

STAKEHOLDER PERSPECTIVES ON MANAGING ABANDONED, LOST, OR DISCARDED FISHING GEAR IN REMBANG CRAB FISHERIES

Sofiyah Muji Permana^{1*}, Maharani Yulisti², Mohamad Natsir¹, Mahiswara¹, Baihaqi¹, Helman Nur Yusuf¹, Suryanto¹, Regi Fiji Anggawangsa¹, Ignatius Tri Hargiyatno¹, Aris Budiarto², Irfan Yulianto³, Budy Wirawan³

¹Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia 16911

²Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia, 10110

³Bogor Agricultural University, Jalan Raya Dramaga, Babakan, Bogor, Indonesia, 16680
sofi009@brin.go.id; maharani.yulisti@gmail.com; naseer.brpl@gmail.com; mahiswara0124@gmail.com; baihaqibrpl@gmail.com; helmankkp183@gmail.com; sury036@brin.go.id; regi.fiji.anggawangsa@brin.go.id; ignatius.tri.hargiyatno@brin.go.id; arisbudiarto@gmail.com; irfan-yu@apps.ipb.ac.id; budywi@apps.ipb.ac.id

*Correspondence: sofi009@brin.go.id

Received: January 22th, 2025; Revised: May 27th, 2025; Accepted: June 2nd, 2025

ABSTRACT

Abandoned, lost, or discarded fishing gear (ALDFG) poses a significant threat to natural marine habitats, causing damage to aquatic ecosystems and affecting fishing productivity. In this study, the Analytic Hierarchy Process (AHP) method was employed, and interviews were conducted with stakeholders to identify strategies for preventing the occurrence of ALDFG in crab fisheries in Rembang waters. The results indicate that the highest-priority criteria, as identified by stakeholders, include: marine debris: plastic bags; fishing gear waste: fishing traps; cause: entanglement with other fishing gear; impact: decreased income; solution: prohibition of modified purse seines; and actor: central government. These were considered the most significant by stakeholders. In contrast, the lowest-priority criteria were marine debris: sacks; fishing gear waste: nets or flags; cause: physical damage (cuts); impact: anxiety; solution: establishment of an oversight committee; and actor: business entities. It is hoped that these findings will offer stakeholders new insights and perspectives, which will accelerate the process of integrating diverse public opinions to develop more effective approaches to handle ALDFG.

Keywords: Analytic Hierarchical Process, Abandoned, lost, or discarded fishing gear, Crab fisheries

INTRODUCTION

Marine debris refers to durable solid materials generated from discarded or abandoned objects in coastal and aquatic environments. This waste primarily originates from land-based activities characterized by persistence and low degradation processes, mainly when deposited in the seabed (Bruemmer et al. 2023). Marine debris is not limited to coastal areas, but is also widely distributed across the ocean, including remote areas, seabeds, and polar regions, transported from other areas by water

currents, winds, and river flows (Huang 2023). In addition, marine debris can impact marine fauna, such as fish, turtles, or whales, by causing them to ingest these materials, both natural and anthropogenic, and entangle them, ultimately leading to their death (Pramudianto 2020).

We can classify marine debris into two categories: non-fishery and fishery waste. Non-fishery marine debris is waste disposed of from human activities on land and dumped into the sea. Non-fishery marine debris can include organic and inorganic waste, i.e.,

plastic waste, glass, rubber, can lids, tissue, paper, cloth, wood, and their derivatives. Marine fisheries debris comprises any remnants from fishing operations, lost or discarded fishing gear. This forms as a result of improper and ignorant disposal by fishermen regarding the consequences of such waste on the sea, which is fish waste. Artisanal fishing ports in Peru generate a range of waste, including batteries and non-reusable plastics, among other materials. However, the lack of adequate waste handling infrastructure at these ports exacerbates the concern that they contribute to the marine litter problem (Guidino *et al.* 2024). The major linear contributors to Indian seafront litter are fishing rods, due to ghost fishing caused by plastics, ropes attached to fishing nets and buoys, as well as the entanglement of sea turtles that results from such appliances (Liotta *et al.* 2023).

Marine debris originating from fishing gear is a critical environmental issue resulting from several fishing activities, as well as the behavior of fishermen. Fishing gear, including nets, lines, and floats, has the potential to become marine debris when abandoned, lost, or discarded during the process of fish capture. Such a phenomenon is often referred to as ghost fishing, which can result in the unintentional capture and death of marine organisms (Liotta *et al.* 2023; Vieira de Araujo 2023). This phenomenon may lead to a depletion of fish, which in turn exacerbates illegal fishing practices. The lack of awareness and poor behavior of fishermen towards waste management due to unregulated and unreported (IUU) fishing encourages fishermen to intentionally abandon and deliberately discard their gear in an attempt to obscure evidence and avoid being caught (Yang 2022).

Marine debris has significant economic impacts on fisheries, tourism, and broader ecosystem services. Marine debris affects the fisheries sector, which will face increased operational costs due to a decrease in catches. (Luttenberger *et al.* 2023). In the tourism sector, the presence of marine debris will reduce the number of visitors to the beach, resulting in significant economic losses. The cost of cleaning and the reduction in the aesthetic value of the beach exacerbate the financial burden on the local economy (Thongphajit 2020). The costs of marine debris management are often not borne by waste producers or polluters, but are typically covered by the community (Liu, Chang and Chen 2023). To address the economic

consequences, a multidisciplinary approach involving all stakeholders, from the government to the local community, is necessary to develop effective and adaptive marine debris management strategies (Abalansa *et al.* 2020).

Loss of fishing gear at sea is a problem categorized under the term "abandoned, lost, or discarded fishing gear" (ALDFG); the reasons for this loss are numerous. Research by Richardson *et al.* (2021) identifies bad weather conditions as a primary factor contributing to fishing gear loss. Additionally, encounters with fishing vessels and their equipment play a significant role, leading to entanglement and other losses (Frenkel *et al.* 2023; Susanto *et al.* 2022). Entangled and stuck fishing gear with seabed objects such as rocks, coral reefs, and other submerged materials is also a cause of fishing gear loss, which typically occurs with fishing gear that operates on the seabed, including trawl nets and traps (Frenkel *et al.* 2023; Lovell 2023). Negligence and noncompliance with navigation rules of ship operators may also generate incidents that damage or displace fishing gear, as happened in Korean coastal waters (Choi *et al.* 2022). Other factors contributing to the loss of fishing gear at sea include damage, the difficulty in tracing the locations of lost gear, and the improper disposal of damaged equipment (Choi *et al.* 2022).

In general, the loss of fishing gear has profound environmental, economic, and social impacts. Environmentally, ALDFG plays a significant role in marine pollution because plastic gears may persistently outlast in the ocean for decades, causing habitat degradation and posing serious threats to marine wildlife due to entanglement or swallowing (Paul *et al.* 2024; Welden 2020). In addition, lost fishing gear has an impact on biodiversity, damaging coral reef ecosystems and increasing cetacean bycatch (Frenkel *et al.* 2023). Economically and socially, ALDFG has a significant influence on fishing productivity and the livelihoods of coastal communities (Yang 2022).

Preventing ALDFG has been carried out by the Indonesian government and global organizations worldwide, such as the Global Ghost Gear Initiative (GGGI). Presidential Regulation No. 83 (2018) was issued by the Indonesian government to minimize marine waste, including plastic, resulting from fishing activities (Cahyani *et al.* 2023). Additionally, Indonesia has initiated the Indonesian National Action Plan for Marine Plastic Debris

(NPOA-MPD 2017-2025), aimed at reducing marine plastic debris, including ALDFG, with a target of achieving a 70% reduction by 2025. The initiative highlights the efforts made to handle, recover, and recycle fishing gear, thereby mitigating its impact on the environment, economy, and society (World Bank 2022). Organized marking on fishing gear is an effort to prevent loss (Yang 2022), supported by the Global Ghost Gear Initiative (GGGI).

Furthermore, sensor and warning system applications on buoys attached to fishing gear could detect excessive movements. Those fishing gears can be retrieved immediately; hence, the number of fishing gear lost at sea would be prevented (Lee *et al.* 2023). Other preventive measures, including equipment maintenance and training programs for vessel crews, have been identified by fishermen to reduce fishing gear loss. Routine maintenance ensures fishing gear is in good condition, while training may improve fishermen's skills in managing and handling fishing gear (Richardson *et al.* 2022). Above all, awareness is the most needed among fishing communities, particularly (Ulfah *et al.* 2023), supported by collaborative endeavors between law enforcement, the private sector, and international partners so that waste management practices from fishing gear are accordingly with regulations and effective enforcement (Cahyani *et al.* 2023; Winarwati 2020).

The Gross Regional Domestic Product (GDP) of Rembang Regency accounts for 6.27 percent of the fisheries subsector. The production of marine fisheries includes crab. Crab fisheries contribute significantly to Rembang Regency, Central Java. The northern coastline of Rembang is the primary location for crab fishing activities, utilizing gillnets and traps as their primary fishing gear (Sari *et al.* 2025). The study by Satria *et al.* (2023) reveals that crab fisheries produce ALDFG, which consists of 86% metal and 14% plastic. This study proves the importance of research related to preventing ALDFG in Rembang waters.

Efforts to prevent ALDFG in crab fisheries in Rembang waters have not been effectively achieved due to the lack of understanding and collaboration between stakeholders on this issue. This study conducted an AHP analysis on the factors influencing the prevention of ALDFG, with the main idea focusing on the extent to which stakeholders play a significant role in

preventing ALDFG in crab fisheries located in Rembang waters, aiming to prevent ghost fishing that impacts crab resources. Therefore, this study aims to explore the perspectives of various stakeholders in efforts to avoid ALDFG in Rembang waters and understand the efforts to mitigate conflicts in the management of ALDFG in crab fisheries.

The Analytic Hierarchy Process (AHP), a decision-making tool, is used to assess the relative importance of various factors (Ramík 2020). AHP has also been used to explore stakeholder preferences in preventing ALDFG in Taiwanese waters (Yang 2022). By combining the perspectives of different stakeholder groups, such as local fishermen, government officials, and environmental organizations, this approach can provide valuable insights into the complex socio-ecological dynamics (Rutting *et al.* 2021).

METHODS

This study was conducted in Rembang, Central Java, Indonesia (Figure 1), utilizing a questionnaire based on the AHP method by Saaty (Kibria *et al.*, 2024) to determine how stakeholders can contribute to preventing ALDFG from occurring at sea.

Six (6) criteria are made for the AHP questionnaire framework (Figure 2). Data collection was carried out through an interview in a focus group discussion (FGD) in January 2024 with 29 participants from the local fisheries and marine service, fishing port managers, fish auction managers, the Ministry of Maritime Affairs and Fisheries, fish trap fishermen, crab net fishermen, fish trap waste collectors, and researchers. The AHP method enables participants to rank the level of importance of factors under each dimension according to their preferences and perceptions. This process allows participants to express their opinions on important issues, provide reasons and preferences for ranking elements, and minimize logical errors when comparing features. AHP is used to determine the relative importance of objectives and obtain a series of appropriate weights (Jawad *et al.* 2024).

The relative importance of each target is determined through a series of pairwise comparisons. The targets are arranged in pairs, and each participant is asked to rate the importance of one target compared to the other on a scale of 1 to 9. The rating scale is described in Table 1.

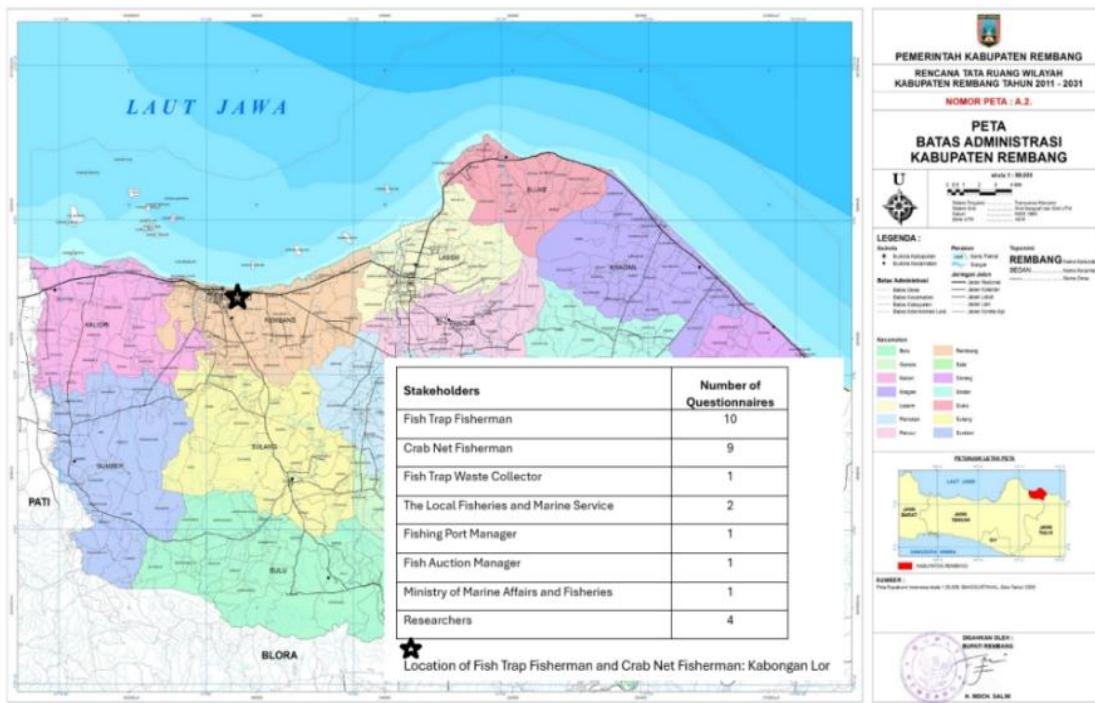


Figure 1 Location of data collection and questionnaire details in Rembang Regency (Source: <https://rembangkab.go.id/peta/>)

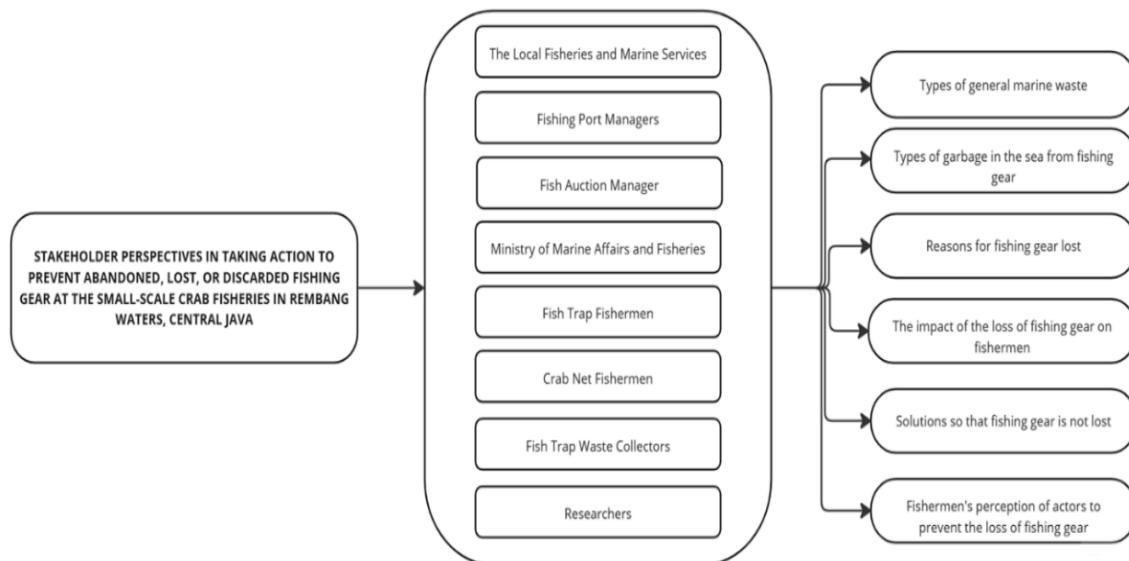


Figure 2 Analytical hierarchy process (AHP) framework

Table 1 Weight Scale

Value	Meaning	Explanation
1	Equally important	
3	A little more important	
5	Somewhat more important	
7	Much more important	
9	Absolutely more important	
2, 4, 6, 8	The value between the numbers above	One element is more important than the other One is more important than the other One is more chosen, and the dominance is real One element is more strictly chosen If a compromise is needed

RESULTS

Stakeholders Perceptions of Criteria

1. Types of general marine waste

The first question was used to explain the criteria for types of marine debris (Figure 3). Among all stakeholder groups, "plastic bags" were considered the priority. Participants also believed that "sacks" should be of the least priority. This figure shows that participants consider "plastic bags" to be a more essential type of waste compared to other kinds of marine debris. The results show that a participant's perception of "plastic/bags" is a type of waste often found in comparison to other types of waste in the ocean. Likewise, used water bottles are often found when fishing is performed. Plastic bag waste was generated not only from household activities but also from fishing activities. Plastic bags are used by fishermen to wrap food and supplies for going fishing.

Marine animals are found entangled or swallowing marine debris. Studies from the past few decades have shown that marine biota have been severely impacted by plastic

debris, including ingestion, entanglement, and entrapment. Sea turtles, whales, seals, and seabirds have been found entangled and consuming large amounts of plastic, accumulating chemicals contained in plastic (Li and Leung 2024). Therefore, concrete steps must be taken to prevent plastic bags and bottles from becoming marine debris.

The perception of marine debris as identical to plastic bags is primarily due to the prevalence and visibility of plastic debris in the marine environment as well as its significant environmental impact (Bettencourt *et al.* 2023; Watson *et al.* 2022). Plastic bags dominate marine debris because they are durable, lightweight, and widely used in various products, resulting in their widespread presence in the ocean and coastal areas (Bettencourt *et al.* 2023; Prasetiawan *et al.* 2022; Ramos *et al.* 2024; Vieira de Araujo 2023). The presence of plastic bags supports these findings, which are often observed and reported by respondents surveyed on a large scale across eight European countries, indicating that 70% of respondents pay attention to marine debris (Van Oosterhout *et al.* 2022).

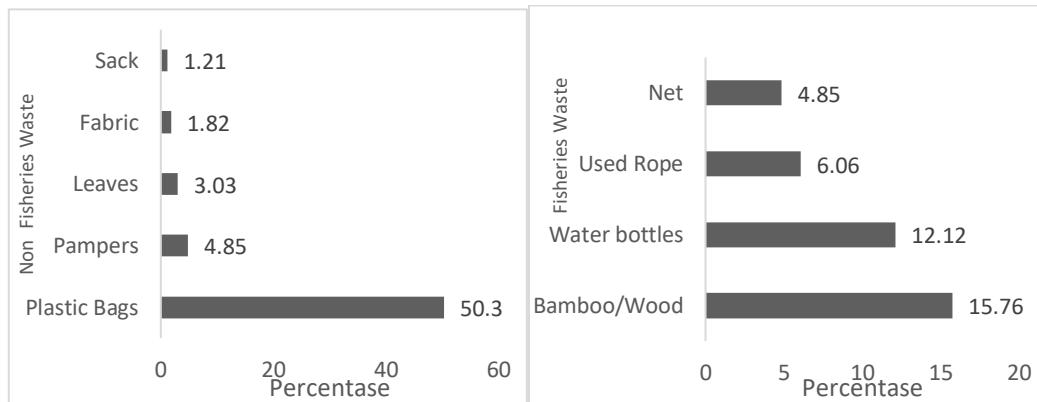


Figure 3 Percentage of marine debris from fisheries and non-fisheries.

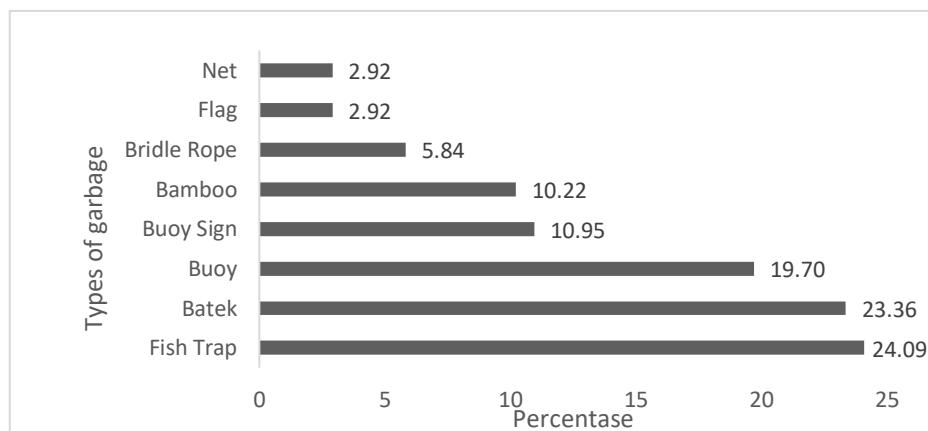


Figure 4 Results of priority selection of types of waste from fishing gear.

2. Types of waste at sea from fishing gear

In Indonesia, marine debris from fishing activities has a significant potential considering the high number of fishing units operating, especially in the northern part of Java. Parts of fishing gear are often found as debris in the ocean, especially when gears are separated, dismembered, or cut, such as wood, bamboo, pieces of nets, ropes, and buoy signs. The following are the types of waste from fishing gear and its components often found in the sea, according to the opinions of stakeholders participating in the focus group discussion (Figure 4).

Fishermen's opinions indicate that the most frequent types of waste from fishing gear in Rembang waters are fish traps, followed by bridle ropes and buoys, in that order. This data indicates that fish traps, bridle ropes, and buoys are key components of fishing gear that stakeholders consider crucial to manage correctly. Rembang fishermen use traps made of metal for crabs, which measure 60x30 centimeters and feature two maces. Later, nets with a mesh size of 33 millimeters will form the sides of traps. The net construction used either 1 inch or 1.25 inches in thickness, among other measurements.

In-depth interviews with Rembang fishermen explained that crab traps can become marine debris when they become entangled with other fishing gear, such as "cotok" (mini trawl). Fishermen preferred to throw the entangled fishing gear into the sea or abandon it if the fishing gear was attracted by other fishing gear rather than bring it ashore. They can be considered thieves had they been seen taking the traps home, even though they were disposing of them in a landfill. Additionally, damaged traps can occur due to corrosion or degraded materials, causing them to become detached from the ropes and separated from the set.

The respondent's perspective that fish traps are a source of marine debris is caused by several factors related to their construction techniques and materials. The fish trap, locally named "Bubu," is constructed from wood, rattan, and metal, which is economically efficient; however, it is easily lost or disposed of during fishing operations (Silvi *et al.* 2023). Had the fishing gear been disused and disposed of inappropriately, it could usually have become marine debris (Sharma *et al.* 2024; Thomas *et al.* 2023). Buoys may also

become debris from fishing gear due to several factors. First, buoys are vulnerable to wind and waves, making them easily be lost at sea (Seo and Park 2021). Second, buoys without monitoring would be difficult to locate and retrieve, ultimately becoming marine debris (Merlino *et al.* 2023). Furthermore, other fishing equipment, such as nets and ropes, contributes significantly to the presence of microplastic fibers in the marine environment (Stolte *et al.* 2020). Bamboo also becomes marine debris if it is used ineffectively (Nursidi *et al.* 2024).

3. Reasons for the loss of fishing gear

The criteria for the causes of the loss of fishing gear are shown in Figure 5. Most of the respondents stated that "being entangled in other fishing gear" is very important, with a value of 22.038. The cause of "being cut" is the last place of all reasons. However, the "weather" criterion is also the priority, but the weight value is lower than the "entangled in other fishing gear" criterion.

The majority of respondents indicated that being entangled in other fishing gear is due to several factors, such as other fishing gear operations. Other fishing gear, mini trawl (locally named "Cotok"), scrapes the seabed so that the fish trap unintentionally lifts off and separates from the set (Matratty *et al.* 2023; Nedostup *et al.* 2022).

Cotok is a prohibited fishing gear, but fishermen widely use it; therefore, serious actions are needed to control it (Widayanto *et al.* 2022). It has been widely proven that weather conditions can cause loss of fishing gear. Richardson *et al.* (2021) prove that bad weather is the most common cause of the loss of fishing gear at sea in 7 countries around the world. Susanto *et al.* (2022) also state that bad weather is one cause of the loss of fishing gear in the Banten waters. In addition, Lovell (2023) states that adverse weather conditions and obstacles to benthic barriers are the primary reasons for the loss of fish traps in the East Caribbean. The theft of fishing gear is also a contributing factor, and Diggins (2023) has proven that this occurs due to competition in the fishing industry. This issue will impact the local economy and sustainable fishing practices (Nauen and Boschetti 2022; Witbooi *et al.* 2020). Due to water currents, large waves, and being cut are the least common causes, with the lowest weighing values by the experts.

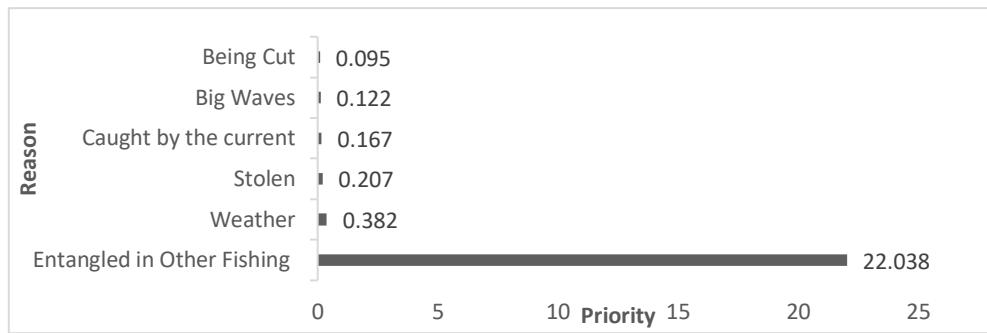


Figure 5 Priority is the choice of the cause of the loss of fishing gear.

4. The impact of the loss of fishing gear on fishermen

Concerning the impacts, the result analysis shows that some priorities of the effects of fishing gear loss are a reduction in income, environmental degradation, and conflict with friends. However, "lessen income" is the main impact based on participant perceptions, with the value of 0,6662. On the other hand, "anxious among people" has the lowest impact value due to fishing gear loss, with a value of 0,0161. Those results are analyzed in Figure 6.

The most significant impact is the loss of fishing gear for fishermen, which can substantially reduce their income for several reasons. First, fishing gear lost at sea can lead to ghost fishing, which may deplete fish stocks, reduce the availability of fish for active fishermen, and ultimately decrease their catches and income (Drakeford *et al.* 2023; Ghaouar *et al.* 2024). Second, defective and disfigured fishing gear led fishermen to incur additional repair costs for those broken gears and even prompted them to purchase new

fishing gear. Those defective gears may also lead to inefficient production due to catch loss (Frenkel *et al.* 2023; Waileruny *et al.* 2023).

The third impact is declining in fish resources quality because fishing gear usually contains synthetic materials that remain in the marine environment for decades, and it contributes to microplastic accumulation that poses a severe threat to aquatic life and ecosystems (Richardson *et al.* 2022; Rijkure *et al.* 2024; Sharma *et al.* 2024; Syversen *et al.* 2022). Encountering two different types of fishing gear in different fishing vessels, such as between a Cotok and a Fish trap, which both operate on the seabed, would destroy both gears and even cause the loss of a Fish trap in the ocean (Widayanto *et al.* 2022). This moment would trigger conflict between user groups due to differing interests with the same limited resources (Abdurrahim *et al.* 2020). As a secondary priority, the loss of fishing gear creates conflicts that lead to risks to the ecosystem, including fish resource decline, as explained.

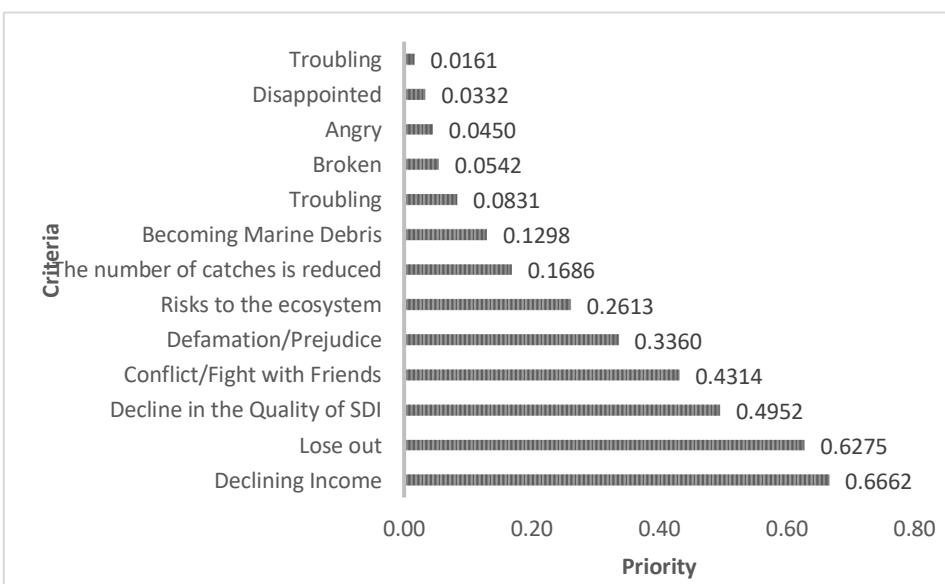


Figure 6 Priority selection of the impacts of the loss of fishing gear on fishermen

Figure 7 Priority is the choice of solution to prevent fishing gear from being lost.

5. Solutions so that fishing gear is not lost

A couple of factors that are important to consider are "prohibited fishing gear must be completely forbidden to operate (such as Cotok)" and "eliminate/eradicate Cotok fishing gear". However, prohibiting forbidden fishing gear is the most critical factor, with a value of 1.048. Forming a supervisory committee is the least important factor to consider, with a value of 0.025. These results are illustrated in Figure 7.

The prohibition of Cotok is the most prominent factor that needs to be implemented, as well as eradicating this gear to mitigate the fishing gear loss and lessen marine debris. These strategies had been attempted through local regulation in Rembang and Pati Regency (Widayanto *et al.* 2022). Supervision from related agencies, such as the local fisheries office, and dissemination of the regulation to fishermen and the local community are needed to ensure the Cotok prohibition regulation is implemented (Cacciatore and Eliantonio 2020). Local government supervision is upheld by Regulation No. 36 (2023) from the Minister of Maritime Affairs and Fisheries, which pertains to the placement of fishing gear and fishing aids in designated fishing zones and state fisheries management areas within the Republic of Indonesia's inland waters. The use of cotok and similar fishing gear is prohibited under this regulation, which specifically addresses the ban on trawl nets and trawls within the state fisheries management area of the Republic of Indonesia. The lack of regulatory content related to the prohibition allows respondents

to choose the regulatory criteria as the third highest priority, with a value of 0.177. The criterion "always monitor the fishing gear" is another solution that the participants prefer to avoid loss.

However, this solution is only possible if the gears are plugged in for a day of fishing. Fishing traps are usually planted on the seabed for seven days, and crab is harvested after that. Local village regulations have been enacted and are derived from local government regulations related to the management of crab fisheries at Gedongmulyo Village, Rembang Regency. Fishing gear marking is another method to prevent the loss of fishing gear. Participants have chosen this strategy as the third priority. Fishing gear marking has been studied in the Sadeng area, Yogyakarta, and Pekalongan, Central Java (FAO 2018), and is expected to be applied in other places.

6. Fishermen's perception of actors to prevent the loss of fishing gear

Participants convey their opinion that the central government (particularly the Directorate General of Marine and Fisheries Resources Surveillance) is the leading actor that may prevent the loss of fishing gear with a value of 0.9576. Security forces are also a crucial factor under the central government. Business actors are the least important to prevent fishing gear loss, with a value of 0.0255.

The central government plays a crucial role in preventing the loss of fishing gear at sea due to its ability to implement and enforce regulations (Ardhiansyah *et al.* 2024). Additionally, security forces play a crucial role

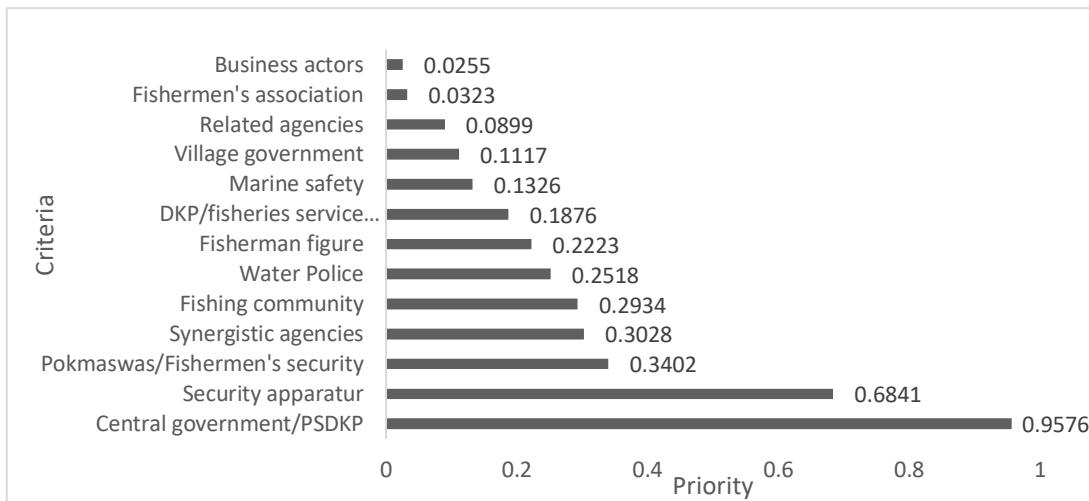


Figure 8 The priority of fishermen's perception of actors is to prevent the loss of fishing gear.

in enforcing rules designed to prevent the loss of fishing gear through rigorous supervision, thereby minimizing the risk of lost gear (Yang 2022).

The second essential actors from the participant perspective included community supervisory groups, synergistic agencies, fishing communities, water police, and fishermen leaders. The third important actor chosen by respondents is the local fisheries office, marine security, village government, related agencies, fishermen associations, and business actors.

DISCUSSION

The study's results indicated that plastic bags are the primary waste found in seawater, surpassing waste from fishing gear. Socialization of information through fishing groups or communities was a local wisdom of the fishing community in Rembang waters. This fishermen's community group is a platform for exchanging information and experiences on fishing-related issues, including information on marine debris from plastic bags. The information would lead fishermen to bring waste from the ocean to land while fishing (Setyono *et al.* 2023).

The most common marine waste in Rembang waters is Fishing traps. This finding aligns with the widespread use of Cotok-operated trawls, which results in an increase in ALDFG incidents from fish traps on the ocean floor as they become ensnared in the Cotok (Satria *et al.* 2023). This incident ultimately impacted fishermen's income due to additional costs to repair the damage and even replace the lost trap. Respondents agreed that the use of Cotok should be prohibited, and they wished the government

had action strategies to prevent the loss of fishing gear in the future (Widayanto *et al.* 2022).

The results of this study provide new insights regarding the massive use of Cotok as an alternative fishing gear. Coastal areas commonly employ cotok, which exert a considerable impact on the environment. The use of Cotok has had a significant effect on reducing the loss of fishing gear, particularly with fish traps. The local government, in collaboration with the fishing community, should develop a new policy to evaluate the use of Cotok while ensuring that other fishing activities are not disrupted (Roisah *et al.* 2023).

An analytical hierarchy process (AHP) was used by Yang (2022) to determine stakeholder priorities in preventing ALDFG. The distinction between this study and Yang's (2022) is the number of dimensions used. Yang (2022) employed four dimensions and 16 key factors in a questionnaire framework to guide action in preventing ALDFG, as summarized from the list of best practices of the Global Ghost Gears Initiative organization. In contrast, this study employs six general criteria. Furthermore, the population in this study consisted of 29 individuals in one study area (Rembang district), whereas Yang (2022) involved 63 respondents, including stakeholders from fishing ports, local governments, and local fishermen's associations throughout Taiwan.

CONCLUSIONS

This study aims to see the prevalence of stakeholders in preventing ALDFG in crab fisheries in Rembang waters. Plastic is a non-biodegradable waste that is widely found,

whereas bamboo is a type of forestry waste that can become marine waste. Bubu fishing gear is marine debris derived from fishing gear. The reason for the loss of much fishing gear is exposure to other fishing gear. This results in a decrease in fishermen's income. The solution to overcome this is the prohibition of "cotok" as a fishing tool. The fishermen perceive that the central government is an actor in preventing the loss of fishing gear.

RECOMMENDATION

Future research is essential to prevent ALDFG at crab fisheries in Rembang waters effectively. An in-depth analysis, as implemented by the Global Ghost Gears Initiative questionnaire, needs to be conducted to engage more stakeholders and expand sampling locations to more than one study area. Future research also needs to engage a broader range of stakeholders, including those from fishing ports, local governments, and fishermen's associations throughout Indonesia, with a specific focus on the role of the fishing gear being used. In-depth research related to fishing gear marking should also be conducted immediately as a measure to prevent an increase in ALDFG incidents at sea.

ACKNOWLEDGMENTS

RIIM (Riset dan Inovasi untuk Indonesia Maju) III, batch three, funded the study. The author would like to express his gratitude to the LPDP of the Ministry of Finance, IPB University, the National Research and Innovation Agency, the Ministry of Marine Affairs and Fisheries, the Rembang Regency Fisheries Service, and all parties who have facilitated and assisted this research.

REFERENCES

Abalansa S, El Mahrad B, Vondolia GK, Icely J, Newton A. 2020. The Marine Plastic Litter Issue: A Social-economic Analysis. *Sustainability (Switzerland)*. 12(20): 1–27. <https://doi.org/10.3390/su12208677>

Abdurrahim AY, Ross H, Adhuri DS. 2020. Analysing Fisheries Conflict with the FishCollab' Conflict Mapping' Toolkit: Lessons from Selayar, Indonesia. *IOP Conference Series: Earth and Environmental Science*. 420(012001): 1–11. <https://doi.org/10.1088/1755-1315/420/1/012001>

Ardhiansyah HY, Suhartono S, Mangesti YA. 2024. Law Enforcement on Fishery: Prohibition of Trawl Nets as an Effort to Protect Small Fisherman Fairly. *Klausula (Jurnal Hukum Tata Negara, Hukum Adminitrasi, Pidana dan Perdata)*. 3(2): 90–104. <https://doi.org/10.32503/klausula.v3i2.6215>

Bettencourt S, Freitas DN, Costa S, Caeiro S. 2023. Public Perceptions, Knowledge, Responsibilities, and Behavior Intentions on Marine Litter: Identifying Profiles of Small Oceanic Islands Inhabitants. *Ocean and Coastal Management*. 231(106406): 1–14. <https://doi.org/10.1016/j.ocecoaman.2022.106406>

Bruemmer AL, Dissanayake A, Davies JS. 2023. Marine Litter-fauna Interactions: A Standardised Reporting Framework and Critical Review of the Current State of Research with a Focus on Submarine Canyons. *Frontiers in Marine Science*. 10(1225114): 1–17. <https://doi.org/10.3389/fmars.2023.1225114>

Cacciato F, Eliantonio M. 2020. *Quis Custodiet Ipsos Custodes? Assessing the Systems of Controls of the European Fisheries Control Agencys Inspecting Powers*. In: Controlling EU Agencies. pp. 215–233. Edward Elgar Publishing. <https://doi.org/10.4337/9781789905427.00020>

Cahyani FA, Jaya BPM, Wijaya D. 2023. Marine Waste Management Policy as an Effort to Prevent Environmental Pollution and Sustainability of Marine Ecosystems: Indonesia Perspective. *Jurnal Legalitas*. 16(2): 217–233. <https://doi.org/10.33756/jelta.v16i2.21158>

Choi WS, Jung BK, Park CH, Lee NU. 2022. Legislative Consideration on the Improvement of the Display Method of Fishing Gear Buoys -Based on the Case of Fishing Gear Damage Accident. *Maritime Law Review*. 34(2): 319–335. <https://doi.org/10.14443/kmlaw.2022.34.2.11>

Diggins J. 2023. Fishing, Thieving, Witchcraft: Apprehension and Mistrust in

Maritime West Africa. *Journal of the Royal Anthropological Institute*. 29(3): 593–610.
<https://doi.org/10.1111/1467-9655.13957>

Drakeford BM, Forse A, Failler P. 2023. The Economic Impacts of Introducing Biodegradable Fishing Gear as a Ghost Fishing Mitigation in the English Channel Static Gear Fishery. *Marine Pollution Bulletin*. 192(114918): 1-12.
<https://doi.org/10.1016/j.marpolbul.2023.114918>

FAO. 2018. Dixon C, Satria F, Wudianto, Nurdin E, Utama A Ansri, Mahiswara, Toole J, He, Pingguo, Gear Marking Pilot Study in Indonesian Small-Scale Gillnet Fisheries with Reference to FAO's Draft Guidelines on the Marking of Fishing Gear. *Fisheries and Aquaculture Technical Paper No. T632*(May): 1-77.
<https://www.fao.org/responsible-fishing/resources/detail/en/c/1316988/>

Frenkel C, Eadie M, Murphy A, Iacarella JC, Ban NC. 2023. Why, and Where, is Commercial Fishing Gear Lost? A Global Review and Case Study of Pacific Canada. *Marine Pollution Bulletin*. 196(115528): 1–16.
<https://doi.org/10.1016/j.marpolbul.2023.115528>

Ghaouar H, Boussellaa W, Jribi I. 2024. Ghost Gears in the Gulf of Gabès: Alarming Situation and Sustainable Solution Perspectives. *Sustainability*. 16(2632): 1–15.
<https://doi.org/10.3390/su16072632>

Guidino C, Solano Sare A, Ortiz-Alvarez C, Alfaro-Cordova E, Bielli A, Asencio Guzman I, Alfaro-Shigueto J, Mangel JC. 2024. At-sea Solid Waste Production by a Small-Scale Fishery in Peru. *Waste Management and Research*. 42(4): 344–351.
<https://doi.org/10.1177/0734242X231178221>

Huang Z. 2023. Distribution and Solutions for Marine Debris: A Case Study on the Great Pacific Ocean Garbage Patch. *Applied and Computational Engineering*. 3(1): 253–262.
<https://doi.org/10.54254/2755-2721/3/20230471>

Jawad M, Naz M, Muqaddus H. 2024. A Multi-criteria Decision-making Approach for Portfolio Selection by using an Automatic Spherical Fuzzy AHP Algorithm. *Journal of the Operational Research Society*. 75(1): 85–98.
<https://doi.org/10.1080/01605682.2023.2174905>

Kementerian Kelautan dan Perikanan. 2023. *Peraturan Menteri Kelautan dan Perikanan Nomor 36 Tahun 2023 tentang Penempatan API dan ABPI di Zona Penangkapan Ikan Terukur dan WPPNRI di Perairan Darat*. Jakarta.

Kibria AS, Seekamp E, Xiao X, Dalyander S, Eaton M. 2024. Multi-criteria Decision Approach for Climate Adaptation of Cultural Resources along the Atlantic Coast of the Southeastern United States: Application of AHP Method. *Climate Risk Management*. 43(100587): 1-17.
<https://doi.org/10.1016/j.crm.2024.100587>

Lee JW, Kim JH, Lee SD. 2023. The Development of Electronic Buoy Monitoring System with Antenna Comparison Experiments to Reduce Data Loss Rates. *Journal of Advanced Marine Engineering and Technology*. 47(6): 385–392.
<https://doi.org/10.5916/jamet.2023.476.385>

Li WC, Leung HM. 2024. *Management Strategy and Mitigation Measures for Plastic Pollution*. In: *Microplastic Contamination in Aquatic Environments*. pp. 399–419. Elsevier.
<https://doi.org/10.1016/B978-0-443-15332-7.00002-8>

Liotta I, Avolio R, Castaldo R, Gentile G, Errico ME, Cocca M. 2023. Recycling Approach of Marine Plastic Litter: Highly Filled Composites Obtained by Loading Waste Fishing Nets Fiber into Fluidified Recycled Polystyrene and Acrylonitrile Butadiene Styrene. In: *2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea)*. La Valletta, Malta. pp 249-253.
<https://doi.org/10.1109/MetroSea58055.2023.10317495>

Liu T-K, Chang H, Chen Y-S. 2023. Public Awareness of Marine Environmental Quality and its Relationship for Policy

Support on Marine Waste Management. *Marine Pollution Bulletin*. 195(115456): 1–10. <https://doi.org/10.1016/j.marpolbul.2023.115456>

Lovell TA. 2023. Understanding the Drivers, Scale and Impact of Abandoned, Lost and Otherwise Discarded Fishing Gear in Small-Scale Fisheries: An Eastern Caribbean Perspective. *Frontiers in Marine Science*. 10(1139259): 1–16. <https://doi.org/10.3389/fmars.2023.1139259>

Luttenberger LR, Ančić I, Luttenberger A, Kosovac I. 2023. Marine Litter and the Circular Economy. *Časopis Pomorskog fakulteta Kotor - Journal of Maritime Sciences*. 24(2): 18–30. <https://doi.org/10.56080/jms231102>

Matratty DDP, Siahainenia SR, Waileruny W, Noija D. 2023. Effect of Marine Debris on the Catching Ability of Bottom Gill Net. *IOP Conference Series: Earth and Environmental Science*. 1207(012016): 1–5. <https://doi.org/10.1088/1755-1315/1207/1/012016>

Merlino S, Locritani M, Guarneri A, Delrossi D, Bianucci M, Paterni M. 2023. Marine Litter Tracking System: A Case Study with Open-Source Technology and a Citizen Science-Based Approach. *Sensors*. 23(935): 1–32. <https://doi.org/10.3390/s23020935>

Nauen CE, Boschetti ST. 2022. *Fisheries Crimes, Poverty and Food Insecurity*. In: Routledge Handbook of Maritime Security. pp. 239–249. London, Routledge. <https://doi.org/10.4324/9781003001324-23>

Nedostup AA, Razhev AO, Nasenkov P. 2022. Models of Operation Processes of Bottom Trawl Under Complex Impact of Abiotic, Biotic and Anthropogenic Factors. *Vestnik Astrahanskogo Gosudarstvennogo Tehničeskogo Universiteta*. 2022(3): 106–115. <https://doi.org/10.24143/2073-5529-2022-3-106-115>

Nursidi, Nursida NF, Heriansah, Lapong I, Saputra Z, Hardiana A. 2024. Comparing the Effectiveness of Bamboo Floats and Plastic Bottles in Vertical Cultivation of *Kappaphycus alvarezii* for Mitigating Marine Debris Pathways: An Insight into Eco-Friendly Seaweed Aquaculture. *Egyptian Journal of Aquatic Biology and Fisheries*. 28(4): 1883–1894. <https://doi.org/10.21608/ejabf.2024.375213>

Van Oosterhout L, Dijkstra H, Van Beukering P, Rehdanz K, Khedr S, Brouwer R, Duijndam S. 2022. Public Perceptions of Marine Plastic Litter: A Comparative Study Across European Countries and Seas. *Frontiers in Marine Science*. 8(784829): 1–14. <https://doi.org/10.3389/fmars.2021.784829>

Paul S, Nath S, Bhattacharjee S, Mukherjee S. 2024. Unveiling the Effects of Microplastics Pollution on Marine Fauna. *Blue Biotechnology*. 1(6): 1–8. <https://doi.org/10.1186/s44315-024-00006-6>

Pemerintah Republik Indonesia. 2018. *Peraturan Presiden Republik Indonesia Nomor 83 Tahun 2018 Tentang Penanganan Sampah Laut*. Jakarta.

Pramudianto A. 2020. The Role of International Law and National Law in Handling Marine Plastic Litter. *Lampung Journal of International Law*. 1(2): 43–54. <https://doi.org/10.25041/lajil.v1i2.2024>

Prasetyawan NR, Sudirman N, Salim HL, Ati RNA, Kepel TL, Daulat A, Kusumaningtyas MA, Permana SM, Setiawan A, Pranowo WS, Rustam A, Suryono DD, Jayawiguna MH, Sukoraharjo SS. 2022. Preliminary Study of Marine Debris Composition from Fisherman Activities: A Case Study on Cikidang Fishing Port, Pangandaran. *IOP Conference Series: Earth and Environmental Science*. 1118(012082): 1–9. <https://doi.org/10.1088/1755-1315/1118/1/012082>

Ramík J. 2020. *Applications in Decision-Making: Analytic Hierarchy Process—AHP Revisited*. In: *Lecture Notes in Economics and Mathematical Systems*. pp. 189–211. Vol. 690. Springer. https://doi.org/10.1007/978-3-030-39891-0_6

Ramos S, Rodrigues SM, Pereira R, Silva D, Almeida CMR. 2024. *Floatables and Plastic Debris in Estuarine and Coastal Marine Environments*. In: Treatise on Estuarine and Coastal Science (Second Edition). pp. 467–511. Elsevier. <https://doi.org/10.1016/B978-0-323-90798-9.00111-6>

Richardson K, Hardesty BD, Vince J, Wilcox C. 2022. Global Estimates of Fishing Gear Lost to the Ocean Each Year. *Science Advances*. 8(41): 1–8. <https://doi.org/10.1126/sciadv.abq0135>

Richardson K, Hardesty BD, Vince JZ, Wilcox C. 2021. Global Causes, Drivers, and Prevention Measures for Lost Fishing Gear. *Frontiers in Marine Science*. 8(690447): 1–11. <https://doi.org/10.3389/fmars.2021.690447>

Rijkure A, Cerbule K, Megnis J. 2024. Abandoned, Lost, or Otherwise Discarded Fishing Gear in Coastal Fisheries: A Case Study in the Baltic Sea Coastal Waters of Latvia. *Marine Policy*. 165(106187): 1–10. <https://doi.org/10.1016/j.marpol.2024.106187>

Roisah K, Rahayu R, Yusliwidaka A, Mubarok Z, Buditama A. 2023. Legal Development in the Overcoming Overfishing in Indonesian Coastal Areas. *Journal of Indonesian Legal Studies*. 8(2): 1065–1102. <https://doi.org/10.15294/jils.v8i2.69358>

Putting L, Vervoort JM, Mees H, Driessen PPJ. 2021. Participatory Scenario Planning and Framing of Social-Ecological Systems: An Analysis of Policy Formulation Processes in Rwanda and Tanzania. *Ecology and Society*. 26(4): 1–20. <https://doi.org/10.5751/ES-12665-260420>

Sari RN, Marimin M, Uju U, Riani E, Sukoraharjo SS, Zamroni A. 2025. Prospective Analysis of the Key Actors and Supporting Institutions Role in the Crab Agroindustry in Rembang District, Central Java. *International Journal of Conservation Science*. 16(1): 339–356. <https://doi.org/10.36868/IJCS.2025.01.24>

Satria MB, Wicaksono RZ, Utomo RP. 2023. Composition of Lost and Discarded Fishing Gear (Ghost Fishing) In the Blue Swimming Crab Fishery in Rembang, Central Java. *IOP Conference Series: Earth and Environmental Science*. 1251(012052): 1–5. <https://doi.org/10.1088/1755-1315/1251/1/012052>

Seo S, Park Y-G. 2021. Tracking a Coastal Wave Buoy, Lost from the Southern Coast of Jeju Island, Using Lagrangian Particle Modeling. *Journal of Marine Science and Engineering*. 9(8): 1–8. <https://doi.org/10.3390/jmse9080795>

Setyono B, Juhadi J, Banowati E, Sanjoto TB. 2023. Sistem Pewarisan Nilai-Nilai Budaya Lokal Kalender Musim Masyarakat Nelayan Rembang. *Jurnal Al-Ijtima'iyah*. 9(2): 237–259. <https://doi.org/10.22373/al-ijtima'iyah.v9i2.19013>

Sharma D, Dhanker R, Bhawna, Tomar A, Raza S, Sharma A. 2024. Fishing Gears and Nets as a Source of Microplastic. In: *Microplastic Pollution*. pp. 127–140. Singapore, Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8357-5_8

Silvi A, Sudirman A, M Rizza M, Mohammad O A. 2023. The Effectiveness of Traditional Traps Fishing Gear (Bubu) at Nusantara Fishing Port of Tanjungpandan (NFPT), Belitung Regency. *Coastal and Marine Journal*. 1(1): 29–38. <https://doi.org/10.61548/cmj.v1i1.4>

Stolte A, Lamp J, Dederer G, Schneider F, Kalinowska M, Migdal S, Press M, Tscherneij V, Frössberg A. 2020. Derelict Fishing Gear – Removing a Source of Microplastics from the Marine Environment. In: *Springer Water*. pp. 72–81. Springer Nature. https://doi.org/10.1007/978-3-030-45909-3_14

Susanto A, Syafrie H, Nurdin HS, Irnawati R, Supadmingisih FN, Hamzah A, Kurniawati V. 2022. Lost Gear on Blue Swimming Crab Fisheries in Banten Bay: Case of Abandoned, Lost or Discarded Fishing Gear. *Marine Fisheries : Journal of Marine Fisheries Technology and Management*. 13(2):

233–241.
<https://doi.org/10.29244/jmf.v13i2.41961>

Syversen T, Lilleng G, Vollstad J, Hanssen BJ, Sønvisen SA. 2022. Oceanic Plastic Pollution Caused by Danish Seine Fishing in Norway. *Marine Pollution Bulletin*. 179(113711): 1-6. <https://doi.org/10.1016/j.marpolbul.2022.113711>

Thomas SN, Mandhir SK, Krishnankutty H, Baby KAM, Ghosh KAA. 2023. Ghost Fishing Capacity of Lost Experimental Gillnets: A Preliminary Study from Indian Waters. *Environmental Science and Pollution Research*. 30(14): 40062–40072. <https://doi.org/10.1007/s11356-022-25029-7>

Thongphajit P. 2020. *Fishermen's Participation in Marine Litter Collection Schemes in Thailand*. Bangkok, Thailand, Chulalongkorn University. <https://doi.org/10.58837/CHULA.THE.2020.192>

Ulfah UM, Widodo W, Budiman Djoko Said, Pujo Widodo, Herlina Juni Risma Saragih, Panji Suwarno. 2023. Indonesia's Policy in Addressing Marine Debris. *International Journal of Humanities Education and Social Sciences (IJHES)*. 3(3): 1398–1405. <https://doi.org/10.55227/ijhess.v3i3.786>

Vieira de Araujo F. 2023. Marine Litter in the Perception of a Group of Fishermen. *Journal of Marine Science and Research*. 2(1): 01–04. <https://doi.org/10.58489/2836-5933/003>

Waileruny W, Uneputty PA, Hehanussa KG, Matruty DJ, Sabandar AM., Matratty DDP. 2023. Impact of Marine Debris to Fishing Operation at Ambon Bay. *IOP Conference Series: Earth and Environmental Science*. 1207(012017): 1–10. <https://doi.org/10.1088/1755-1315/1207/1/012017>

Watson AR, Blount C, McPhee DP, Zhang D, Smith MPL, Reeds K, Williamson JE. 2022. Source, Fate and Management of Recreational Fishing Marine Debris. *Marine Pollution Bulletin*. 178(113500): 1–14. <https://doi.org/10.1016/j.marpolbul.2022.113500>

Welden NA. 2020. The Environmental Impacts of Plastic Pollution. In: *Plastic Waste and Recycling*. pp. 195–222. Elsevier. <https://doi.org/10.1016/B978-0-12-817880-5.00008-6>

Widayanto, Subarkah, Wibawa I. 2022. Pengaturan Kewenangan Terhadap Larangan Penggunaan Jaring Cotok Untuk Menangkap Ikan di Perairan Rembang (Studi Kasus Nelayan di Rembang). *Jurnal Suara Keadilan*. 22(2): 245–271. <https://doi.org/10.24176/sk.v22i2.8538>

Winarwati I. 2020. Law Enforcement against Marine Pollution Foreign Ships in Indonesia. *Proceedings of the International Conference on Environmental and Technology of Law, Business and Education on Post Covid 19 ICETLAWBE 2020*, 26 September 2020, Bandar Lampung, Indonesia. 1–7. <https://doi.org/10.4108/eai.26-9-2020.2302593>

Witbooi E, Ali KD, Santosa MA, Hurley G, Husein Y, Maharaj S, Okafor-Yarwood I, Quiroz IA, Salas O. 2020. Organized Crime in the Fisheries Sector Threatens a Sustainable Ocean Economy. *Nature*. 588(7836): 48–56. <https://doi.org/10.1038/S41586-020-2913-5>

World Bank. 2022. *Management, Retrieval and Recycling of End-of-Life and Abandoned, Lost and Discarded Fishing Gear: The Evidence Base from Capture Fisheries*. Washington DC, The World Bank.

Yang CM. 2022. Stakeholders' Perspectives for Taking Action to Prevent Abandoned, Lost, or Otherwise Discarded Fishing Gear in Gillnet Fisheries, Taiwan. *Sustainability*. 15(318): 1–16. <https://doi.org/10.3390/su15010318>