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Abstract 

The present work aims at assessing vegetation patterns and of the recovery process over the long term 

(2006 to 2025) in the Sundarbans mangroves based on the NDVI and SAVI. Landsat 5 TM and Landsat 8 

OLI surface reflectance images were processed in Google Earth Engine to derive seasonal composites for 

the dry season (December–February). A supervised classification method was used to delineate five land-

cover classes, namely water bodies, bare soil, sparse, intermediate, and dense vegetation. Accuracy 

assessment was carried out by visual interpretation of the sample points by using Google Earth Pro where 

overall accuracy was in the 88–93% over the entire study period. In 2006, dense vegetation was the most 

dominant (~68%) and sparse and intermediate other categories had low frequency and water bodies 

covered 21% of plots. For post-Sidr in 2008, nearly all plants showed more severe damage (76-79%). Post-

Aila (2010) data suggested continuous intermediate (46%) and sparse (25%) vegetation cover but with 

negligible closed canopy. During 2015, the dense vegetation recovered to 60%, and dynamic changes 

among dense, intermediate, and sparse vegetation areas emerged, and the area of dense vegetation was 

up to 67% in 2025 indicating that the long-term restoration exhibits space heterogeneity. NDVI was 

effective for monitoring the overall trend of large scale canopy, while SAVI was able to capture very small 

scale regeneration and understory growth. The findings show the impressive resilience of the Sundarbans 

and the significance of such key ecological processes as canopy recovery and succession, and the need for 

more adaptive management to improve mangrove resilience in cyclone-prone coastal areas. 
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1. Introduction 

Mangrove ecosystems are globally recognized for their ecological significance, particularly in 
carbon sequestration (Rahman et al., 2024), shoreline stabilization (Morris et al., 2023; 
Chatterjee and Bhandari, 2025), and biodiversity conservation (Rahman et al., 2024). Among 
them, the Sundarbans—the prime connecting mangrove forest in the world—spans southerly 
Bangladesh and eastern India, forming a crucial barrier counter to tropical cyclones and tidal 
surges in the Bay of Bengal (Giri et al., 2011; Rahman et al., 2010). The forest, developed 
through the convergence of the Ganges, Brahmaputra, and Meghna rivers, spans 
approximately 6,017 km² on the Bangladesh side, with about 4,143 km² of land and 1,874 
km² of water bodies (Iftekhar and Saenger, 2008). 

Due to its low elevation and geographic location, Bangladesh is highly exposed to climate-
induced usual calamities, as well as cyclones and coastal flooding (Ali, 1999; Dasgupta et al., 
2010; Ashrafuzzaman, 2023; Morshed et al., 2025). Cyclone Sidr, which struck in November 
2007, was among the most devastating in recent history, inflicting extensive damage on the 
Sundarbans' vegetative cover (Giri et al., 2011). Mangrove forests such as the Sundarbans 
play a vital role in mitigating such impacts through their dense root networks and structural 
complexity (Alongi, 2008). However, recurrent cyclones, sea-level rise, and anthropogenic 
pressures continue to threaten the forest's integrity (Das and Kundu, 2021; Hossain and 
Ahsan 2019). 
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Monitoring changes in forest structure and health is essential for sustainable management, 
particularly in post-disaster scenarios (Chen, 2023). Remote Sensing (RS) and Geographic 
Information System (GIS) knowledges provide cost-effective, large-scale tools for temporal 
analysis of vegetation change (Jensen, 2007). Among vegetation indices, the Normalized 
Difference Vegetation Index (NDVI) stands extensively practiced to detect variations in 
canopy greenness and density (Tucker, 1979). The Soil-Adjusted Vegetation Index (SAVI) 
enhances interpretation in areas with sparse vegetation or exposed soil by minimizing the 
effect of soil intensity on flora measurements (Huete, 1988). 

This work primarily aims to evaluate the three-dimensional and time-based changing aspects 
of mangrove vegetation in the Sundarbans following Cyclones Sidr and Aila, using NDVI and 
SAVI indices. It focuses on evaluating vegetation loss, regeneration, and resilience across 
various vegetation classes over a period of nearly 20 years.  

Although immediate cyclone impacts on mangroves are well-documented, long-term 
recovery assessments using multi-temporal satellite data remain limited. Landsat-derived 
NDVI and SAVI are effective for tracking changes but are underused in extended post-cyclone 
studies and local conservation planning. Additionally, the influence of human activities on 
mangrove regeneration is not sufficiently explored, leaving gaps in understanding ecosystem 
recovery. 

2. Materials and Methods 

2.1. Study Area 

The Sundarbans mangrove forest, located among 21º30'N and 22º30'N latitude and 89º00'E 
to 89º55'E longitude, extent portions of Khulna, Satkhira, and Bagerhat regions in 
southwestern Bangladesh (Iftekhar and Saenger, 2008) (Figure 1). The Sundarbans mangrove 
forest in Bangladesh spans approximately 6,017 km², comprising about 4,143 km² of land and 
1,874 km² of water bodies. This area accounts for approximately 44% of the country's total 
forest coverage and about 4.2% of its total land area (Ortolano et al., 2017). The elevation 
ranges from 0.9 to 2.1 meters upper mid sea level, making the region highly sensitive to 
cyclonic storm surges and sea-level rise (Giri et al., 2007).  

 

2.2. Satellite Data and Pre-processing 

Landsat satellite image, from TM (Landsat 5) and OLI (Landsat 8), was employed to investigate 
the vegetation dynamics in the Sundarbans during 5 seasonal periods: pre-cyclone (Jan 2006–
Feb 2006), post-cyclone (Sidr: Dec 2007–Feb 2008; Aila: Dec 2009–Feb 2010), and recovery 
periods of 5 years (Dec 2014–Feb 2015) and recent recovery (Dec 2024–Feb 2025) (Table 1).  

 

Table 1. Landsat imagery composites used for different cyclone periods (Dec 2005–Feb 2025) 

Period Sensor 
Composite 

Images 
Images  
Dates 

Scene cloud cover 
(%) 

Pre-cyclone 
Landsat 5 

TM 
1 Dec 2005 to Feb 

2006 
30% 

Post-cyclone 
(Sird, 2007) 

Landsat 5 
TM 

2 Dec 2007 to Feb 
2008 

30% 

Post-cyclone 
(Aila, 2009) 

Landsat 5 
TM 

3 Dec 2009 to Feb 
2010 

30% 

Recovery period (after 5 
years) 

Landsat 8 
OLI 

4 Dec 2014 to Feb 
2015 

10% 

Recovery period (recent) 
Landsat 8 

OLI 
5 Dec 2024 to Feb 

2025 
10% 
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Figure 1. Study area map depicting the Sundarbans region.  

 

Landsat 5 TM was used to represent the early post-cyclone periods as it has a long history 
with moderate spatial resolution of 30 m, which allows the analysis of vegetation conditions 
prior and immediately after the cyclone. Landsat 8 OLI was adopted for the last period since 
it offers improved radiometric sensitivity, new spectral bands and increased signal–noise 
ratio which is essential to monitoring of vegetation. Landsat satellite images from Landsat 5 
TM and Landsat 8 OLI were employed to display the changes of vegetation in the Sundarbans 
for 05 seasons; pre-cyclone (Jan 2006 –Feb 2006), post-cyclone (Sidr: Dec 2007–Feb 2008; 
Aila: Dec 2009–Feb 2010), recovery period after 5 years (Dec 2014–Feb 2015), and the most 
recent recovery (Dec 2024–Feb 2025) (Table 1). Landsat 5 TM was chosen for the earlier years 
as it offers a long temporal history with moderate spatial resolution (30 m) to investigate pre- 
as well as immediate post-cyclone vegetation conditions. Who will use the data? The latter 
part of the period was based on Landsat 8 OLI, which increased in radiometric sensitivity, has 
extra bands, and a better signal-to-noise ratio which improves vegetation-monitoring 
precision. All images were downloaded from Google Earth Engine (GEE) as cloud-free (≦30% 
of cloud cover) and scene stable images. Several overlaying scenes were analyzed per period 
in order to densely cover the study area. Since the Landsat Surface Reflectance products 
available in GEE are already radiometric and geometrically corrected, no other correction or 
co-registration was needed. Composite images were created for each period in order to 
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compute NDVI, SAVI and map the vegetation patterns. The datasets we used have long term 
and sufficient spatial coverage, and can be accessed publicly on the GEE. Nevertheless, some 

limitations are also present such as moderate spatial resolution, which cannot represent 
extremely small-scale vegetation differences. There are also some sensor differences 
between Landsat 5 TM and Landsat 8 OLI that may produce small discrepancies in time-series 
analysis, which we did our best to minimize during processing. 

 

2.3. NDVI and SAVI Computation 

Normalized Difference Vegetation Index (NDVI) was determined using the conventional 
formula (Tucker, 1979): 

 

NDVI =  
(NIR − Red) 

(NIR + Red)
 (Tucker, 1979) …………… (I) 

 

Where, NIR= reflectance in the band of the near-infrared; RED= reflectance in the red 
(Visible). 

ArcGIS 10.5 software program has been utilized to compute the NDVI values of the images. 
For Landsat 7 ETM+, Band 4 (NIR) and Band 3 (Red) were employed, while Band 4 (Red) and 
Band 5 (NIR) were used for Landsat 8 and 9. NDVI values were reclassified into five vegetation 
classes: dense, intermediate, sparse vegetation, bare soil, and water bodies.  

SAVI was calculated to minimize soil brightness effects using the formula (Huete, 1988): 

 

SAVI =  
(NIR − Red) 

(NIR + Red+L)
 × (1 + L) …………… (ll) 

 

Where, L is a canopy background adjustment factor set to 0.5 for intermediate vegetation 
density. 

The L-factor should be applied according to the density of the vegetation being observed. In 
situations where the vegetation cover is dense, an appropriate L-factor is 0.25; for 
intermediate density, 0.5 should be used, while for very low density, an L-factor of 1.0 is 
recommended (Huete, 1988; Baret and Guyot, 1991). 

 

2.4.  Analysis for Change Detection  

The detection of post-classification changes was carried out by comparing NDVI-derived maps from 
2006, 2008, 2010, 2015 and 2025. Pixel-wise transitions between vegetation classes were analyzed 
to detect trends in deforestation, regeneration, and land transformation. ArcGIS 10.5 was used for 
raster reclassification, area computation, and change matrix generation. 

 

2.5. Area Estimation 

Area calculations were performed using the formula: 

 

Area (Km2) =  
(Pixel Count×30×30)

(1000000)
   (USGS, 2019) ……………(lll) 

 

This provided vegetation class coverage in square kilometers for each time period. 

 

2.6. Accuracy Assessment 

Accuracy of classification was assessed with confusion matrices for 100 random control points per 
image year through visual interpretation and Google Earth Pro imagery. User’s accuracy (the 
likelihood of a pixel that is reported as a member of a class to actually be a member of that class on 
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the ground) and producer’s accuracy (the likelihood of a reference pixel to be correctly classified) 
were computed on the reference control points. Here also computed the Kappa coefficient and 
overall accuracy as a quantitative indicator for the degree of agreement by chance. 

The provision of class-specific accuracy estimates with this method enables a precision assessment 
of the classification performance and, thus, allows us to increase confidence in later analyses of 
vegetation change, recovery patterns, and ecosystem resilience across the Sundarbans. 

3. Results  

3.1. Assessment of Spatio-Temporal Changes in Mangrove Vegetation after Cyclones Sidr and 
Aila using NDVI and SAVI 

Mangrove forests in cyclone-prone areas like the Sundarbans are vulnerable to storm impacts. 
Cyclones Sidr and Aila caused widespread vegetation loss, highlighting the need for long-term 
monitoring. This study uses NDVI and SAVI to assess spatial and temporal changes in mangrove 
vegetation following these events. 

 

3.1.1.  Vegetation Classification and Coverage 

Mangrove flora of Sundarbans was categorised as dense, moderate and sparse based on tree height 
and structural attributes which shown in Table 2. The forest is over 65 ft tall mainly comprising the 
trees Heritiera fomes, Sonneratia apetala, Bruguiera gymnorhiza, B. sexangula and Xylocarpus 
moluccensis and constitutes mature closed canopied forests in all of the zones and areas. Mangroves 
of intermediate height (40-65 ft) such as S. caseolaris, Rhizophora apiculata, R. mucronata, Avicennia 
officinalis and Xylocarpus granatum are indicative of the soft forest community and occupy the 
intertidal forest land in mesohaline, polyhaline, and oligohaline zones. Thin mangrove (10–40 ft) with 
Phoenix paludosa, Ceriops decandra, Excoecaria agallocha, Nypa fruticans, and Acanthus ilicifolius, 
commonly found in marginal and disturbed sites. This categorisation illustrates the spatial and 
structural diversity of the Sundarbans mangrove ecosystem in relation to salinity gradients and 
forest tracts. 

Table 2. Vegetation cover classes definition 

Category 
Characterization 

(Height) 
Example species 
(Scientific name) 

Local name 
(Bangla) 

Distribution 
Zones* 

Dense 
Vegetation 

>65ft Heritiera fomes Sundari Az, Ar 
Sonneratia apetala Kewra Az; Ar 
Bruguiera gymnorhiza kakra Mz; Pz; Kh 
B. sexangula Lalkakra Mz; Pz; Ch 
Xylocarpus moluccensis Poshur etc. Az; Ar 

Intermediate 
vegetation 

40-65ft  S. caseolaris Choila/ora Mz; Sr, Ch 
Rhizophora apiculata  Bhorjhana Mz; Pz; Kh 
R. mucronata Lam. Jhana Mz; Pz; Kh 
A. officinalis Baen Az; Ar 
X. granatum Dhundal etc Mz, Kh, St 

Sparse 
Vegetation 
 

10-40ft Phoenix paludosa Hental Az; Ar 
Ceriops decandra Goran Az; Ar 
Excoecaria agallocha L. Gewa Az; Ar 
Nypa fruticans Golpata Az; Ar 
Acanthus ilicifolius Hargoza etc Az; Ar 

*Distribution codes: Ar = all range, Az = all zones, Mz = mesohaline zone, Oz = oligohaline zone, and Pz = 
polyhaline zone; Ch = Chandpai Range, Kh = Khulna Range, Sr = Sarankhola Range, and St = Satkhira Range.  

 

3.1.2. Spatio-Temporal Variation Analysis of Sundarbans Forest (2006–2025) 

The NDVI and SAVI classifications provide separate statuses of disturbance and recovery in the 
Sundarbans, as shown in Table 3. 

Pre-Sidr (2006): The dense vegetation was prevalent (~68%) and the bare soil and sparsely vegetated 
were fewer than 7%. It is indicative of a well-preserved and physical mangrove cover. 
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Table 3. Sundarbans Forest statistics table (km2 and percentage) for the years 2006, 2008, 2010, 2015 and 2025 based on 
NDVI and SAVI 

 

Post-Sidr (2008): The loss of dense vegetation is clearly visible—it nearly vanished in SAVI (0%). 
Sparse vegetation increased by about 66% in SAVI, and bare soil increased by >27 to 32%, indicating 
high degree of canopy loss and bare soil. Water bodies were slightly expanded as well (flooding). 

Post-Aila (2010): The forest is in conditional re-establishment, the intermediate vegetation grows 
(21% NDVI), and the denser vegetation begins to appear (24% NDVI). Sparse vegetation decreased 
dramatically from 66% to ~4%, indicating that canopy closure occurred gradually. SAVI, however, 
continued to underestimate vegetated areas. 

Five years after (2015): A mixed stage: NDVI records a high gain in thick vegetation (60%), but SAVI 
still indicates an abundance of low cover (67%), indicating a spectral mix of mangrove regeneration 
and understory growth. Bare soil had reduced considerably compared to 2008 suggesting the 
recovery of ground cover. 

Recent period (2025): Vegetation growth has regenerated again (greening trend 67% NDVI), in 
strong contrast to the cyclone years. Sparse vegetation continues to remain generally low (2–4%) 
and bare soil stabilizes at low levels (2–4%). Water bodies remain consistent (~24%). It points toward 
the sustained resistance in the Sundarbans over time, although SAVI undercounts dense canopy 
relative to NDVI.  

 

3.2. Evaluate Vegetation Loss, Regeneration and Resilience Across Different Vegetation Classes 

The land cover analysis between 2006 and 2025 using the NDVI which shown in Figure 2 indicates a 
definite cycle of disturbance and recovery for vegetation dynamics. Water areas were relatively 
stable during the entire period, and there was only small variation in the range of 21–24%, showing 
no hydrological changes. In contrast, bare soil increased steeply in 2008 (27%) following the Cyclone 
Sidr, but subsequently decreased to 2% by 2025, due to the natural recovery processes. Sparse 
vegetation saw a comparable increase to 25% in 2008 prior to declining to 2% by 2025, likely due to 
the aging of vegetation. Intermediate vegetation increased greatly in 2010 and reached a maximum 
in 2015 (46%) indicating transitional growth stages, and then decreased to 12.5% in 2025 as many 
reached denser vegetation classes. 

 
Features 

2006 (Pre Sidr) 2008 (Post Sidr) 2010 (Post Aila) 2015 (after 5 yrs.) 2025 (Recent) 

NDVI 
area 

Sq.km 
% 

SAVI 
area 

Sq.km 
% 

NDVI 
area 

Sq.km 
% 

SAVI 
area 
Sq.k
m 

% 

NDVI 
area 
Sq.k
m 

% 
SAVI 
area 

Sq.km 
% 

NDVI 
area 

Sq.km 
% 

SAVI 
area 

Sq.km 
% 

NDVI 
area 

Sq.km 
% 

SAVI 
area 

Sq.km 
% 

Water 
bodies 

1236 21 1230 21 1440 24 1439 24 1413 23 1413 23 1453 
2
4 

1454 24 1451 24 1465 24 

Bare soil 287 5 432 7 1637 27 1924 32 219 4 1581 26 123 2 246 4 129 2 243 4 

Sparse 
Vegetation 

116 2 3982 66 265 4 2631 44 1510 25 3020 50 106 2 4052 67 91 2 3140 52 

Intermediate 
vegetation 

273 2 355 6 1246 21 6 0 2795 46 1 0 730 
1
2 

263 4 326 5 1168 19 

Dense 
vegetation 

4088 68 1 0 1413 24 0 0 87 1 0 0 3611 
6
0 

0 0 4002 67 0 0 
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Figure 2. NDVI map of Sundarbans (a) Pre Sidr: 2006, (b) Post Sidr: 2008, (c) Post Aila: 2010, (d) 
Recovered: 2015 and (e) Recent: 2025. 

 

Thick understory, the second-largest type in 2006 (68%) was lost in the following layer in 2008 (24%), 
and was represented by just 1% in 2010, mainly as a result of cyclones. But it recovered well over 
the intervening years, increasing to 60% in 2015 and leveling off at 67% in 2025 (Figure 3), almost 
clawing back to where it began. Altogether, these findings emphasize the severe short-term loss of 
vegetation after cyclones and the remarkable long-term resilience and recovery potential of the 
system. 

 

 

Figure 3. Features Change of Sundarbans from 2006 to 2025 for NDVI. 
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Consider, for example, a simple trajectory when if you look at your new SAVI-based classification in 
2006 and that becomes the basis to predict rainfall in 2025 which shown in Figure 4. The landscape 
in 2006 was fairly wasteland from water bodies (21%), bare soil (7%), sparse vegetation (66%) to 
intermediate vegetation (6%) with not indicative of dense vegetation. In 2008 bare soil had risen 
significantly to 32% and sparse vegetation had decreased to 44% indicating vegetation loss and soil 
exposure possibly due to the cyclone. In 2010, sparse vegetation partly recovered to 50% with bare 
soil decreasing to 26%, representing primary recovery. A marked recovery of the site was found in 
2015; sparse vegetation reached the maximum for the whole period (67%), while intermediate 
vegetation nearly disappeared (0%).  

 

 



Jurnal Ilmu dan Teknologi Kelautan Tropis  

This journal article is © Rahman et al. 2025 J. Ilmu dan Teknologi Kelautan Tropis,  17(2)  | 493 

 

 

 



Jurnal Ilmu dan Teknologi Kelautan Tropis  

This journal article is © Rahman et al. 2025 J. Ilmu dan Teknologi Kelautan Tropis,  17(2)  | 494 

 

 

 

Figure 4. SAVI map of Sundarbans (a) Pre Sidr: 2006, (b) Post Sidr: 2008, (c) Post Aila: 2010, (d) 
Recovered: 2015 and (e) Recent: 2025. 
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Finally, vegetation cover did not significantly reduce to 52% in 2025, but still prevailed as sparse, 
while intermediate vegetation returned to 19%, which indicated that the ecosystem stabilized 
(Figure 5). There was no consistent presence of dense vegetation throughout the period indicating 
no clear pattern of full canopy recovery. In effect, the SAVI signal denoting of repeated vegetation 
stress after cyclone disturbances, partial recovery, but a trajectory not back to large dominance but 
rather intermediate and sparse vegetation cover.  

 

 
Figure 5. Features Change of Sundarbans from 2006 to 2025 for SAVI. 

 

3.3. Accuracy Assessment Results 

The classification accuracy of mangrove land cover was assessed for random years of reference 
(2006, 2008, 2010, 2014 and 2025) by confusion matrices, generating user’s (UA), producer’s (PA), 
overall (OA) accuracy and Kappa statistics. 

Table 4, 5, 6,7 and 8: Represent the accuracy assessment for the years 2006, 2008, 2010, 2015 and 
2025 respectively 

Table 4 (2006): 

Class name 
 Water 

bodies 
Bare 
soil 

Sparse 
vegetation 

Intermediate 
vegetation 

Dense 
vegetation 

Total User 
accuracy 

Kappa 
coefficient 

Water 
bodies 

 
23 1 0 0 0 24 96% 0% 

Bare soil  0 7 0 0 0 7 100% 0% 
Sparse 
vegetation 

 
0 3 1 0 0 4 25% 0% 

Intermediate 
vegetation 

 
1 3 0 1 0 5 20% 0% 

Dense 
vegetation 

 
0 1 0 0 59 60 98% 0% 

Total  24 15 1 1 59 100 0% 0% 
Producer 
accuracy  

 
96% 47% 100% 100% 100% 0% 91% 0% 

Kappa 
coefficient  

 
0% 0% 0% 0% 0% 0% 0% 84% 

Overall 
accuracy 

  
91% 

       

In 2006, the overall accuracy of classification of 95% was achieved with a particularly high user’s 
accuracy for dense vegetation (0.96) and water bodies (0.96). Bare soil also exhibited moderate 
producer’s accuracy (0.54) which indicated that there were errors of commission between bare 
soil and sparsely-vegetated land cover which described in Table 4. 
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Table 5 (2008): 

Class name 
Water 
bodies 

Bare 
soil 

Sparse 
vegetation 

Intermediate 
vegetation 

Dense 
vegetation 

Total User 
accuracy  

Kappa 
coefficient 

Water 
bodies 31 2 0 0 0 33 94% 0% 
Bare soil 0 23 0 0 1 24 96% 0% 
Sparse 
vegetation 0 0 4 0 0 4 100% 0% 
Intermediate 
vegetation 1 1 0 12 4 18 67% 0% 
Dense 
vegetation 0 0 0 1 20 21 95% 0% 
Total 32 26 4 13 25 100 0% 0% 
Producer 
accuracy (%) 97% 88% 100% 92% 80% 0% 90% 0% 
Kappa 
coefficient 0% 0% 0% 0% 0% 0% 0% 87% 
Overall 
accuracy 

90%        

 

The overall accuracy for 2008, which was the lowest among the study years, was 90% and was 
attributed to vegetation destruction by cyclones and other vegetation thematic related issues and 
spectral confusion in the imagery. The user’s accuracies of water (0.91) and dense vegetation (0.89) 
were still high, but intermediate vegetation was relatively poorly classified with a user’s accuracy 
of 0.67 which stated in Table 5. This shows more ambiguity between the classes intermediate and 
sparse vegetation during that time. 

Table 6 (2010): 

Class name 
Water 
bodies 

Bare 
soil 

Sparse 
vegetation 

Intermediate 
vegetation 

Dense 
vegetation 

Total 
User 

accuracy 
Kappa 

coefficient 

Water bodies 33 0 0 0 0 33 100% 0% 
Bare soil 0 0 0 0 0 0 0% 0% 
Sparse 
vegetation 

0 0 26 1 0 27 96% 0% 

Intermediate 
vegetation 

0 1 2 34 1 38 89% 0% 

Dense 
vegetation 

0 0 0 0 2 2 100% 0% 

Total 33 1 28 35 3 100 0% 0% 
Producer 
accuracy (%) 

100% 0% 93% 97% 67% 0% 95% 0% 

Kappa 
coefficient 

0% 0% 0% 0% 0% 0% 0% 93% 

Overall 
accuracy 

95%        

 

By 2010, assessment reliability had increased significantly, to 95% accuracy overall. The 
classification of dense vegetation was almost 100%, with a user accuracy of 0.98, whereas sparse 
vegetation was also well classified (UA = 0.93). Misclassifications were mostly between 
intermediate vegetation and dense vegetation, resulting in a slightly lower producer’s accuracy for 
intermediate cover (0.74) which analysed in Table 6. 

Table 7 (2015): 

Class name 
Water 
bodies 

Bare 
soil 

Sparse 
vegetation 

Intermediate 
vegetation 

Dense 
vegetation 

Total 
User 

accuracy 
Kappa 

Coefficient 

Water bodies 17 0 0 0 0 17 100% 0% 
Bare soil 0 5 0 0 0 5 100% 0% 
Sparse 
vegetation 

0 0 2 0 0 2 100% 0% 

Intermediate 
vegetation 

1 1 0 13 2 17 76% 0% 
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Class name 
Water 
bodies 

Bare 
soil 

Sparse 
vegetation 

Intermediate 
vegetation 

Dense 
vegetation 

Total 
User 

accuracy 
Kappa 

Coefficient 
Dense 
vegetation 

0 0 0 0 59 59 100% 0% 

Total 18 6 2 13 61 100 0% 0% 
Producer 
accuracy (%) 

94% 83% 100% 100% 97% 0% 96% 0% 

Kappa 
coefficient 

0% 0% 0% 0% 0% 0% 0% 93% 

Overall 
accuracy 

96%        

 

In 2015, accuracy was further improved to 96% overall accuracy and very high user’s accuracy for 
dense vegetation (0.97) and water (0.94) which demonstrated in Table 7. Intermediate vegetation 
continued to exhibit some confusion, however with relatively low error. 

Table 8 (2025): 

Class name 
Water 
bodies 

Bare 
soil 

Sparse 
vegetation 

Intermediate 
vegetation 

Dense 
vegetation 

Total 
User 

accuracy 
Kappa 

coefficient 

Water 
bodies 16 0 0 0 0 16 100% 0% 
Bare soil 0 3 0 0 1 4 75% 0% 
Sparse 
vegetation 0 2 1 0 0 3 33% 0% 
Intermediate 
vegetation 0 0 0 5 1 6 83% 0% 
Dense 
vegetation 0 0 0 0 71 71 100% 0% 
Total 16 5 1 5 73 100 0% 0% 
Producer 
accuracy (%) 100% 60% 100% 100% 97% 0% 96% 0% 
Kappa 
coefficient 0% 0% 0% 0% 0% 0% 0% 91% 
Overall 
accuracy 

96%        

Lastly, in 2025, the classification was achieved an overall accuracy of 96%, demonstrating the 
capability of performing well with the new Landsat-9 data and improved spectral separability 
of vegetation types (Sim et al., 2024; Cheng et al., 2021; Farhadpour et al., 2024). Thick 
vegetation had a high producer’s (0.93) and user’s accuracy (0.97), so it is likely not confused 
with other classes which established in Table 8. 

4. Discussion 

4.1. Discussion on Spatio- Temporal Dynamics of Vegetation of Sundarbans (2006–2025) 

The trends in NDVI and SAVI from 2006 to 2025 show a clear cycle of disturbances and recovery of 
the Sundarbans mangroves, and demonstrate their sensitivity to cyclones and adaptive ability, 
respectively. In 2006, dense vegetation accounted 68% of the land cover, and both sparse and 
intermediate vegetation barely occurred, demonstrating a mature and vigorous mangrove canopy. 
The water bodies kept almost constant with the average proportion around 21%, showing no 
profound hydrological change before the major cyclones. The effect of Cyclone Sidr (2008) is also 
demonstrated as very dense vegetation almost vanished, sparse increased to 66%, and bare soil 
increased, revealing the immediate devastating effect of storm surges, wind and salinity inundation. 
These findings are in line with those of Alongi (2008) and Sarker et al. (2019), who described fast 
canopy decay and soil reexposure after major cyclones in tropical mangrove habitats. In 2010 (post-
Aila), dense vegetation remained to be negligible, but the intermediate and sparse vegetation types 
dominated the study area, implicating lag regeneration with increasing of cumulative cyclone 
impacts, as also observed by Das and Vincent (2009). In 2015, dense vegetation had recovered to 
60%, intermediate vegetation had been firmly fixed at 12–19%, and bare soil was substantially 
reduced. This recovery is consistent with findings by Giri et al. (2011) and Rahman et al. (2016), in 
which natural progression, accretion of tidal sediments, and species-specific growth rates determine 
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how mangroves recover on a multi-annual time scale. By 2025, dense increased further to 67%, close 
to the level before disturbance, but sparse and intermediate were rather homogeneously distributed 
again reflecting patchy regeneration across the forest and corroborating patterns reported by 
Chowdhury et al. (2019). 

The spatio-temporal patterns as detected by NDVI and SAVI indicate significant biogeophysical 
consequences. The vegetation decline followed by vegetation recovery alternatively provides insight 
to the influence of cyclones, salinity stress, and sediment dynamics to the forest structure, carbon 
sequestration, and habitat quality. Loss of dense canopy leads to soil exposure and changes in micro-
climate, but also regeneration enhances system resilience and coastal protection. Together, these 
results suggest that while the Sundarbans mangroves are extremely resilient, a series of repeated 
cyclonic disturbances may lead to long-term shifts to vegetation composition. Taken together, these 
findings underscore the need to strengthen mangrove resilience complements through better 
adaptive management, restoration, and monitoring over the long term. Continuing these mitigation 
efforts are vital to maintain ecosystem services, preserve biodiversity, and protect the livelihoods of 
vulnerable coastal communities, faced with more frequent cyclone occurrence and climate 
variability. 

 

4.2.  Loss, Recovery and Resilience Dynamics of Vegetation (2006–2025) 

Analysis with both NDVI and SAVI gives a more robust representation of vegetation dynamic and 
recovery pattern within the Sundarbans in the period of 2006–2025. NDVI is an appropriate model 
for quantification of dense canopy cover and vegetation greenness and can be used to monitor large-
scale post-cyclonic disturbance recovery. For instance, the marked decline of dense vegetation by 
Cyclone Sidr (2008) and Aila (2010) and its natural recovery back to 60–67% post 2025 indicate 
canopy recovery and the recovery of mature mangrove species, indicative of a process identified for 
post-cyclone mangrove recovery (Alongi, 2008; Giri et al., 2011). 

SAVI is similar to NDVI but it has a better sensitivity to sparse and intermediate vegetation because 
of its reduction of the soil reflectance effects. This permits the detection of early regeneration, 
under-story growth, and spatially variable recovery, which NDVI alone may underestimate. For 
example, SAVI showcases the change from bare soil to light vegetation between 2008 and 2015, 
showing patchy regeneration and uneven recovery across the landscape. These spatial gradients 
correspond to ecological processes linked to local sediment depositions, salinity gradients, tidal 
inudation and species-specific growth form. A comparison of the two indexes demonstrates their 
limitations and complementarities. Violet can saturate in very dense areas of vegetation, might 
under-estimate small differences in biomass. SAVI may also underestimate the dense canopy at high 
biomass due to decreased sensitivity at high biomass. Yet they have nuanced value when combined; 
while NDVI measures overall canopy recovery at the landscape scale, SAVI is sensitive to 
heterogeneity, deliver transitional growth, and early successional phases. The integration of both 
approaches supports enhanced interpretation of both temporal and spatial dynamics of the 
vegetation, including the trajectories of recovery, rate of regrowth, and the development of a mixed 
age structure of vegetation classes throughout the entire Sundarbans. 

In general, the joint influence of NDVI and SAVI shows that the recovery of dense vegetation is slow 
and lags behind a major cyclone, whereas sparse and intermediate vegetation recovers more quickly, 
reflecting both vulnerability and resilience of the ecosystem. These results highlight the necessity of 
using multiple indicators for the long-term ecological monitoring of mangrove recovery to capture 
the complexity of mangrove regeneration and to support effective conservation and adaptive 
management in cyclone-prone coastal areas. 

 

4.3. Precision and Strength of Methods 

Furthermore, accuracy of the classification was very high, with overall accuracies ranging between 
90–96% and Kappa values of 0.88–0.95, which are above the 85% threshold recommended for land 
cover studies. Dense plants greater than (0.95), indicating good mapping for intact mangroves. This 
reduced accuracy in 2008 was attributed to cyclone-induced spectral mixing of sparse and 
intermediate vegetation, although the technique achieved an overall strong 90% accuracy, indicating 
reliability. Since 2010, accuracy has likewise stabilized at >94%, making Landsat's vegetation indices 
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a strong choice for this kind of use. Overall, results show high accuracies and methodological 
soundness, justifying the reliability of the following estimates of biomass and carbon. 

5. Conclusions and Recommendations 

5.1.  Conclusion 

The multi-temporal (2006–2025) analysis of the Sundarbans indicate vulnerability and resilience of 
this deltaic mangrove ecosystem to multiple cyclone hits. Dense vegetation cover decreased 
dramatically during major events (e.g., from 68% in 2006 to ~0% post-Sidr) and sparse vegetation 
and bare soil increased substantially, demonstrating the immediate footprint of extreme weather. 
Recovery was also observed in the subsequent decades, with dense cover reaching a plateau of 67% 
by 2025, representing a major but not fully achieved structural recovery. These dynamics were well 
captured by the NDVI and SAVI indices and the performance of classification (global accuracy 82.7–
91%, Kappa up 0.84), substantiates the usefulness of these approaches for long term monitoring of 
vegetation. 

The outcomes have significant practical implications for mangrove management and coastal disaster 
risk reduction. Planned rehabilitation of degraded sites, monitoring through remote sensing 
techniques, and adaptive management measures, such as soil stabilization methods, maintenance 
of hydrology, and the protection of areas that are regenerating, are potential measures to improve 
the resilience of ecosystems. In addition, incorporating such lessons into ecosystem-based 
adaptation policies will help promote biodiversity conservation, carbon stock recovery, and the 
enhancement of coastal community resilience to cyclones and climate change-induced disasters. 
This work thus presents a science-informed structure that can guide future conservation planning 
and evidence-based decision making in the Sundarbans. 

 

5.2.  Recommendations 

To make ecosystem resilience of the Sundarbans, there is a need to restore the sparse and 
intermediate vegetative zones by promoting native species to facilitate early recovery of 
canopy. Regular monitoring of NDVI and SAVI indices can monitor the regeneration process, 
detect stressed areas and trigger timely management interventions. Conservation programs 
should be supplemented by adaptive management options such as a soil stabilization and 
sediment management. Moreover, the inclusion of carbon storage and community-based 
protection actions can maintain ecosystem services and increase resistance to future 
cyclones. 
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