, extent portions of Khulna, Satkhira, and Bagerhat regions in
southwestern Bangladesh (Iftekhar and Saenger, 2008) (Figure 1). The Sundarbans mangrove
forest in Bangladesh spans approximately 6,017 km?, comprising about 4,143 km? of land and
1,874 km? of water bodies. This area accounts for approximately 44% of the country's total
forest coverage and about 4.2% of its total land area (Ortolano et al., 2017). The elevation
ranges from 0.9 to 2.1 meters upper mid sea level, making the region highly sensitive to
cyclonic storm surges and sea-level rise (Giri et al., 2007).

2.2.Satellite Data and Pre-processing

Landsat satellite image, from TM (Landsat 5) and OLI (Landsat 8), was employed to investigate
the vegetation dynamics in the Sundarbans during 5 seasonal periods: pre-cyclone (Jan 2006—
Feb 2006), post-cyclone (Sidr: Dec 2007—Feb 2008; Aila: Dec 2009—Feb 2010), and recovery
periods of 5 years (Dec 2014—Feb 2015) and recent recovery (Dec 2024—Feb 2025) (Table 1).

Table 1. Landsat imagery composites used for different cyclone periods (Dec 2005-Feb 2025)

. Composite Images Scene cloud cover
Period Sensor
Images Dates (%)
Pre-cvclone Landsat 5 1 Dec 2005 to Feb 30%
y ™ 2006
Post-cyclone Landsat 5 2 Dec 2007 to Feb 30%
(Sird, 2007) ™ 2008
Post-cyclone Landsat 5 3 Dec 2009 to Feb 30%
(Aila, 2009) ™ 2010
Recovery period (after 5 Landsat 8 4 Dec 2014 to Feb 10%
years) oLl 2015
Recovery period (recent) Landsat 8 5 Dec 2024 to Feb 10%
yp oLl 2025
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Figure 1. Study area map depicting the Sundarbans region.

Landsat 5 TM was used to represent the early post-cyclone periods as it has a long history
with moderate spatial resolution of 30 m, which allows the analysis of vegetation conditions
prior and immediately after the cyclone. Landsat 8 OLI was adopted for the last period since
it offers improved radiometric sensitivity, new spectral bands and increased signal—noise
ratio which is essential to monitoring of vegetation. Landsat satellite images from Landsat 5
TM and Landsat 8 OLI were employed to display the changes of vegetation in the Sundarbans
for 05 seasons; pre-cyclone (Jan 2006 —Feb 2006), post-cyclone (Sidr: Dec 2007—Feb 2008;
Aila: Dec 2009—-Feb 2010), recovery period after 5 years (Dec 2014—Feb 2015), and the most
recent recovery (Dec 2024—Feb 2025) (Table 1). Landsat 5 TM was chosen for the earlier years
as it offers a long temporal history with moderate spatial resolution (30 m) to investigate pre-
as well as immediate post-cyclone vegetation conditions. Who will use the data? The latter
part of the period was based on Landsat 8 OLI, which increased in radiometric sensitivity, has
extra bands, and a better signal-to-noise ratio which improves vegetation-monitoring
precision. All images were downloaded from Google Earth Engine (GEE) as cloud-free (=30%
of cloud cover) and scene stable images. Several overlaying scenes were analyzed per period
in order to densely cover the study area. Since the Landsat Surface Reflectance products
available in GEE are already radiometric and geometrically corrected, no other correction or
co-registration was needed. Composite images were created for each period in order to
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compute NDVI, SAVI and map the vegetation patterns. The datasets we used have long term
and sufficient spatial coverage, and can be accessed publicly on the GEE. Nevertheless, some

limitations are also present such as moderate spatial resolution, which cannot represent
extremely small-scale vegetation differences. There are also some sensor differences
between Landsat 5 TM and Landsat 8 OLI that may produce small discrepancies in time-series
analysis, which we did our best to minimize during processing.

2.3. NDVI and SAVI Computation

Normalized Difference Vegetation Index (NDVI) was determined using the conventional
formula (Tucker, 1979):

(NIR — Red)

NDVI = (NIR + Red)

(Tucker, 1979) ............... n

Where, NIR= reflectance in the band of the near-infrared; RED= reflectance in the red
(Visible).

ArcGIS 10.5 software program has been utilized to compute the NDVI values of the images.
For Landsat 7 ETM+, Band 4 (NIR) and Band 3 (Red) were employed, while Band 4 (Red) and
Band 5 (NIR) were used for Landsat 8 and 9. NDVI values were reclassified into five vegetation
classes: dense, intermediate, sparse vegetation, bare soil, and water bodies.

SAVI was calculated to minimize soil brightness effects using the formula (Huete, 1988):

(NIR — Red)

SAVI = (NIR + Red+L)

Where, L is a canopy background adjustment factor set to 0.5 for intermediate vegetation
density.

The L-factor should be applied according to the density of the vegetation being observed. In
situations where the vegetation cover is dense, an appropriate L-factor is 0.25; for
intermediate density, 0.5 should be used, while for very low density, an L-factor of 1.0 is
recommended (Huete, 1988; Baret and Guyot, 1991).

2.4. Analysis for Change Detection

The detection of post-classification changes was carried out by comparing NDVI-derived maps from
2006, 2008, 2010, 2015 and 2025. Pixel-wise transitions between vegetation classes were analyzed
to detect trends in deforestation, regeneration, and land transformation. ArcGIS 10.5 was used for
raster reclassification, area computation, and change matrix generation.

2.5. Area Estimation

Area calculations were performed using the formula:

(Pixel Countx30x30)

Area (sz) = (1000000)

(USGS, 2019) ...eee.... ()

This provided vegetation class coverage in square kilometers for each time period.

2.6. Accuracy Assessment

Accuracy of classification was assessed with confusion matrices for 100 random control points per
image year through visual interpretation and Google Earth Pro imagery. User’s accuracy (the
likelihood of a pixel that is reported as a member of a class to actually be a member of that class on
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the ground) and producer’s accuracy (the likelihood of a reference pixel to be correctly classified)
were computed on the reference control points. Here also computed the Kappa coefficient and
overall accuracy as a quantitative indicator for the degree of agreement by chance.

The provision of class-specific accuracy estimates with this method enables a precision assessment
of the classification performance and, thus, allows us to increase confidence in later analyses of
vegetation change, recovery patterns, and ecosystem resilience across the Sundarbans.

3. Results

3.1. Assessment of Spatio-Temporal Changes in Mangrove Vegetation after Cyclones Sidr and
Aila using NDVI and SAVI

Mangrove forests in cyclone-prone areas like the Sundarbans are vulnerable to storm impacts.
Cyclones Sidr and Aila caused widespread vegetation loss, highlighting the need for long-term
monitoring. This study uses NDVI and SAVI to assess spatial and temporal changes in mangrove
vegetation following these events.

3.1.1.  Vegetation Classification and Coverage

Mangrove flora of Sundarbans was categorised as dense, moderate and sparse based on tree height
and structural attributes which shown in Table 2. The forest is over 65 ft tall mainly comprising the
trees Heritiera fomes, Sonneratia apetala, Bruguiera gymnorhiza, B. sexangula and Xylocarpus
moluccensis and constitutes mature closed canopied forests in all of the zones and areas. Mangroves
of intermediate height (40-65 ft) such as S. caseolaris, Rhizophora apiculata, R. mucronata, Avicennia
officinalis and Xylocarpus granatum are indicative of the soft forest community and occupy the
intertidal forest land in mesohaline, polyhaline, and oligohaline zones. Thin mangrove (10-40 ft) with
Phoenix paludosa, Ceriops decandra, Excoecaria agallocha, Nypa fruticans, and Acanthus ilicifolius,
commonly found in marginal and disturbed sites. This categorisation illustrates the spatial and
structural diversity of the Sundarbans mangrove ecosystem in relation to salinity gradients and
forest tracts.

Table 2. Vegetation cover classes definition

Category Characterization Example species Local name Distribution
(Height) (Scientific name) (Bangla) Zones*
Dense >65ft Heritiera fomes Sundari Az, Ar
Vegetation Sonneratia apetala Kewra Az; Ar
Bruguiera gymnorhiza kakra Mz; Pz; Kh
B. sexangula Lalkakra Mz; Pz; Ch
Xylocarpus moluccensis  Poshur etc. Az; Ar
Intermediate 40-65ft S. caseolaris Choila/ora Mz; Sr, Ch
vegetation Rhizophora apiculata Bhorjhana Mz; Pz; Kh
R. mucronata Lam. Jhana Mz; Pz; Kh
A. officinalis Baen Az; Ar
X. granatum Dhundal etc Mz, Kh, St
Sparse 10-40ft Phoenix paludosa Hental Az; Ar
Vegetation Ceriops decandra Goran Az; Ar
Excoecaria agallocha L.  Gewa Az; Ar
Nypa fruticans Golpata Az; Ar
Acanthus ilicifolius Hargoza etc  Az; Ar

*Distribution codes: Ar = all range, Az = all zones, Mz = mesohaline zone, Oz = oligohaline zone, and Pz =
polyhaline zone; Ch = Chandpai Range, Kh = Khulna Range, Sr = Sarankhola Range, and St = Satkhira Range.

3.1.2. Spatio-Temporal Variation Analysis of Sundarbans Forest (2006—-2025)

The NDVI and SAVI classifications provide separate statuses of disturbance and recovery in the
Sundarbans, as shown in Table 3.

Pre-Sidr (2006): The dense vegetation was prevalent (~68%) and the bare soil and sparsely vegetated
were fewer than 7%. It is indicative of a well-preserved and physical mangrove cover.
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Table 3. Sundarbans Forest statistics table (km? and percentage) for the years 2006, 2008, 2010, 2015 and 2025 based on

NDVI and SAVI
2006 (Pre Sidr) 2008 (Post Sidr) 2010 (Post Aila) 2015 (after 5 yrs.) 2025 (Recent)
NDVI SAVI NDVI 2:/; ’:Pe\;l SAVI NDVI SAVI NDVI SAVI
Features area % area % area % Sak % Sak % area % area % area % area % area %
Sq.km Sg.km Sg.km 2‘ 21 Sg.km Sq.km Sq.km Sq.km Sq.km
Water 2
. 1236 21 1230 21 1440 24 1439 24 1413 23 1413 23 1453 2 1454 24 1451 24 1465 24
bodies
Bare soil 287 5 432 7 1637 27 1924 32 219 4 1581 26 123 2 246 4 129 2 243 4
Sparse
. 116 2 3982 66 265 4 2631 44 1510 25 3020 50 106 2 4052 67 91 2 3140 52
Vegetation
Intermediate 1
R 273 2 355 6 1246 21 6 0 2795 46 1 0 730 263 4 326 5 1168 19
vegetation 2
Dense 6
. 4088 68 1 0 1413 24 0 0 87 1 0 0 3611 0 0 4002 67 0 0
vegetation 0

Post-Sidr (2008): The loss of dense vegetation is clearly visible—it nearly vanished in SAVI (0%).
Sparse vegetation increased by about 66% in SAVI, and bare soil increased by >27 to 32%, indicating
high degree of canopy loss and bare soil. Water bodies were slightly expanded as well (flooding).

Post-Aila (2010): The forest is in conditional re-establishment, the intermediate vegetation grows
(21% NDVI), and the denser vegetation begins to appear (24% NDVI). Sparse vegetation decreased
dramatically from 66% to ~4%, indicating that canopy closure occurred gradually. SAVI, however,
continued to underestimate vegetated areas.

Five years after (2015): A mixed stage: NDVI records a high gain in thick vegetation (60%), but SAVI
still indicates an abundance of low cover (67%), indicating a spectral mix of mangrove regeneration
and understory growth. Bare soil had reduced considerably compared to 2008 suggesting the
recovery of ground cover.

Recent period (2025): Vegetation growth has regenerated again (greening trend 67% NDVI), in
strong contrast to the cyclone years. Sparse vegetation continues to remain generally low (2—-4%)
and bare soil stabilizes at low levels (2—-4%). Water bodies remain consistent (~24%). It points toward
the sustained resistance in the Sundarbans over time, although SAVI undercounts dense canopy
relative to NDVI.

3.2. Evaluate Vegetation Loss, Regeneration and Resilience Across Different Vegetation Classes

The land cover analysis between 2006 and 2025 using the NDVI which shown in Figure 2 indicates a
definite cycle of disturbance and recovery for vegetation dynamics. Water areas were relatively
stable during the entire period, and there was only small variation in the range of 21-24%, showing
no hydrological changes. In contrast, bare soil increased steeply in 2008 (27%) following the Cyclone
Sidr, but subsequently decreased to 2% by 2025, due to the natural recovery processes. Sparse
vegetation saw a comparable increase to 25% in 2008 prior to declining to 2% by 2025, likely due to
the aging of vegetation. Intermediate vegetation increased greatly in 2010 and reached a maximum
in 2015 (46%) indicating transitional growth stages, and then decreased to 12.5% in 2025 as many
reached denser vegetation classes.

This journal article is © Rahman et al. 2025
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(c) NDVI of Sundarbans_Post Aila_2010
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Figure 2. NDVI map of Sundarbans (a) Pre Sidr: 2006, (b) Post Sidr: 2008, (c) Post Aila: 2010, (d)

Recovered: 2015 and (e) Recent: 2025.

Thick understory, the second-largest type in 2006 (68%) was lost in the following layer in 2008 (24%),
and was represented by just 1% in 2010, mainly as a result of cyclones. But it recovered well over
the intervening years, increasing to 60% in 2015 and leveling off at 67% in 2025 (Figure 3), almost
clawing back to where it began. Altogether, these findings emphasize the severe short-term loss of
vegetation after cyclones and the remarkable long-term resilience and recovery potential of the

system.
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Figure 3. Features Change of Sundarbans from 2006 to 2025 for NDVI.
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Consider, for example, a simple trajectory when if you look at your new SAVI-based classification in
2006 and that becomes the basis to predict rainfall in 2025 which shown in Figure 4. The landscape
in 2006 was fairly wasteland from water bodies (21%), bare soil (7%), sparse vegetation (66%) to
intermediate vegetation (6%) with not indicative of dense vegetation. In 2008 bare soil had risen
significantly to 32% and sparse vegetation had decreased to 44% indicating vegetation loss and soil
exposure possibly due to the cyclone. In 2010, sparse vegetation partly recovered to 50% with bare
soil decreasing to 26%, representing primary recovery. A marked recovery of the site was found in
2015; sparse vegetation reached the maximum for the whole period (67%), while intermediate
vegetation nearly disappeared (0%).
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(b) SAVI of Sundarbans_Post Sidr_2008
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(d) SAVI of Sundarbans_Recovered_2015
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Figure 4. SAVI map of Sundarbans (a) Pre Sidr: 2006, (b) Post Sidr: 2008, (c) Post Aila: 2010, (d)
Recovered: 2015 and (e) Recent: 2025.
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Finally, vegetation cover did not significantly reduce to 52% in 2025, but still prevailed as sparse,
while intermediate vegetation returned to 19%, which indicated that the ecosystem stabilized
(Figure 5). There was no consistent presence of dense vegetation throughout the period indicating
no clear pattern of full canopy recovery. In effect, the SAVI signal denoting of repeated vegetation
stress after cyclone disturbances, partial recovery, but a trajectory not back to large dominance but
rather intermediate and sparse vegetation cover.

Features Changes for the SAVI from 2006 to 2025
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Figure 5. Features Change of Sundarbans from 2006 to 2025 for SAVI.

3.3. Accuracy Assessment Results

The classification accuracy of mangrove land cover was assessed for random years of reference
(2006, 2008, 2010, 2014 and 2025) by confusion matrices, generating user’s (UA), producer’s (PA),
overall (OA) accuracy and Kappa statistics.

Table 4, 5, 6,7 and 8: Represent the accuracy assessment for the years 2006, 2008, 2010, 2015 and
2025 respectively

Table 4 (2006):

Water Bare Sparse Intermediate Dense Total User Kappa
Class name . . . . . .
bodies soil vegetation vegetation vegetation accuracy coefficient
Water
bodies 23 1 0 0 0 24 96% 0%
Bare soil 0 7 0 0 0 7 100% 0%
Sparse
vegetation 0 3 1 0 0 4 25% 0%
Intermediate
vegetation 1 3 0 1 0 5 20% 0%
Dense
vegetation 0 1 0 0 59 60 98% 0%
Total 24 15 1 1 59 100 0% 0%
Producer
accuracy 96% 47% 100% 100% 100% 0% 91% 0%
Kappa
coefficient 0% 0% 0% 0% 0% 0% 0% 84%
Overall
accuracy 91%

In 2006, the overall accuracy of classification of 95% was achieved with a particularly high user’s
accuracy for dense vegetation (0.96) and water bodies (0.96). Bare soil also exhibited moderate
producer’s accuracy (0.54) which indicated that there were errors of commission between bare
soil and sparsely-vegetated land cover which described in Table 4.
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Table 5 (2008):

Water Bare Sparse Intermediate Dense Total User Kappa
Class name . . . . . .
bodies soil vegetation  vegetation  vegetation accuracy coefficient
Water
bodies 31 2 0 0 0 33 94% 0%
Bare soil 0 23 0 0 1 24 96% 0%
Sparse
vegetation 0 0 4 0 0 4 100% 0%
Intermediate
vegetation 1 1 0 12 4 18 67% 0%
Dense
vegetation 0 0 0 1 20 21 95% 0%
Total 32 26 4 13 25 100 0% 0%
Producer
accuracy (%) 97% 88% 100% 92% 80% 0% 90% 0%
Kappa
coefficient 0% 0% 0% 0% 0% 0% 0% 87%
Overall 90%
accuracy

The overall accuracy for 2008, which was the lowest among the study years, was 90% and was
attributed to vegetation destruction by cyclones and other vegetation thematic related issues and
spectral confusion in the imagery. The user’s accuracies of water (0.91) and dense vegetation (0.89)
were still high, but intermediate vegetation was relatively poorly classified with a user’s accuracy
of 0.67 which stated in Table 5. This shows more ambiguity between the classes intermediate and
sparse vegetation during that time.

Table 6 (2010):

Water Bare Sparse Intermediate Dense User Kappa
Class name . . . . . ota -
bodies soil vegetation vegetation vegetation accuracy coefficient
Water bodies 33 0 0 0 0 33 100% 0%
Bare soil 0 0 0 0 0 0 0% 0%
Sparse 0 0 26 1 0 27 96% 0%
vegetation
Intermediate 0 1 2 34 1 38 89% 0%
vegetation
Dense 0 0 0 0 2 2 100% 0%
vegetation
Total 33 1 28 35 3 100 0% 0%
Producer 100% 0% 93% 97% 67% 0% 95% 0%
accuracy (%)
Kappa 0% 0% 0% 0% 0% 0% 0% 93%
coefficient
Overall 95%
accuracy

By 2010, assessment reliability had increased significantly, to 95% accuracy overall. The
classification of dense vegetation was almost 100%, with a user accuracy of 0.98, whereas sparse
vegetation was also well classified (UA = 0.93). Misclassifications were mostly between
intermediate vegetation and dense vegetation, resulting in a slightly lower producer’s accuracy for
intermediate cover (0.74) which analysed in Table 6.

Table 7 (2015):

Water Bare Sparse Intermediate Dense User Kappa
Class name . . . . . ota L

bodies soil vegetation  vegetation  vegetation accuracy Coefficient
Water bodies 17 0 0 0 0 17 100% 0%
Bare soil 0 5 0 0 0 5 100% 0%
Sparse 0 0 2 0 0 2 100% 0%
vegetation
Intermediate 1 1 0 13 2 17 76% 0%
vegetation
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Water Bare Sparse Intermediate Dense User Kappa

Class name Total

bodies soil vegetation  vegetation  vegetation accuracy Coefficient
Dense 0 0 0 0 59 59 100% 0%
vegetation
Total 18 6 2 13 61 100 0% 0%
Producer 94% 83% 100% 100% 97% 0% 96% 0%
accuracy (%)
Kappa 0% 0% 0% 0% 0% 0% 0% 93%
coefficient
Overall 96%
accuracy

In 2015, accuracy was further improved to 96% overall accuracy and very high user’s accuracy for
dense vegetation (0.97) and water (0.94) which demonstrated in Table 7. Intermediate vegetation
continued to exhibit some confusion, however with relatively low error.

Table 8 (2025):

Water Bare Sparse Intermediate Dense User Kappa
Class name . . ) . . ota L
bodies soil vegetation  vegetation  vegetation accuracy coefficient
Water
bodies 16 0 0 0 0 16 100% 0%
Bare soil 0 3 0 0 1 4 75% 0%
Sparse
vegetation 0 2 1 0 0 3 33% 0%
Intermediate
vegetation 0 0 0 5 1 6 83% 0%
Dense
vegetation 0 0 0 0 71 71 100% 0%
Total 16 5 1 5 73 100 0% 0%
Producer
accuracy (%) 100% 60% 100% 100% 97% 0% 96% 0%
Kappa
coefficient 0% 0% 0% 0% 0% 0% 0% 91%
Overall 96%
accuracy

Lastly, in 2025, the classification was achieved an overall accuracy of 96%, demonstrating the
capability of performing well with the new Landsat-9 data and improved spectral separability
of vegetation types (Sim et al., 2024; Cheng et al., 2021; Farhadpour et al., 2024). Thick
vegetation had a high producer’s (0.93) and user’s accuracy (0.97), so it is likely not confused
with other classes which established in Table 8.

4. Discussion
4.1. Discussion on Spatio- Temporal Dynamics of Vegetation of Sundarbans (2006—-2025)

The trends in NDVI and SAVI from 2006 to 2025 show a clear cycle of disturbances and recovery of
the Sundarbans mangroves, and demonstrate their sensitivity to cyclones and adaptive ability,
respectively. In 2006, dense vegetation accounted 68% of the land cover, and both sparse and
intermediate vegetation barely occurred, demonstrating a mature and vigorous mangrove canopy.
The water bodies kept almost constant with the average proportion around 21%, showing no
profound hydrological change before the major cyclones. The effect of Cyclone Sidr (2008) is also
demonstrated as very dense vegetation almost vanished, sparse increased to 66%, and bare soil
increased, revealing the immediate devastating effect of storm surges, wind and salinity inundation.
These findings are in line with those of Alongi (2008) and Sarker et al. (2019), who described fast
canopy decay and soil reexposure after major cyclones in tropical mangrove habitats. In 2010 (post-
Aila), dense vegetation remained to be negligible, but the intermediate and sparse vegetation types
dominated the study area, implicating lag regeneration with increasing of cumulative cyclone
impacts, as also observed by Das and Vincent (2009). In 2015, dense vegetation had recovered to
60%, intermediate vegetation had been firmly fixed at 12-19%, and bare soil was substantially
reduced. This recovery is consistent with findings by Giri et al. (2011) and Rahman et al. (2016), in
which natural progression, accretion of tidal sediments, and species-specific growth rates determine
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how mangroves recover on a multi-annual time scale. By 2025, dense increased further to 67%, close
to the level before disturbance, but sparse and intermediate were rather homogeneously distributed
again reflecting patchy regeneration across the forest and corroborating patterns reported by
Chowdhury et al. (2019).

The spatio-temporal patterns as detected by NDVI and SAVI indicate significant biogeophysical
consequences. The vegetation decline followed by vegetation recovery alternatively provides insight
to the influence of cyclones, salinity stress, and sediment dynamics to the forest structure, carbon
sequestration, and habitat quality. Loss of dense canopy leads to soil exposure and changes in micro-
climate, but also regeneration enhances system resilience and coastal protection. Together, these
results suggest that while the Sundarbans mangroves are extremely resilient, a series of repeated
cyclonic disturbances may lead to long-term shifts to vegetation composition. Taken together, these
findings underscore the need to strengthen mangrove resilience complements through better
adaptive management, restoration, and monitoring over the long term. Continuing these mitigation
efforts are vital to maintain ecosystem services, preserve biodiversity, and protect the livelihoods of
vulnerable coastal communities, faced with more frequent cyclone occurrence and climate
variability.

4.2. Loss, Recovery and Resilience Dynamics of Vegetation (2006—2025)

Analysis with both NDVI and SAVI gives a more robust representation of vegetation dynamic and
recovery pattern within the Sundarbans in the period of 2006—2025. NDVI is an appropriate model
for quantification of dense canopy cover and vegetation greenness and can be used to monitor large-
scale post-cyclonic disturbance recovery. For instance, the marked decline of dense vegetation by
Cyclone Sidr (2008) and Aila (2010) and its natural recovery back to 60—67% post 2025 indicate
canopy recovery and the recovery of mature mangrove species, indicative of a process identified for
post-cyclone mangrove recovery (Alongi, 2008; Giri et al., 2011).

SAVI is similar to NDVI but it has a better sensitivity to sparse and intermediate vegetation because
of its reduction of the soil reflectance effects. This permits the detection of early regeneration,
under-story growth, and spatially variable recovery, which NDVI alone may underestimate. For
example, SAVI showcases the change from bare soil to light vegetation between 2008 and 2015,
showing patchy regeneration and uneven recovery across the landscape. These spatial gradients
correspond to ecological processes linked to local sediment depositions, salinity gradients, tidal
inudation and species-specific growth form. A comparison of the two indexes demonstrates their
limitations and complementarities. Violet can saturate in very dense areas of vegetation, might
under-estimate small differences in biomass. SAVI may also underestimate the dense canopy at high
biomass due to decreased sensitivity at high biomass. Yet they have nuanced value when combined;
while NDVI measures overall canopy recovery at the landscape scale, SAVI is sensitive to
heterogeneity, deliver transitional growth, and early successional phases. The integration of both
approaches supports enhanced interpretation of both temporal and spatial dynamics of the
vegetation, including the trajectories of recovery, rate of regrowth, and the development of a mixed
age structure of vegetation classes throughout the entire Sundarbans.

In general, the joint influence of NDVI and SAVI shows that the recovery of dense vegetation is slow
and lags behind a major cyclone, whereas sparse and intermediate vegetation recovers more quickly,
reflecting both vulnerability and resilience of the ecosystem. These results highlight the necessity of
using multiple indicators for the long-term ecological monitoring of mangrove recovery to capture
the complexity of mangrove regeneration and to support effective conservation and adaptive
management in cyclone-prone coastal areas.

4.3. Precision and Strength of Methods

Furthermore, accuracy of the classification was very high, with overall accuracies ranging between
90-96% and Kappa values of 0.88-0.95, which are above the 85% threshold recommended for land
cover studies. Dense plants greater than (0.95), indicating good mapping for intact mangroves. This
reduced accuracy in 2008 was attributed to cyclone-induced spectral mixing of sparse and
intermediate vegetation, although the technique achieved an overall strong 90% accuracy, indicating
reliability. Since 2010, accuracy has likewise stabilized at >94%, making Landsat's vegetation indices
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a strong choice for this kind of use. Overall, results show high accuracies and methodological
soundness, justifying the reliability of the following estimates of biomass and carbon.

5. Conclusions and Recommendations

5.1. Conclusion

The multi-temporal (2006—2025) analysis of the Sundarbans indicate vulnerability and resilience of
this deltaic mangrove ecosystem to multiple cyclone hits. Dense vegetation cover decreased
dramatically during major events (e.g., from 68% in 2006 to ~0% post-Sidr) and sparse vegetation
and bare soil increased substantially, demonstrating the immediate footprint of extreme weather.
Recovery was also observed in the subsequent decades, with dense cover reaching a plateau of 67%
by 2025, representing a major but not fully achieved structural recovery. These dynamics were well
captured by the NDVI and SAVI indices and the performance of classification (global accuracy 82.7—
91%, Kappa up 0.84), substantiates the usefulness of these approaches for long term monitoring of
vegetation.

The outcomes have significant practical implications for mangrove management and coastal disaster
risk reduction. Planned rehabilitation of degraded sites, monitoring through remote sensing
techniques, and adaptive management measures, such as soil stabilization methods, maintenance
of hydrology, and the protection of areas that are regenerating, are potential measures to improve
the resilience of ecosystems. In addition, incorporating such lessons into ecosystem-based
adaptation policies will help promote biodiversity conservation, carbon stock recovery, and the
enhancement of coastal community resilience to cyclones and climate change-induced disasters.
This work thus presents a science-informed structure that can guide future conservation planning
and evidence-based decision making in the Sundarbans.

5.2. Recommendations

To make ecosystem resilience of the Sundarbans, there is a need to restore the sparse and
intermediate vegetative zones by promoting native species to facilitate early recovery of
canopy. Regular monitoring of NDVI and SAVI indices can monitor the regeneration process,
detect stressed areas and trigger timely management interventions. Conservation programs
should be supplemented by adaptive management options such as a soil stabilization and
sediment management. Moreover, the inclusion of carbon storage and community-based
protection actions can maintain ecosystem services and increase resistance to future
cyclones.

Conflicts of Interest

There are no conflicts to declare.

References

Ali, A. (1999). Climate change impacts and adaptation assessment in Bangladesh. Climate Research,
12(2-3), 109-116. https://doi.org/10.3354/cr012109

Alongi, D. M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to
global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1-13.
https://doi.org/10.1016/j.ecss.2007.08.024

Ashrafuzzaman, M. (2023). Local Context of Climate Change Adaptation in the South-Western
Coastal Region of Bangladesh. Sustainability, 15(8), 6664. https://doi.org/10.3390/su15086664

Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAl and APAR assessment.
Remote Sensing of Environment, 35(2-3), 161-173. https://doi.org/10.1016/0034-
4257(91)90009-U

Chatterjee, S., & Bhandari, G. (2025). Quantification of shoreline retreat and impact on native
mangrove species: Insights from Bay facing Dhanchi Island over Central Indian Sundarbans.
Regional Studies in Marine Science, 89, 104398. https://doi.org/10.1016/j.rsma.2025.104398

This journal article is © Rahman et al. 2025 J. llmu dan Teknologi Kelautan Tropis, 17(2) | 499


https://doi.org/10.3354/cr012109
https://doi.org/10.1016/j.ecss.2007.08.024
https://doi.org/10.3390/su15086664
https://doi.org/10.1016/0034-4257(91)90009-U
https://doi.org/10.1016/0034-4257(91)90009-U
https://doi.org/10.1016/j.rsma.2025.104398

Chen, X. (2023). An exploration of forest fires and post-disaster recovery. Frontiers in Forests and
Global Change, 6, Article 1223934, https://doi.org/10.3389/ffgc.2023.1223934

Cheng, K. S., Chiu, C. H.,, & Wu, C. Y. (2021). Quantifying uncertainty in land-use/land-cover
classification. Frontiers in Environmental Science, 9, 667028.
https://doi.org/10.3389/fenvs.2021.667028

Chowdhury, M. S. H., Wahab, M. A., & Ahmed, R. (2019). Community-based mangrove management
in Bangladesh: Implications for conservation and livelihoods. Ocean & Coastal Management, 171,
188-197. https://doi.org/10.1016/j.ocecoaman.2019.01.012

Das, S., & Kundu, A. (2021). Assessment and attribution of mangrove forest changes in the Indian
Sundarbans from 2000 to 2020. Remote Sensing, 13(24), 4957.
https://doi.org/10.3390/rs13244957

Das, S., & Vincent, J. R. (2009). Mangroves protected villages and reduced the death toll during the
Indian Super Cyclone. Proceedings of the National Academy of Sciences, 106(18), 7357-7360.
https://doi.org/10.1073/pnas.0810440106

Dasgupta, S., Laplante, B., Murray, S., & Wheeler, D. (2010). Exposure of developing countries to sea-
level rise and storm surges. Climatic Change, 106(4), 567—-579. https://doi.org/10.1007/s10584-
010-9959-6

Farhadpour, S., Aryal, J., Dutta, R., & Shah, S. (2024). Selecting and interpreting multiclass loss and
accuracy metrics. Remote Sensing, 16(4), 621. https://doi.org/10.3390/rs16040621

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., & Duke, N. (2011). Status and
distribution of mangrove forests of the world using earth observation satellite data. Global
Ecology and Biogeography, 20(1), 154—159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

Giri, C., Zhu, Z., Tieszen, L. L., Singh, A., Gillette, S., & Kelmelis, J. A. (2007). Mangrove forest
distributions and dynamics (1975-2005) of the tsunami-affected region of Asia. Journal of
Biogeography, 35(3), 519-528. https://doi.org/10.1111/j.1365-2699.2007.01806.x

Hossain, M. S., & Ahsan, M. A. (2019). Impacts of climate change on the Sundarbans mangrove
ecosystem: Challenges and future conservation strategies. Environmental Science and Pollution
Research, 26(31), 31440-31457. https://doi.org/10.1007/s11356-019-06181-x

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3),
295-309. https://doi.org/10.1016/0034-4257(88)90106-X

Iftekhar, M. S., & Saenger, P. (2008). Vegetation dynamics in the Bangladesh Sundarbans mangroves:
A review of forest inventories. Wetlands Ecology and Management, 16(4), 291-312.
https://doi.org/10.1007/s11273-007-9063-5

Jensen, J. R. (2007). Remote sensing of the environment: An Earth resource perspective (2nd ed.).
Pearson Prentice Hall.

Morris, R. L., Fest, B., Stokes, D., Jenkins, C., & Swearer, S. E. (2023). The coastal protection and blue
carbon benefits of hybrid mangrove living shorelines. Journal of Environmental Management,
331, 117310. https://doi.org/10.1016/j.jenvman.2023.117310

Morshed, G., Tortajada, C., & Hossain, M. S. (2025). The state of climate change adaptation research
in Bangladesh: A systematic literature review. Mitigation and Adaptation Strategies for Global
Change, 30, 31. https://doi.org/10.1007/s11027-025-10219-8

Ortolano, L., Rahman, M., Sinha, A., & Hossain, M. (2017). Bangladesh Sundarbans: Present status of
the environment and biota. ResearchGate.
https://www.researchgate.net/publication/281889734 Bangladesh Sundarbans Present Stat
us_of the Environment and Biota

Rahman, A. C., Tuahatu, J. W, Lokollo, F. F., Supusepa, J., Hulopi, M., Permatahati, Y. I., Lewerissa, Y.
A., & Wardiatno, Y. (2024). Mangrove ecosystems in Southeast Asia region: Mangrove extent,
blue carbon potential and CO, emissions in 1996—2020. Science of The Total Environment, 915,
170052. https://doi.org/10.1016/j.scitotenv.2024.170052

Rahman, M. A,, Islam, K. R., & Rahman, M. M. (2016). Effects of species composition on soil carbon
storage and nutrient dynamics in mangrove ecosystems of the Sundarbans, Bangladesh. Forest
Ecology and Management, 368, 1-10. https://doi.org/10.1016/j.foreco.2016.03.005

This journal article is © Rahman et al. 2025 J. llmu dan Teknologi Kelautan Tropis, 17(2) | 500


https://doi.org/10.3389/ffgc.2023.1223934
https://doi.org/10.3389/fenvs.2021.667028
https://doi.org/10.1016/j.ocecoaman.2019.01.012
https://doi.org/10.3390/rs13244957
https://doi.org/10.1073/pnas.0810440106
https://doi.org/10.1007/s10584-010-9959-6
https://doi.org/10.1007/s10584-010-9959-6
https://doi.org/10.3390/rs16040621
https://doi.org/10.1111/j.1466-8238.2010.00584.x
https://doi.org/10.1111/j.1365-2699.2007.01806.x
https://doi.org/10.1007/s11356-019-06181-x
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1007/s11273-007-9063-5
https://doi.org/10.1016/j.jenvman.2023.117310
https://doi.org/10.1007/s11027-025-10219-8
https://www.researchgate.net/publication/281889734_Bangladesh_Sundarbans_Present_Status_of_the_Environment_and_Biota
https://www.researchgate.net/publication/281889734_Bangladesh_Sundarbans_Present_Status_of_the_Environment_and_Biota
https://doi.org/10.1016/j.scitotenv.2024.170052
https://doi.org/10.1016/j.foreco.2016.03.005

Rahman, M. M., Asaduzzaman, M., & Islam, M. S. (2010). Ecosystem-based adaptation to climate
change: A case study of the Sundarbans mangrove forest, Bangladesh. Environment and Natural
Resources Research, 1(1), 1-10. https://doi.org/10.5539/enrr.vinipl

Sarker, S. K., Reeve, R., Thompson, J., Paul, N. K., & Matthiopoulos, J. (2019). Are we failing to protect
threatened mangroves in the Sundarbans world heritage ecosystem? Scientific Reports, 9(1), 1—
10. https://doi.org/10.1038/s41598-019-44930-2

Sim, W. D., Lee, J. S., & Park, J. H. (2024). Assessing land cover classification accuracy: Variations in
the deep learning context. Remote Sensing, 16(5), 842. https://doi.org/10.3390/rs16050842
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation.

Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0

U.S. Geological Survey. (2019). Using the USGS Landsat surface reflectance data products. U.S.
Department of the Interior. https://www.usgs.gov/

This journal article is © Rahman et al. 2025 J. llmu dan Teknologi Kelautan Tropis, 17(2) | 501


https://doi.org/10.5539/enrr.v1n1p1
https://doi.org/10.1038/s41598-019-44930-2
https://doi.org/10.3390/rs16050842
https://doi.org/10.1016/0034-4257(79)90013-0
https://www.usgs.gov/

