Comparative Analysis of Segmentation Parameters in Object-Based Image Classification for Land Cover/Land Use in Sumedang Regency

Authors

  • Muhammad Ardiansyah Departemen Ilmu Tanah dan Sumberdaya Lahan IPB
  • Boedi Tjahjono
  • Niken Dwia Oktaviani Departmen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian IPB University, Jl. Meranti – Kampus IPB Dramaga, Bogor, West Java 16680

DOI:

https://doi.org/10.29244/jitl.27.2.131-139

Keywords:

compactness, OBIA, scale, shape

Abstract

Information on land cover and land use plays an important role in biophysical regional analysis, spatial planning, resource management, and the formulation of sustainable development policies. To support these needs, accurate remote sensing image classification is crucial. The Object-Based Image Analysis (OBIA) approach is considered superior to pixel-based classification, as it provides higher accuracy and minimizes the salt-and-pepper effect. The success of object-based classification is influenced by the segmentation method employed. In this study, two segmentation approaches, namely Original Multiresolution Segmentation (OMN) and Region Grow on Object (RGO), were examined based on combinations of segmentation parameters and evaluated for accuracy using the Random Forest (RF) classification algorithm. The segmentation results indicate that the OMN approach produces smaller and more detailed objects, though they tend to be fragmented, whereas the RGO approach generates larger and more generalized objects with greater spatial stability. Based on object-based classification using RGO segmentation with a scale parameter of 0.5, seven land cover and land use classes were identified, with three dominant categories: plantations (50,393 ha), bare land (29,658 ha), and rice fields (27,092 ha). The classification accuracy of RGO was consistently higher than OMN across all parameter configurations, with the rice field class showing close alignment with official BPS data from 2024, which recorded an area of 30,038 ha. These findings demonstrate that the RGO approach is more effective in producing representative segmentation and classification for land use mapping.

Downloads

Download data is not yet available.

Author Biography

  • Boedi Tjahjono

    ITSL

References

Akcay, O., E.O. Avsar, M. Inalpulat, L. Genc and A. Cam. 2018. Assessment of Segmentation Parameters for Object-Based Land Cover Classification Using Color-Infrared Imagery. ISPRS International Journal of Geo-Information, 7(11): 424. https://doi.org/10.3390/ijgi7110424

Ardiansyah, M., K. Munibah dan S.N. Saniinah. 2023. Klasifikasi fase tumbuh padi dengan pendekatan berbasis objek menggunakan citra sentinel- 2. J. Il. Tan. dan Ling., 25(2): 78 – 85. doi: http://dx.doi.org/10.29244/jitl.25.2.78-85

Attri, P., S. Chaudhry and S. Sharma. 2015. Remote sensing and GIS based approaches for LULC change detection – a review. Int. J. Curr. Eng. and Tech., 5(5): 3126 – 3137.

Belgiu, M. and L. Drăguţ. 2016. Random Forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing. 114: 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Blaschke, T., C. Burnett and A. Pekkarinen. 2005. Image Segmentation Methods for Object-based Analysis and Classification. In Remote Sensing Image Analysis: Including the Spatial Domain.

Blaschke, T., G.J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink and D. Tiede. 2014. Geographic object-based image analysis – Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87: 180–191.

Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

[BPS]. 2024. Provinsi Jawa Barat dalam Angka 2024. Jawab Barat (ID): Badan Pusat Statistik

Candra, I.D., V.P. Siregar dan S.B. Agus. 2017. Pemetaan zona geomorfologi dan habitat bentik di Pulau Kotok Besar menggunakan klasifikasi berbasis objek. J. Tekno. Perikan. dan Kelaut., 8(2): 209-219. doi:10.24319/jtpk.8.209-219.

Congalton, R.G. and K. Green. 2009. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 2nd ed. CRC Press.

Congedo, L. 2021. Semi-Automatic Classification Plugin Documentation Release 7.9.7.1.

Drăguţ, L. and C. Eisank. 2012. Automated object-based classification of topography from SRTM data. Geomorphology, 141–142: 21–33.

Engrila, H.M., S.K. Putri dan N. Arifian. 2022. Monitoring perubahan tutupan lahan dengan metode OBIA pada citra sentinel – 2A tahun 2017 – 2021 (studi kasus: Kecamatan Sungai Rumbai, Kabupaten Dharmasyara). JAGAT, 6(1): 264 – 270

Fajarendra, Y.I., Y.R. Fauzan dan S. Uyun. 2024. Klasifikasi citra eurosat menggunakan algoritma k-nn, decision tree, dan random forest. JATI, 8(4): 7754 – 7761.

Foody, G.M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1): 185–201.

GIS Geography. 2023. Pixel-based vs object-based classification in remote sensing. Diakses dari: https://gisgeography.com/pixel-vs-object-based-classification/

Grybas, H., L. Melendy and R.G. Congalton. 2017. A comparison of unsupervised segmentation parameter optimization approaches. GIScience & Remote Sensing, 54(4): 515–533.

Hossain, M.D. and D. Chen. 2019. Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150: 115–134. https://doi.org/10.1016/j.isprsjprs.2019.02.009

Johnson, B.A., M. Bragais, I. Endo and D.B. Macandog. 2015. Image Segmentation Parameter Optimization Considering Within- and Between-Segment Heterogeneity. ISPRS Int. J. Geo-Inf., 4(4): 2292–2305

Koman, W.A.F., A.S. Izza and D. Candraningtyas. 2022. Perbandingan Parameter Segmentasi OBIA dalam Klasifikasi Tutupan Lahan. Jurnal Paradigma: Jurnal Multidisipliner Mahasiswa Pascasarjana Indonesia, 3(2): 104–13

Li, Q., C. Wang, B. Zhang and L. Lu. 2015. Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sens., 7(12): 16091 – 16107

Lillesand, T.M. and R.W. Kiefer. 2015. Remote Sensing and Image Interpretation. 7th ed. Wiley.

Marlina, D. 2022. Klasifikasi tutupan lahan pada citra Sentinel-2 Kabupaten Kuningan dengan NDVI dan algoritma random forest. STRING, 7(1): 41 - 49

Marwati, A., Y. Prasetyo dan A. Suprayogi. 2018. Analisis perbandingan klasifikasi tutupan lahan kombinasi data point cloud lidar dan foto udara berbasis metode segmentasi dan supervised (sudi kasus: Tanggamus Lampung). J. Geod. Undip., 7(1): 36 – 45

Oka, W.B. and Pradono. 2011. Risk threats in a creative funding scheme for infrastructure project in Indonesia : Cileunyi-Sumedang-Dawuan toll road project case. Journal of Civil Engineering and Architecture, 5(1) : 89 – 96.

Purboyo, A.A., A. Kurniawan dan L. Muta’ali. 2024. Analisis spasial temporal perubahan tutupan lahan di Kawasan Perkotaan Cekungan Bandung berbasis Google Earth Engine. J. Pendidik. Geogr. Undiksha., 12(2):251–260. doi: https://doi.org/10.23887/jjpg.v12i02.75526

Sampurno, R.M. dan A. Thoriq. 2016. Klasifikasi tutupan lahan menggunakan citra landsat 8 Operational Land Imager (OLI) di Kabupaten Sumedang. J. Teknotan., 10(2): 61 – 70. doi: https://doi.org/10.24198/jt.vol10n2.9

Sugiarti, A.L. 2017. The relationship of the Jatigede Dam construction towards socio-economic conditions on farming community in the district of Jatigede-Sumedang. International Research Journal of Education and Sciences, 1(2) : 15 – 20.

Timisela, W.A., G. Mardiatmoko dan G. Puturuhu. 2020. Analisis jenis mangrove menggunakan citra UAV dengan Klasifikasi OBIA. J. Hutan-Hutan Kecil, 4(2): 132–149.

Wang, M., J. Wang, Y. Cui, J. Liu and L. Chen. 2022. Agricultural field boundary delineation with satellite image segmentation for high-resolution cropmapping: a case study of rice paddy. Agronomy, 12. doi: https://doi.org/10.3390/agronomy12102342

Weih, R.C. and N.D. Riggan. 2009. A comparison of pixel-based and object-based classification methods for land cover mapping. GIScience & Remote Sensing, 46(4): 387–399.

Zhang, C., Y. Liu and N. Tie. 2023. Forest land resource information acquisition with Sentinel-2 image utilizing support vector machine, k-nearest neighbor, random forest, decision trees and multi-layer perceptron. Forests, 14(2): 254. doi: https://doi.org/10.3390/f14020254

Published

2025-10-01

How to Cite

Ardiansyah, M., Tjahjono, B., & Oktaviani, N. D. (2025). Comparative Analysis of Segmentation Parameters in Object-Based Image Classification for Land Cover/Land Use in Sumedang Regency. Jurnal Ilmu Tanah Dan Lingkungan, 27(2), 131-139. https://doi.org/10.29244/jitl.27.2.131-139