Developing a Decision Tree Algorithm for Detecting Agroforestry and Monoculture Coffee Plantations Using Landsat 8 Imagery: A Case Study inBandung Regency, Indonesia

Agasta Adhiguna(1) , I Nengah Surati Jaya(2) , Nining Puspaningsih(3)
(1) Department of Forest Management, Faculty of Forestry and Environment, IPB University, IPB Dramaga Campus, Bogor, 16680, Indonesia,
(2) Department of Forest Management, Faculty of Forestry and Environment, IPB University, IPB Dramaga Campus, Bogor, 16680, Indonesia,
(3) Department of Forest Management, Faculty of Forestry and Environment, IPB University, IPB Dramaga Campus, Bogor, 16680, Indonesia

Abstract

Data on the potential of coffee commodities in Bandung Regency is still mixed with data on other commodities. Therefore, the study aims to develop an algorithm that provides accurate spatial information through maps for both coffee plantations in agroforestry and monoculture systems. This study integrates the data derived from remotely sensed data and data derived using socio-geobiophysical aspects, such as elevation, slope, distance from the road and rivers, proximity of the settlements, population density, proximity of villages, and a visually-based land-use-land cover map. The importance value for each variable was computed using several criteria, such as information gain, Gini index, and gain ratio. Meanwhile, the brute force method was applied to select the most significant variables in the model. The study found that the most significant variables for identifying coffee agroforestry and monoculture were ARVI, EVI, GARI, NRGI, and VDVI, as well as DEM, slope, proximity to roads, and visual-based LULC, using the criterion of information gain. The use of existing land-use and cover maps was the most influential variable in the model. The algorithm achieved an overall accuracy (OA) of 84.65% and a kappa accuracy (KA) of 82.60%. Based on overall accuracy and high kappa accuracy, the maps produced facilitate local governments and cooperatives in planning specific interventions for coffee-producing areas, supporting policies related to sustainable agriculture, climate-smart agroforestry expansion, and supply chain traceability.

Full text article

Generated from XML file

References

1. Agricultural Data and Information Center. Outlook for Coffee Plantation Commodities; Directorate General of Agriculture: Jakarta, 2023.

2. Indonesian Central Bureau of Statistics. Indonesian Coffee Statistics 2021; BPS Republic of Indonesia: Jakarta, 2021.

3. Pendrill, F.; Gardner, T. A.; Meyfroidt, P.; Persson, U. M.; Adams, J. M.; Azevedo, T. R. de; Lima, M. G. B.; Baumann, M.; Curtis, P. G.; Sy, V. D.; Garrett, R. D.; Godar, J.; Goldman, E. D.; Hansen, M. C.; Heilmayr, R.; Herold, M.; Kuemmerle, T.; Lathuillière, M. J.; Ribeiro, V.; West, C. Disentangling the Numbers Behind Agriculture-Driven Tropical Deforestation. Science. 2022. https://doi.org/10.1126/science.abm9267.

4. Winara, A.; Fauziyah, E.; Suhartono, S.; Widiyanto, A.; Sanudin, S.; Sudomo, A.; Siarudin, M.; Hani, A.; Indrajaya, Y.; Achmad, B.; Diniyati, D.; Handayani, W.; Suhaendah, E.; Maharani, D.M.; Swestiani, D.; Murniati, M.; Widyaningsih, T.S.; Sulistiadi, H.B.S., Azmi, C., Diana, M. Assessing the Productivity and Socioeconomic Feasibility of Cocoyam and Teak Agroforestry for Food Security. Sustainability. 2022. doi.org/10.3390/su141911981.

5. Gunawan, B.; Abdoellah, O.S.; Aisharya, I.Y.; Gunawan, W. From Laborers to Coffee Farmers: Collaborative Forest Management in West Java, Indonesia. Sustainability. 2023. doi.org/10.3390/ su15097722.

6. Anasrul, A.; Nooraeni, R. Pan-Sharpening Analysis for Improved Detection Accuracy and Estimation of Coffee Plantation Land Area (Case Study: South OKU Regency, South Sumatra Province). J. Tek. Pertanian Lampung. 2025, 14(2), 424-436. http://dx.doi.org/10.23960/jtep-l.v14i2.424-436.

7. Barus, B.J.A.; Razali, S.; Sitanggang, G. The Evaluation of Land Suitability Coffea Arabica (Coffea arabica L.) in Muara Subdistrict of North Tapanuli District. Jurnal Online Agroekoteknologi. 2015, 3(4), 1459–1467. doi:10.32734/jaet.v3i4.11797.

8. Nigussie, W.; Al-Najjar, H.; Zhang, W.; Yirsaw, E.; Nega, W.; Zhang, Z.; Kalantar, B. Enhancing Coffee Agroforestry Systems Suitability Using Geospatial Analysis and Sentinel Satellite Data in Gedeo Zone, Ethiopia. Sensors (Basel). 2024, 24(19):6287. doi: 10.3390/s24196287.

9. Escobar-López, A.; Castillo-Santiago, M. Á.; Mas, J. F.; Hernández-Stefanoni, J. L.; López-Martínez, J. O. Identification of Coffee Agroforestry Systems Using Remote Sensing Data: A Review of Methods and Sensor Data. Geocarto International. 2024, 39(1). doi: 10.1080/10106049.2023.2297555

10. Hehn, T.M.; Kooij, J.F.P.; Hamprecht, F.A. End-to-End Learning of Decision Trees and Forests. Int. J. Comput. Vis. 2020, 128, 997–1011. doi:10.1007/s11263-019-01237-6.

11. Nigussie, W.; Al-Najjar, H.A.H.; Zhang, W.; Yirsaw, E.; Nega, W.; Zhang, Z.; Kalantar, B. Enhancing Coffee Agroforestry Systems Suitability Using Geospatial Analysis and Sentinel Satellite Data in Gedeo Zone, Ethiopia. Sensors. 2024. https://doi.org/10.3390/s24196287.

12. Gaitán-Cremaschi, D.; van Evert, F.K.; Jansen, D.M.; Meuwissen, M.P.M.; Lansink, A.G.J.M.O. Assessing the Sustainability Performance of Coffee Farms in Vietnam: A Social Profit Inefficiency Approach. Sustainability. 2018, 10, 4227. doi:10.3390/su10114227.

13. Breiman, L.; Friedman, J. H.; Olshen, R. A.; & Stone, C. J. Classification and Regression Trees. Belmont, CA: Wadsworth International Group, 1984.

14. Pal, M.; Mather, P. M. An Assessment of the Effectiveness of Decision Tree Methods for Land Cover Classification. Remote Sensing of Environment. 2003, 86(4), 554–565. https://doi.org/10.1016/S0034-4257(03)00132-9.

15. Jaya, I.N.S. Digital Image Analysis: A Remote Sensing Perspective for Natural Resource Management, 3rd ed.; IPB University: Bogor, 2015.

16. Amiri, F.; Shariff, A.R.B.M. Using Remote Sensing Data for Vegetation Cover Assessment in Semi-Arid Rangeland of Center Province of Iran. World Appl. Sci. J. 2010, 11(12), 1537–1546.

17. Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sensors. 2017, doi:10.1155/2017/1353691.

18. Gao, B.C.; Li, R.R. FVI—A Floating Vegetation Index Formed with Three Near-IR Channels in the 1.0–1.24 µm Spectral Range for the Detection of Vegetation Floating over Water Surfaces. Remote. Sens. 2018, 10(1421), 1-10. doi:10.3390/rs10091421.

19. Justino, S.T.P.; Silva, R.B.; Guerrini, I. A.; Silva, R.B.G.da; Simões, D. Monitoring Environmental Degradation and Spatial Changes in Vegetation and Water Resources in the Brazilian Pantanal. Sustainability. 2024. https://doi.org/10.3390/su17010051.

20. Hu, Y.; Raza, A.; Syed, N.R.; Acharki, S.; Ray, R.L.; Hussain, S.; Dehghanisanij, H.; Zubair, M.; Elbeltagi, A. Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province. Sustainability. 2023. https://doi.org/10.3390/su15043572.

21. Kaufman, Y. J., & Tanré. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing. 1992. https://doi.org/10.1109/36.134076.

22. Kaufman, Y. J., & Tanré. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing. 1992. https://doi.org/10.1109/36.134076.

23. Justino, S.T.P.; Silva, R.B.; Guerrini, I. A.; Silva, R.B.G.da; Simões, D. Monitoring Environmental Degradation and Spatial Changes in Vegetation and Water Resources in the Brazilian Pantanal. Sustainability. 2024. https://doi.org/10.3390/su17010051.

24. Kwan, C.; Gribben, D.; Ayhan, B.; Li, J.; Bernabe, S.; Plaza, A. An Accurate Vegetation and Non-Vegetation Differentiation Approach Based on Land Cover Classification. Remote Sensing. 2020. https://doi.org/10.3390/RS12233880.

25. Viña, A.; Henebry, G.M.; Gitelson, A.A. Satellite monitoring of vegetation dynamics: Sensitivity enhancement by the wide dynamic range vegetation index. Geophysical Research Letters. 2004. https://doi.org/10.1029/2003GL019034.

26. Selvam, N.; Saranya, R. Analysis of Decision Tree Algorithm in Machine Learning. Int. J. Adv. Res. Innov. Ideas Educ. 2018, 4, 281-286.

27. Mertes, C.M.; Schneider, A.; Sulla-Menashe, D.; Tatem, A.J.; Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sensing of Environment. 2015. 158, 331–347. doi: 10.1016/j.rse.2014.09.023.

28. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: Los Altos, 1993.

29. Kumar, A.; Choudhary, T. A Machine Learning Approach for Land-Type Classification. Innovations in Electrical and Electronic Engineering. 2021, 647–656. doi:10.1007/978-981-16-0749-3_51.

30. Huo, Z.; Martínez-García, M.; Zhang, Y.; Yan, R.; Shu, L. Entropy Measures in Machine Fault Diagnosis: Insights and Applications. IEEE Transactions on Instrumentation and Measurement. 2020, 69, 2607-2620. doi:10.1109/TIM.2020.2981220.

31. Petrović, M.S., Dragićević, S., Bajat, B., Kovačević, M. Exploring The Decision Tree Method for Modelling Urban Land Use Change. Geomatica. 2015. 69(3), 313-325. doi: 10.5623/cig2015-305.

32. Tangirala, S. Evaluating the Impact of GINI Index and Information Gain on Classification using Decision Tree Classifier Algorithm. International Journal of Advanced Computer Science and Applications. 2020, 11(2), 612-619. doi: 10.14569/IJACSA.2020.0110277.

33. Brunello, A.; Marzano, E.; Montanari, A.; Sciavicco, G. Decision Tree Pruning via Multi-objective Evolutionary Computation. Int J Mach Learn Comput. 2017, 7(6), 167–175. doi: 10.18178/ijmlc.2017.7.6.641.

34. Amro, A.; Al-Akhras, M.; Hindi, K.; Habib, M.; Shawar; B. Instance Reduction for Avoiding Overfitting in Decision Trees. Journal of Intelligent Systems. 2021, 30(1), 438-459. doi:10.1515/jisys-2020-0061.

35. Mijwil, M.M.; Abttan, R.A. Utilizing the Genetic Algorithm to Pruning the C4.5 Decision Tree Algorithm. Asian. J. App. Sci. 2021, 9(1), 45-52.

36. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques 3rd edition.; Morgan Kaufmann: Massachusetts, 2011.

37. Lefkovits, S.; Lefkovits, L. Gabor Feature Selection Based on Information Gain. Procedia Eng. 2017, 181, 892–898. doi:10.1016/j.proeng.2017.02.482.

38. Rohitha, A. A Comparative Study of the Brute Force Approach with the Hungarian Method of Solving the Travel Distance Problem of Travelling Salesman Problem from Vijayawada to Mangalagiri (Via Tadepalli) to Reach within the Allotted Time. International Journal of Science and Research. 2023, 12(3), 63-66. doi:10.21275/sr23228200317.

39. Park, Y.; Ho, J. Tackling Overfitting in Boosting for Noisy Healthcare Data. IEEE Transactions on Knowledge and Data Engineering. 2021, 33, 2995-3006. doi:10.1109/TKDE.2019.2959988.

40. Budiarti, W.; Gravitani, E.; Mujiyo. Analysis of Biophysical Aspects for Floods Vulnerability Assessment in Samin Sub-Watershed, Central Java Province. Journal of Natural Resources and Environmental Management. 2018, 8(1), 96–108. doi:10.29244/jpsl.8.1.96-108.

41. Kumar, U.; Dasgupta, A.; Mukhopadhyay, C.; Ramachandra, T. Examining the Effect of Ancillary and Derived Geographical Data on Improvement of Per-Pixel Classification Accuracy of Different Landscapes. J Indian Soc Remote Sens. 2018, 46, 407-422. doi:10.1007/s12524-017-0698-2.

42. Dikdayan, G.A.; Ariffin, A. Kajian Iklim Mikro Tanaman Kopi Sistem Agroforestri Di UB Forest. Produksi Tanaman. 2022. https://doi.org/10.21776/ub.protan.2022.010.07.01.

43. Andriyani, I.; Ubaidillah, M.M. Penilaian Indikasi Geografis Pegunungan Hyang Argopuro dan Kesesuaian Lahannya untuk Budidaya Kopi. Agritech. 2022. https://doi.org/10.22146/agritech.60195.

44. Sundari, Y.; Asdak, C.; Dwiratna, S. Analisis Karakteristik Fisik Kondisi Lahan di Kabupaten Bandung Barat.Prosiding Seminar Nasional Pembangunan Dan Pendidikan Vokasi Pertanian. 2023. https://doi.org/10.47687/snppvp.v4i1.686.

45. Chairani, E.; Supriatna, J.; Koestoer, R.H.; Moeliono, M. Physical Land Suitability for Civet Arabica Coffee: Case Study of Bandung and West Bandung Regencies, Indonesia. IOP Conference Series: Earth and Environmental Science. 2017, 98. https://doi.org/10.1088/1755-1315/98/1/012029.

46. Ferreira, G.R.; Ferreira, W.P.M.; Barbosa, T.K.M.; Luppi, A.S.L.; Silva, M.A.V. Zoneamento Térmico Para o Cultivo do Café de Montanha na Região das Matas de Minas (Thermal Zoning for Mountain Coffee Crops in the Matas de Minas Region, Brazil). Revista Brasileira de Geografia Física. 2018, 11(4), 1176-1185. https://doi.org/10.26848/RBGF.V11.4.P1176-1185.

47. Siahaan, Ir. A. Identification of Arabica Coffee Production in Altitude Places in Lintong Ni Huta of Humbang Hasundutan. International Journal of Environment, Agriculture and Biotechnology. 2018, 1(3), 249-255. https://doi.org/10.22161/IJEAB/3.1.31.

48. Somvanshi, S.; Kumari, M. Comparative Analysis of Different Vegetation Indices with Respect to Atmospheric Particulate Pollution Using Sentinel Data. Applied Computing and Geosciences. 2020, 7, 1-10. doi:10.1016/j.acags.2020.100032.

49. Cano, D.; Pizarro, S.; Cacciuttolo, C.; Peñaloza, R.; Yaranga, R.; Gandini, M. Study of Ecosystem Degradation Dynamics in the Peruvian Highlands: Landsat Time-Series Trend Analysis (1985–2022) with ARVI for Different Vegetation Cover Types. Sustainability. 2023, 15, 15472. doi:10.3390/su152115472.

50. Ticehurst, C., Teng, J., & Sengupta, A. Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment. Remote. Sens. 2022. 14, 1158. doi:10.3390/rs14051158.

51. Rehman, A.; Ullah, S.; Shafique, M.; Khan, M.; Badshah, M.; Liu, Q. Combining Landsat-8 Spectral Bands with Ancillary Variables for Land Cover Classification in Mountainous Terrains of Northern Pakistan. Journal of Mountain Science. 2021, 18, 2388 - 2401. doi:10.1007/s11629-020-6548-7..

52. Johnnerie, R.; Siregar, V.P.; Nababan, B.; Prasetyo, L.B.; Wouthuyzen. Random Forest Classification for Mangrove Land Cover Mapping Using Landsat 5 TM and ALOS PALSAR Imageries. Procedia Environ. Sci. 2015, 24, 215–221. doi:10.1016/j.proenv.2015.03.028.

53. Wardhani, A.K.; Nugraha, E.; Ulfiana, Q. Optimization of the Decision Tree Method using Pruning on Liver Disease Classification. J. Appl. Informatics Comput. 2022, 6(2), 136–140.

54. Chern, C.C.; Chen, Y.J.; Hsiao, B. Decision Tree-Based Classifier in Providing Telehealth Service. BMC Med. Inform. Decis. Mak. 2019, 19(1), 1–15. doi: 10.1186/s12911-019-0825-9.

55. Lopez, A.E.; Santiago, M.A.C.; Mas, J.F. Identification of Coffee Agroforestry Systems using Remote Sensing Data: A Review of Methods and Sensor Data. Geocarto International. 2024, 39(1), 1-23. doi: 10.1080/10106049.2023.22975.

56. Supriadi, H.; Pranowo, D. Prospects of Agroforestry Development based on Coffee in Indonesia. Perspektif. 2015, 14(2), 135–150.

57. Verhaeghe, H.; Nijssen, S.; Pesant, G.; Quimper, C.; Schaus, P. Learning Optimal Decision Trees Using Constraint Programming. Constraints. 2020, 25, 226 - 250. doi:10.1007/s10601-020-09312-3.

58. Reiners, M.; Klamroth, K.; Stiglmayr, M. Efficient and Sparse Neural Networks by Pruning Weights in a Multiobjective Learning Approach. Comput. Oper. Res. 2022, 141, 1-13. doi:10.1016/j.cor.2021.105676.

59. Lee, D.; Kim, H.; Park, J. UAV, a Farm Map, and Machine Learning Technology Convergence Classification Method of a Corn Cultivation Area. Agronomy. 2021, 11(8), 1-21. doi:10.3390/agronomy11081554.

60. Magnussen, S. Calibration of a Confidence Interval for a Classification Accuracy. Open Journal of Forestry. 2021 11(1), 14-36. doi:10.4236/OJF.2021.111002.

61. Löw, F.; Duveiller, G.; Conrad, C.; Michel, U. Impact of Categorical and Spatial Scale on Supervised Crop Classification using Remote Sensing. Photogrammetrie Fernerkundung Geoinformation. 2015, 1. https://doi.org/10.1127/PFG/2015/0252.

62. Awuah, T. K. Effects of spatial resolution,land-cover heterogeneityand different classification methods on accuracy of land-cover mapping. 2017. DOI: 10.13140/RG.2.2.24174.31040.

63. Gaertner, J.; Genovese, V.; Potter, C.; Sewake, K.; Manoukis, N.C. Vegetation classification of Coffea on Hawaii Island using WorldView-2 satellite imagery. Journal of Applied Remote Sensing. 2017, 11(4), 1-13 . https://doi.org/10.1117/1.JRS.11.046005.

64. Yu, X.; Lu, D.; Jiang, X.; Li, G.; Chen, Y.; Li, D.; Chen, E. Examining the Roles of Spectral, Spatial, and Topographic Features in Improving Land-Cover and Forest Classifications in a Subtropical Region. Remote Sensing. 2020, 12(8), 1-24. https://doi.org/10.3390/RS12182907.

65. Wang, Y.; Liu, H.; Sang, L.; Wang, J. Characterizing Forest Cover and Landscape Pattern Using Multi-Source Remote Sensing Data with Ensemble Learning. Remote Sensing. 2022, 14(21). https://doi.org/10.3390/rs14215470.

66. Lu, M.; Chen, B.; Liao, X.; Yue, T.; Yue, H.; Ren, S.; Li, X.; Nie, Z.; Xu, B. Forest Types Classification Based on Multi-Source Data Fusion. Remote Sensing. 2017, 9(11). https://doi.org/10.3390/RS9111153.

67. Ebrahimy, H.; Mirbagheri, B.; Matkan, A.; Azadbakht, M. Effectiveness of the Integration of Data Balancing Techniques and Tree-Based Ensemble Machine Learning Algorithms for Spatially-Explicit Land Cover Accuracy Prediction. Remote Sensing Applications: Society and Environment. 2022, 27. DOI: 10.1016/j.rsase.2022.100785.

68. Zulfajri, D.; Danoedoro, P.; Murti, S.H. Land Cover Classification of Landsat-8 OLI Data using Random Forest Method. J. Penginderaan Jauh Indonesia. 2021, 3(1), 1–7.

69. Torrez, V.; Benavides-Frias, C.; Jacobi, J.; Ifejika Speranza, C. Ecological Quality as a Coffee Quality Enhancer. A review. Agronomy for Sustainable Development. 2023, 43. DOI: 10.1007/s13593-023-00874-z.

70. Cassamo, C.T.; Draper, D.; Romeiras, M.M.; Marques, I.; Chiulele, R.; Rodrigues, M.; Stalmans, M.; Partelli, F.L.; Ribeiro-Barros, A.; Ramalho, J.C. Impact of Climate Changes in the Suitable Areas for Coffea arabica L. Production in Mozambique: Agroforestry as an Alternative Management System to Strengthen Crop Sustainability. Agriculture, Ecosystems & Environment. 2023, 346. https:// doi.org/10.1016/j.agee.2022.108341.

71. Koutouleas, A.; Sarzynski, T.; Bordeaux, M.; Bosselmann, A. S.; Campa, C.; Etienne, H.; Turreira-García, N.; Rigal, C.; Vaast, P.; Ramalho, J. C.; Marraccini, P.; Ræbild, A. Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. Frontiers in Sustainable Food Systems. 2022. https://doi.org/10.3389/fsufs.2022.877476.

72. Rigal, C.; Vaast, P.; Xu, J. Using Farmers' Local Knowledge of Tree Provision of Ecosystem Services to Strengthen the Emergence of Coffee-Agroforestry Landscapes in Southwest China. PLOS ONE. 2018, 13(9). https://doi.org/10.1371/journal.pone.0204046.

73. Cassamo, C.T.; Draper, D.; Romeiras, M.M.; Marques, I.; Chiulele, R.; Rodrigues, M.; Stalmans, M.; Partelli, F.L.; Ribeiro-Barros, A.; Ramalho, J.C. Impact of Climate Changes in the Suitable Areas for Coffea arabica L. Production in Mozambique: Agroforestry as an Alternative Management System to Strengthen Crop Sustainability. Agriculture, Ecosystems & Environment. 2023, 346. https://doi.org/10.1016/j.agee.2022.108341.

74. Koutouleas, A.; Sarzynski, T.; Bordeaux, M.; Bosselmann, A. S.; Campa, C.; Etienne, H.; Turreira-García, N.; Rigal, C.; Vaast, P.; Ramalho, J. C.; Marraccini, P.; Ræbild, A. Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. Frontiers in Sustainable Food Systems. 2022. https://doi.org/10.3389/fsufs.2022.877476.

75. Acosta-Alba, I.; Boissy, J.; Chia, E.; Andrieu, N.; Andrieu, N. Integrating Diversity of Smallholder Coffee Cropping Systems in Environmental Analysis. International Journal of Life Cycle Assessment. 2020. https://doi.org/10.1007/S11367-019-01689-5.

76. Bertrand, B.; Vaast, P.; Alpizar, E.; Etienne, H.; Davrieux, F.; Charmetant, P. Comparison of Bean Biochemical Composition and Beverage Quality of Arabica Hybrids Involving Sudanese-Ethiopian Origins with Traditional Varieties at Various Elevations in Central America. Tree Physiology. 2006. https://doi.org/10.1093/TREEPHYS/26.9.1239.

77. Mayorga, I.; Mendonça, J.L.V.de; Hajian-Forooshani, Z.; Lugo-Pérez, J.; Perfecto, I. Tradeoffs and Synergies among Ecosystem Services, Biodiversity Conservation, and Food Production in Coffee Agroforestry. Frontiers in Forests and Global Change. 2022. https://doi.org/10.3389/ffgc.2022.690164.

78. Farfán-Valencia, F. Sistemas Agroforestales con Café: Establezca Cultivos Productivos Bajo Sombrío. Memorias Seminario Científico Cenicafé. 2022. https://doi.org/10.38141/10795/71121.

79. Prayogo, L.; Widyantoro, B.; Yuliardi, A.; Hanif, M.; Spanton, P.; Joesidawati, M. Land Cover Classification Assessment Using Decision Trees and Maximum Likelihood Classification Algorithms on Landsat 8 Data. Journal of Computer and Information Technology. 2023, 6(2), 69-76. doi:10.25273/doubleclick.v6i2.10606.

80. Hua, L.; Zhang, X.; Chen, X.; Yin, K.; Tang, L. A Feature-Based Approach of Decision Tree Classification to Map Time Series Urban Land Use and Land Cover with Landsat 5 TM and Landsat 8 OLI in a Coastal City, China. Int. J. Geo Inf. 2017, 6(11), 331-349. doi:10.3390/ijgi6110331.

81. Yang, C.; Wu, G.; Ding, K.; Shi, T.; Li, Q.; Wang, J. Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods. Remote. Sens. 2017, 9(12), 1222-1238. doi:10.3390/rs9121222.

82. Phiri, D.; Simwanda, M.; Nyirenda, V.; Murayama, Y.; Ranagalage, M. Decision Tree Algorithms for Developing Rulesets for Object-Based Land Cover Classification. Int. J. Geo Inf. 2020, 9(5), 329-337. doi:10.3390/ijgi9050329.

83. Hailu, B.T.; Maeda, E.E.; Pellikka, P.; Pfeifer, M. Identifying Potential Areas of Understorey Coffee in Ethiopia’s Highlands Using Predictive Modelling. Int J Remote Sens. 2015, 36(11), 2898–2919. doi: 10.1080/ 01431161.2015.1051631.

Authors

Agasta Adhiguna
I Nengah Surati Jaya
Ins-jaya@apps.ipb.ac.id (Primary Contact)
Nining Puspaningsih
Adhiguna, A., Surati Jaya, I.N. and Puspaningsih, N. (2025) “Developing a Decision Tree Algorithm for Detecting Agroforestry and Monoculture Coffee Plantations Using Landsat 8 Imagery: A Case Study inBandung Regency, Indonesia”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 15(6), p. 1009. doi:10.29244/jpsl.15.6.1009.

Article Details

How to Cite

Adhiguna, A., Surati Jaya, I.N. and Puspaningsih, N. (2025) “Developing a Decision Tree Algorithm for Detecting Agroforestry and Monoculture Coffee Plantations Using Landsat 8 Imagery: A Case Study inBandung Regency, Indonesia”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 15(6), p. 1009. doi:10.29244/jpsl.15.6.1009.