Land Cover/Use Classification at Landsat 8 with Random Forest and Support Vector Machine Algorithm in Sumedang Regency, West Java
DOI:
https://doi.org/10.29244/jitl.27.1.24-31Keywords:
national strategic project, reflectance pattern, machine learningAbstract
Sumedang Regency is one of the selected regencies in the national strategic project, in the form of the construction of the Jatigede Reservoir and the Cisumdawu Toll Road. This development has a negative impact on the agricultural sector because it causes a change in the function of agricultural land, so that measurable monitoring of land cover/use is needed. This study aims to identify the pattern of reflectance values for each land cover/use and compare the RF and SVM approaches in the classification of land cover/use in Sumedang Regency in 2023. The pattern of reflectance values for each land cover/use is unique, but the use of rice fields and fields/dry fields has a similar pattern and is more susceptible to misclassification. The RF and SVM approaches produce high classification accuracy, which is 93.6% for RF and 98% for SVM. The difference in RF and SVM classification results is 34.64%. This difference occurs due to differences in the way the classification works.
Keywords : national strategic project, reflectance pattern, machine learning
Downloads
References
Anca, D., M. Kluczek, B. Zagajewski, E. Raczko, M. Kycko, A.H. Al-Sulttani, A. Tarda, L. Pineda, and J. Corbera. 2021. Comparison of support vector machines and random forests for corine land cover mapping. Remote Sens., 13(4): 1-36.
Attri, P., S. Chaudhry, and S. Sharma. 2015. Remote sensing and GIS based approaches for LULC change detection – a review. International Journal of Current Engineering and Technology, 5(5): 3126-3137.
Avci, C., M. Budak, N. Yagmur, and F.B. Balcik. 2023. Comparison between random forest and support vector machine algorithms for classification. International Journal of Engineering and Geosciences, 8(1): 1-10.
Awad, M., and R. Khanna. 2015. Efficient Learning Machines. New York (US) : Apress.
Belgiu, M., and L. Dragut. 2016. Random forest in remote sensing : A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114(1): 24-31.
[BPS] Badan Pusat Statistik. 2023. Produksi Tanaman Sayuran Menurut Kecamatan dan Jenis Tanaman di Kabupaten Sumedang. [diakses 08/07/2024]. https://sumedangkab.bps.go.id/
Chaturvedi, V., and W.T.D. Vries. 2021. Machine learning algorithms for urban land use planning: a review. Urban Science, 68(5): 1-16.
Hu, Y., Z. Wang, Y. Zhang, and Y. Dian. 2022. Logging pattern detection by multispectral remote sensing imagery in North Subtropical Plantation Forests. Remote Sens., 14(19): 1-15.
Kamilaris, A., and F.X.P. Boldu. 2018. Deep learning in agriculture: a survey. Computers and Electronics in Agriculture, 147(1): 70-90.
Lukiawan, R., E.H. Purwanto, dan M. Ayundyahrini. 2019. Standar koreksi geometrik citra satelit resolusi menengah dan manfaat bagi pengguna. Jurnal Standardisasi, 21(1): 45-54.
Ma, L., Y. Liu, X. Zhang, Y. Ye, G. Yin, and B.A. Johnson. 2019. Deep learning in remote sensing applications : a meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152(1): 166-177.
Macarringue, L.S., E.L. Bolfe, and P.R.M. Pereira. 2022. Developments in land use and land cover classification techniques in remote sensing : a review. Journal of Geographic Information System, 14(1): 1-28.
Mohammadi, N.M., and A. Hezarkhani. 2019. A comparative study of SVM and RF methods for classification of alteration zones using remotely sensed data. Journal of Mining and Environment, 11(1): 49-61.
Mountrakis, G., J. Im, and C. Ogole. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 247-259.
Rodriguez, V.F.G., B. Ghimire, J. Rogan, M.O. Chica, and J.P.S. Rigol. 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1): 93-104.
Roy, D.P., M.A. Wulder, T.R. Loveland, Woodcock C.E., R.G. Allen, M.C. Anderson, D. Helder, J.R. Irons, D.M. Johnson, R. Kennedy, T.A. Scambos, C.B. Schaaf, J.R. Schott, Y. Sheng, E.F. Vermote, A.S. Belward, R. Bindschadler, W.B. Cohen, F. Gao, J.D. Hipple, P. Hostert, J. Huntington, C.O. Justice, A. Kilic, V. Kovalskyy, Z.P. Lee, L. Lymburner, J.G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R.H. Wynne, and Z. Zhu. 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment. 145(4) : 154 – 172.
Sari, I.L., C.J. Weston, G.J. Newnham, and L. Volkova. 2021. Assessing accuracy of land cover change maps derived from automated digital processing and visual interpretation in tropical forests in Indonesia. Remote Sensing, 13(8): 1-18.
Talukdar, S., P. Singha, S. Mahato, Shahfahad, S. Pal, Y.A. Liou, and A. Rahman. 2020. Land-use land-cover classification by machine learning classifiers for satellite observations : a review. Remote Sens., 12(7): 1-24.
[USGS] United State Geological Survey. 2013. Landsat 8. [diakses 21/01/2025]. https://usgs.gov/
Verma, P., A. Raghubanshi, P.K. Srivastava, and A.S. Raghubanshi. 2020. Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Modeling Earth Systems and Environment, 6(2020): 1045-1059.
Downloads
Published
Issue
Section
License
Department of Soil Science and Land Resources Departemen Ilmu Tanah dan Sumberdaya Lahan, Faculty of Agriculture Fakultas Pertanian, IPB University














