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burning causes long-term degradation, carbon loss, and biodiversity decline. Assessing spatio-

gg‘s/'x‘?r?:uccession, Burn temporal patterns of recovery is therefore essential for guiding effective peatland restoration and

severity, EVI, NBR fire prevention strategies. This study investigated vegetation recovery dynamics in a fire-affected
peatland in Sumatra, Indonesia. Multi-temporal satellite imagery was processed to extract the

Enhanced Vegetation Index (EVI) and Normalized Burn Ratio (NBR). Fire frequency and severity were
further analyzed through hotspot distributions and fire history. The results revealed that NBR and
dNBR were highly effective in detecting burned areas and assessing severity, while EVI provided
complementary perspectives on recovery trajectories. Vegetation in once-burned areas showed
relatively steady regrowth, with EVI values approaching pre-fire levels after several years. In
contrast, repeatedly burned areas exhibited slower and more heterogeneous recovery, with
fluctuating EVI pattern reflecting vegetation growth succession. Field vegetation surveys confirmed
that repeated fires drastically simplified forest structure, reducing tree and pole density and favoring
shrubs and ferns such as Stenochlaena palustris and Melastoma malabathricum. Overall, the study
demonstrates that fire frequency and severity are critical determinants of peatland recovery. The
EVI offers valuable insights into vegetation dynamics, while NBR provides reliable fire history
mapping. These findings underscore the importance of combining spectral indicators with ground-
based vegetation data for long-term monitoring and highlight the need for targeted restoration
strategies, including hydrological rewetting and assisted natural regeneration, in repeatedly burned
peatlands.

Introduction

Tropical peatlands in Southeast Asia represent globally significant ecosystems due to their high carbon
storage capacity, rich biodiversity, and important hydrological functions. However, these ecosystems are also
highly vulnerable to anthropogenic disturbances and recurrent fires. Indonesia, in particular, has experienced
frequent and severe peatland fires during El Nifio years, when prolonged droughts dramatically increase fuel
dryness and ignition potential. The catastrophic fires of 1997 and 2015 are two of the most prominent
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examples, resulting in widespread ecological degradation, severe transboundary haze pollution, and
substantial economic losses [1,2].

Indonesian peat swamp forests are highly susceptible to fires due to their thick organic soil and high carbon
content. When these areas are drained and degraded, they become highly flammable and can burn for
extended periods, ranging from weeks to months. The construction of canals and the removal of vegetation
further facilitate the ignition and spread of fires, especially during prolonged dry seasons associated with El
Nifio [3,4].

Sumatra island is among the region most severely affected by peatland fires. Numerous areas within this
island, including those designated for restoration, have experienced recurrent fires due to historical land
alterations, drainage systems, and persistent droughts. Repeated fires hinder vegetation regrowth, alter
forest development, and have long-term impacts on forest structure and biodiversity [5,6]. The severity and
frequency of fires are critical factors influencing post-fire vegetation recovery, with more severe or frequent
fires typically resulting in slower recovery and greater ecosystem damage [7,8].

Understanding the long-term impacts of recurrent fires is crucial for planning restoration and fire prevention
strategies in degraded peatlands. Satellite-based remote sensing is a valuable tool for studying these effects,
as it enables the identification of burned areas, assessment of fire severity, and monitoring of vegetation
regrowth over extensive areas and prolonged periods [9]. The Normalized Burn Ratio (NBR) is among the
most widely used spectral indices for fire detection, taking advantage of the distinct spectral responses of
vegetation and burned surfaces in the near-infrared (NIR) and shortwave-infrared (SWIR) regions. This index
enables efficient identification of burned areas and supports assessments of burn severity by detecting
reductions in vegetation moisture and structural integrity [10,11].

Following fire events, monitoring vegetation regrowth is essential to evaluate ecosystem recovery and
resilience. In this context, the Enhanced Vegetation Index (EVI) has gained prominence as a robust tool for
assessing vegetation dynamics, particularly in areas with high biomass or where atmospheric and soil
background effects may interfere with traditional indices [12]. EVI incorporates a correction for aerosol
scattering and soil influences, making it more reliable than the Normalized Differential Vegetation Index
(NDVI) in densely vegetated or disturbed landscapes [13]. Its sensitivity to canopy structural variations allows
for more accurate tracking of post-fire vegetation recovery, especially during the early and intermediate
stages of regrowth [14]. By integrating NBR for initial fire detection and EVI for monitoring regrowth
trajectories, remote sensing offers a powerful means to assess fire impacts and guide adaptive management
in fire-prone tropical ecosystems.

By analyzing satellite images over time, researchers can discern patterns and variations in how landscapes
recover post-fire, which assists in formulating evidence-based restoration plans [15—-17]. This study
concentrates on examining the recovery patterns of vegetation in a tropical peatland restoration area in
Sumatra, Indonesia, that has been impacted by fire. Through multi-temporal spectral analysis, the research
aims to elucidate the recovery trajectories following fires and contribute to the development of improved
strategies for peatland restoration and fire management.

Materials and Methods
Study Area

This research was carried out in tropical peatland ecosystems across several sites in Sumatra that have
experienced significant degradation due to recurrent fires and anthropogenic disturbances (Figure 1).
Detailed field observations were conducted in multiple peatland restoration areas and fire-affected peatland
landscapes to capture the variability of post-fire vegetation recovery. One of the focal study sites is the
Merang-Kepayang region of South Sumatra Province, Indonesia, encompassing approximately 22,280
hectares. This area is characterized by degraded peat swamp forests, which have undergone significant
ecological alterations due to prolonged anthropogenic disturbances. The site has a documented history of
repeated fires, often exacerbated by prolonged dry seasons and El Nifio climatic conditions. The earliest
recorded fire considered in this study occurred in 1997, a period when the area was under active forest
exploitation permits. Additional fire events were recorded in 2000 and 2004, coinciding with a period of
ambiguous land tenure and minimal institutional oversight. Since 2008, the area was briefly managed under
a peatland restoration initiative, although fire activity was still observed in 2010. The cumulative impacts
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culminated in severe fire outbreaks during the extreme drought period between November 2014 and July
2015, underscoring the critical need for long-term monitoring and restoration interventions.
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Figure 1. Study area: peatland ecosystems along the eastern coast of Sumatra, Indonesia.

Satellite Data

This study utilized multi-sensor satellite data to capture vegetation dynamics in tropical peatland ecosystems
of Sumatra. The primary dataset was the Moderate Resolution Imaging Spectroradiometer (MODIS) Surface
Reflectance product (MODQ09A1), which provides consistent temporal coverage for large-scale monitoring. A
set of Hierarchical Data Format (HDF) tiles covering the island was selected to ensure complete spatial
representation of the study area. The datasets were obtained from NASA’s Land Processes Distributed Active
Archive Center (LP DAAC) and the USGS Earth Resources Observation and Science (EROS) Center
(https://e4ftl0l1.cr.usgs.gov/MODIS/). To support pre-processing, auxiliary datasets such as water-masking
layers and a 5° x 5° tiling system were also employed.

The MODO09A1 product provides estimates of land surface reflectance from MODIS sensors aboard the Terra
satellite. It includes seven spectral bands, of which four were primarily used in this study: Red, Blue, Near-
Infrared/NIR, and Shortwave Infrared/SWIR. MODQ9A1 is available as an 8-day composite at a spatial
resolution of 500 m, representing the best possible pixel observations during each compositing period based
on minimal cloud contamination, low aerosol content, and favorable viewing geometry [18]. These data were
employed to compute vegetation indices such as the Enhanced Vegetation Index (EVI), which combines Red,
NIR, and Blue bands to enhance sensitivity to vegetation structure while reducing atmospheric and soil
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background effects. The NIR band is sensitive to vegetation biomass and leaf area index (LAI), the Blue band
aids in atmospheric correction, and the SWIR band provides information on vegetation water content and
stress.

To complement the moderate resolution analysis provided by MODIS, Landsat Surface Reflectance products
(30 m spatial resolution) from Landsat 7 ETM+ and Landsat 8 OLI/TIRS were incorporated for detailed
assessments in selected peatland restoration sites. The inclusion of Landsat data addresses the limitation of
MODIS spatial resolution, which constrains the detection of fine-scale land cover dynamics. This limitation is
particularly evident in several regions, where transient land cover dynamics may occur at scales smaller than
the minimum detectable extent, or where complex land cover mosaics can influence threshold-based change
detection [19]. By leveraging Landsat’s higher spatial detail, the analysis was able to capture localized
disturbances, regrowth trajectories, and heterogeneity in vegetation recovery within restoration blocks.

Hotspot Data Processing

This study employed historical hotspot data spanning the period 1997 to 2021 as a proxy for fire occurrences.
The digital hotspot records were obtained from NASA’s MODIS sensors aboard the Terra and Aqua satellites,
as well as from the Visible Infrared Imaging Radiometer Suite (VIIRS), filtered using a confidence level greater
than 80% [20]. The dataset was analyzed in both temporal and spatial dimensions: temporal patterns were
examined to identify peak fire periods, while spatial analyses were conducted to determine the location and
distribution of hotspot clusters.

Spectral Indices for Vegetation Monitoring and Fire Impact Assessment

This study makes use of two spectral indices, namely the Enhanced Vegetation Index (EVI) and the Normalized

Burn Ratio (NBR). Of these, EVI serves as the primary index for analyzing temporal dynamics of vegetation

patterns, owing to its enhanced sensitivity in high-biomass regions and its capacity to reduce atmospheric

and soil background effects [12]. The EVI is computed using Equation 1.
(NIR — RED)

(NIR +CyX RED—CoXBLUE+L)

EVI =G X

(1)
Decription:

G =2.5(gain factor)

C, =6.0, C, =7.5 (coefficients for aerosol resistance)

L =1.0 (canopy background adjustment)

NIR, RED, and BLUE = Surface reflectance values in the respective spectral bands

To detect burned areas and assess fire severity, the Normalized Burn Ratio (NBR) was used. NBR is derived
from the difference between near-infrared (NIR) and shortwave infrared (SWIR) reflectance [14]. Vegetated
areas typically exhibit high NIR and low SWIR reflectance, while post-fire areas show the opposite pattern.
NBR values range from -1 to 1, with lower values indicating greater burn severity. The index is calculated
using Equation 2.

(NIR — SWIR)

NBR =
(NIR + SWIR)

(2)

Burned and unburned areas were identified using the Normalized Burn Ratio (NBR). The analysis involved
two temporal stages: pre-fire (NBRpr) and post-fire (NBRpost). A burned area is indicated by a significant
decrease in NBR values after the fire event. The change in NBR (dNBR) computed according to Equation 3.

dNBR = NBR,,c — NBRpost (3)
Description:
dNBR = change in NBR value

NBRpre = NBR value before fire
NBRpost = NBR value after fire

Burned areas were then classified using a threshold model. Thresholds were determined using the mean (u)
and standard deviation (o) of sample pixels from known burned areas in the NBR imagery, following the
approach by Fraser and Cihlar [21] (Equation 4).

a=@+ o)andp = (u—o0) (4)
Description:
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a : Threshold of burnt area based on NBRpost
B :Threshold of burnt area based on dNBR
A pixel is classified as burned if it meets condition specified in Equation 5.
BA = dNBR = a,and NBRy,st < B (5)
where BA indicates the burned area.

Temporal Dynamics of Vegetation Patterns in Fire-Affected Areas

The study approached spatial EVI time-series data as multi-dimensional signals and analyzed them with signal
processing methods. To distinguish various temporal patterns, we performed K-means clustering with
Euclidean distance in the EVI feature space, treating each EVI image as a separate dimension. This clustering
grouped regions with similar EVI trends across time, enabling us to discern distinct characteristics of fire-
affected areas. A similar approach was used by Setiawan et al. [22] for land use classification based on
seasonal vegetation changes.

TOf) +80 = xV (6)
where X is a cluster, which describes the matrix of Euclidean distances between objects by hierarchical

clustering algorithm, fis a signal, &” is a centered Gaussian white noise of variance ¢ independent of k and i
and where T is a slight deformation transforming a given function g as shown in Equation 7.

d0g (250) = 7O (g(x) 7)

where b is around 0, and a, d around 1.
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Figure 2. Clustering the EVI temporal pattern in multidimensional feature space.

In this study, the complexity and enormous number of time-series EVI datasets may lead to the difficulty of
obtaining the actual number of clusters. The separability analysis was applied to discriminate among high
detailed significant patterns that were theoretically defined to portray the specific characteristics of each
peat swamp area in the study site.

Temporal Dynamics of Vegetation Patterns in Fire-Affected Areas

Vegetation surveys were conducted by recording the composition and structure of plant communities across
different growth stages, including understorey, seedlings, saplings, poles, and trees within designated
observation plots. For understorey, seedlings, and saplings, data collected consisted of species identity and
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abundance, while for poles and trees, additional parameters such as species, population size, diameter, and
height were measured.

Sampling was carried out in burnt areas using purposive sampling, with each main plot measuring 20 x 20 m.
A nested sampling design was then applied, in which the main plot was subdivided into different subplot
sizes: 20 x 20 m for trees, 10 x 10 m for poles, 5 x 5 m for saplings, and 2 x 2 m for seedlings and understorey
vegetation [23]. At each location, vegetation was observed at varying fire frequencies: once, twice, three
times, and four times. In total, 7 plots were established in once-burnt areas, 3 in twice-burnt areas, 4 in thrice-
burnt areas, 2 in four-times-burnt areas, and 4 in unburned areas that served as controls. The number of
observation points was determined based on the extent of each area and accessibility in the field.

To assess the vegetation structure at each sampling site, we measured several parameters of vegetation data
such as: density, relative density, frequency, relative frequency, dominance, and relative dominance using
Equations 8-13.

Total individuals of a species

Density (D) = (8)

(9)

Total plot area

Species density

Relative Density (RD) =

Total species density

Number of plots occupied by a species

Frequency (F) = - (10)
Total number of observation plots
i Species frequenc
Relative Frequency (RF) = L [requency - (12)
Total frequency of all species
. Total surface coverage of a species
Dominance (Dc) = L geof asp (12)
Total plot area
. . Dominance of a species
Relative Dominance (RDc) = fasp (13)

Total dominance of all species

Importance Value Index (IVI) for a species is is a sum of its relative density (RD), relative dominance (RDc) and
relative frequency (RF) [24], which can be use to determine the influence given by a species to its community
in an area.

The species diversity is important parameters in forest management [22]. Species diversity was determined
using a Shannon-Wienner diversity index [24] (Equation 14).

Shannon Index H' = — };_; pi Inpi (14)

where: H’ = Plant Diversity, Pi = Ni/N, Ni = Number of individuals of each species, N = Total number of
individuals from all species.

The Shannon Evenness Index (E’) is used to know the relative abundance of the different species of an
ecosystem, with the equation 15.
Shannon Evennes indax (E') = z:_’s (15)

Species richness index does a relationship between the number of species and the number of individuals.
Species richness was calculed using Margalef index [25] (Equation 16).
Margalef Index (R) = = (16)

InN
Sorensen Index was used to determinate the level of similariy species composition of the two communities
being compered. Sorensen index is defined in Equation 17 [26].

2c

S1+S2 (17)

Sorensen Index (SI) =

where: S1 = Number of species for site 1, S2 = Number of species for site 2, c = Number of common species
between two sites.

Results and Discussion
Results

Landscape-Scale Peatland Ecosystem Structure and Ecological Heterogeneity

At the landscape scale, the eastern Sumatran peatlands exhibit substantial ecological heterogeneity
influenced by peat depth, long-term hydrological processes, land-use history, and recurring anthropogenic
disturbances. The multivariate clustering analysis of land-cover dynamics (2000-2020), peat depth, drainage
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intensity, and fire occurrence resulted in the identification of 36 distinct peatland ecosystem classes (Figure
3). These classes represent a gradient ranging from relatively intact peat swamp forest ecosystems with
higher biomass and stable hydrological conditions to severely degraded peatlands dominated by shrubs and
plantation cover.

The mapped ecosystem classes form the baseline for characterizing spatial fire vulnerability and vegetation
recovery patterns across the landscape.
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Figure 3. Classification of 36 peatland ecosystem types along the eastern coast of Sumatra, characterized by
differences in temporal vegetation change (2000-2020), land cover composition, peat depth, and fire frequency.

Spatial Fire Vulnerability Across Ecosystem Classes

Hotspot distribution across the 36 peatland ecosystem classes during 2001-2020 demonstrates uneven
spatial concentration of fire events (Figures 4-5). A small subset of classes — Class 5, 36, 13, 19, and 21 —
contributed the majority of hotspot activity, with median hotspot densities reaching 20—106 hotspots ha™,
and in several cases peaking above 300-500 hotspots ha™'. These findings indicate that fire events are
spatially clustered within specific ecosystem conditions. In contrast, intact peat swamp forest classes (1-3,
26, 29, and 34) consistently showed negligible fire occurrence during the same period.
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Figure 4. Distribution of fire hotspots per hectare within peatland ecosystems in eastern Sumatra.
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Burned Area Dynamics and Transformation of Fire Regimes

Burned-area mapping during significant fire years reveals major temporal shifts in burned land types (Figure
6). During the 1997 El Nifio, burned areas were predominantly primary swamp forest, with a total of 13,931
ha recorded. In contrast, in 2015, burned areas were dominated by tree-crop plantations and industrial
plantation forests, with a total burned area of 13,397 ha. This change represents a transition from earlier
forest-based fire events toward fires occurring mainly in degraded and plantation-dominated peatlands.

Forest Fire 1997 § Forest Fire 1999 i Forest Fire 2002

*, Forest ire 2009

-

7 gs_, ¥
$ =

.
s,

Figure 6. Burned-area maps representing major fire periods in the study area.

Fire Severity and Spectral Signatures

Fire-severity assessment using differenced Normalized Burn Ratio (dNBR) detected high-severity peat
combustion in 2004 and 2015, indicated by dNBR >0.70. Pre-fire vegetation condition measured by EVI also
exhibited a significant decline during the 2015 drought period, reaching 0.18, suggesting widespread canopy
dryness. Table 1 shows four disturbance categories identified from the fire frequency analysis.

Table 1. Disturbance categories derived from the fire frequency analysis.

Fire frequency Five years identified
Once-burned 2015
Twice-burned 2006, 2015

Three-times-burned 2006, 2012, 2015
Four-times-burned 1997, 2006, 2012, 2015

Temporal spectral profiles (Figure 8) show that repeatedly burned areas consistently maintain lower EVI/NBR
values in post-fire recovery phases.
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Fire Frequency
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Figure 7. Fire frequency categories derived from multi-year Landsat burned-area history.
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Figure 8. EVI and NBR time-series indicating vegetation condition under fire recurrence.
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Species Composition and Dominance

Vegetation structure demonstrates strong differentiation across fire-frequency levels as shown in Table 1 and
Figure 9. In once-burned areas, characteristic peat-swamp tree species were still present, including Xylopia
altissima, Macaranga pruinosa, and Cryptocarya griffithiana, with 1Vl values of 94%, 84%, and 62%,
respectively. In twice-burned areas, pole-size vegetation was dominated by Macaranga pruinosa and Shorea
parvifolia. In three- and four-times-burned areas, no tree or pole species were recorded, indicating structural
loss. Across higher fire-frequency categories, Exbucklandia populnea appeared consistently in the sapling
strata. Understory communities were mainly dominated by Asplenium longissimum at 1-3 fire frequencies,
shifting to Athyrium esculentum at 4-fire frequency locations.

250
200

m Unbamed

One-time-burnt

100 Twice-times-burnt
M Three-times-burnt
50 W Four-times-burnt
0 i |l . 1

Sapling Tree Seedling Pole Understorey

Number of Individuals

Growth Stage

Figure 9. Vegetation structure under different fire frequencies.

Vegetation Diversity and Community Similarity

Diversity responses indicate that tree diversity was only present in one-time-burnt plots (H’ = 1.33), while
pole diversity declined to zero in two-burn plots. Sapling diversity remained low (H’ = 0.50-0.90), and
understory diversity increased at moderate fire frequency with H’ values reaching up to 1.64 (Table 2).
Meanwhile, community similarity analysis (Table 3) showed that sapling similarity across fire classes was
mostly below 50%, whereas understory similarity was highest between three- and four-time burns (SI = 0.83).

Table 2. Plant diversity index in areas with different fire frequencies.

No Growth Stage Index One-time-burnt Twice-times-burnt Three-times-burnt Four-times-burnt

R 3.74 - - -
1 Tree H’ 1.33 - - -
E’ 0.26 - - -
R 3.74 0.74 - -
2 Pole H’ 1.00 0.00 - -
E’ 0.18 0.00 - -
R 10.74 4.74 1.74 1.74
3 Sapling H’ 0.69 0.90 0.69 0.50
E’ 0.01 0.19 0.05 0.46
R 0.74 - - -
4 Seedling H’ 0.00 - - -
E’ 0.00 - - -
R 3.74 5.74 6.74 4.74
5 Understorey H’ 1.10 1.26 1.64 1.44
E’ 0.25 0.20 0.15 0.19
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Table 3. The similarity (SI) of sapling and understorey community in areas with different fire frequencies.

Sapling Community

No Species Name
1 Palaquium ridleyi Melicope glabra Alstonia pneumatophora Macaranga pruinosa
2 Xylophia altissima Nauclea orientalis Exbucklandia populnea Exbucklandia populnea
3 Macaranga pruinosa Melaleuca cajuputi
4 Cryptocarya crassinervia Macaranga pruinosa
5 Quasia borneensis Leea indica
6 Parkia speciosa
7 Gluta renghas L.
8 Gymnacranthera forbesii
9 Dillenia ecxcelsa Gilg.
10  Exbucklandia populnea
1x 2x 3x 4ax
Ix * 0.13 0.16 0.33
2x * 0 0.28
3x * 0.5
4ax *

Understorey Community

No Species Name
1 Asplenium longissimum Eleusine indica Imperata cylindrica Eleusine indica
2 Athyrium esculentum Asplenium longissimum Eleusine indica Asplenium longissimum
3 Lygodium flexuosum Athyrium esculentum Asplenium longissimum Athyrium esculentum
4 Stenochlaena palustris Stenochlaena palustris Athyrium esculentum Stenochlaena palustris
5 Alpinia galanga Equisetum hyemale Melastoma malabathricum
6 Melastoma malabathricum  Stenochlaena palustris
7 Melastoma malabathricum
1x 2x 3x 4ax
Ix * 0.6 0.55 0.67
2x * 0.62 0.73
3x * 0.83
4ax *

1x = One-time-burnt, 2x = Twice-times-burnt, 3x = Three-times-burnt, 4x = Four-times-burnt.

Discussion

The presence of 36 peatland ecosystem classes identified through multivariate clustering demonstrates that
peatland landscapes possess ecological zonation driven by peat depth, hydrological conditions, land-cover
history, and disturbance intensity. This stratification is crucial because peatland fire behavior is not uniform
across Sumatra; rather, it is determined by the interaction of hydrology, vegetation structure, and fuel
moisture — variables that differ significantly between ecosystem classes. Similar eco-regional approaches
have been employed in high-impact peatland studies to demonstrate that ecological zonation strongly
influences the spatial distribution of vulnerability and recovery potential [27,28]. The presence of relatively
intact forest classes embedded within a matrix of disturbed peatlands further highlights the fragmentation
of peat ecosystems, with implications for fire propagation, hydrological connectivity, and the capacity for
post-fire regeneration.

The identification of 36 ecosystem types thus provides the ecological framework necessary to interpret fire
patterns and recovery trajectories at finer spatial scales. Without this landscape-based baseline, plot-level
patterns would appear isolated; the hierarchical approach adopted here allows local ecological outcomes to
be understood as emergent properties of broader landscape processes.

Fire hotspot analysis reveals that fire occurrence is not random but concentrated in a small number of
degraded ecosystem classes (5, 36, 13, 19, and 21). These fire-prone classes share several ecological
characteristics, including intensive drainage, conversion to plantations or open shrubland, high peat
oxidation, and a prolonged history of recurrent burning. This pattern is consistent with the global peat—fire
feedback theory, which suggests that hydrological degradation reduces peat moisture, increases fuel
availability, and heightens the likelihood of surface-to-deep peat combustion [29]. In contrast, relatively
intact peat swamp forest classes (e.g., Classes 1-3, 26, 29, 34) exhibit consistently low hotspot occurrence,
reflecting more stable hydrological function, closed-canopy conditions, and limited anthropogenic ignition.
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These findings affirm that landscape-level hydrological integrity remains the strongest natural defense
against peatland fires [30,31]. Thus, fire in Sumatra’s peatlands does not occur randomly but follows a spatial
logic imposed by ecological condition, human influence, and long-term degradation patterns. Recognizing
these spatially explicit vulnerability profiles is critical for designing targeted restoration and fire-prevention
policies at the landscape scale.

Burned-area mapping during significant fire years indicates a substantial transformation in the land-cover
categories affected by fire (Figure 6). During the 1997 El Nifio event — one of the most severe droughts of
the late twentieth century — burned areas were predominantly composed of primary peat swamp forests.
This suggests profound hydrological stress even in relatively intact ecosystems under extreme climatic
conditions and aligns with the extensive peat combustion reported elsewhere in Indonesia during the same
period [32]. In contrast, the 2015 fire event presents a markedly different scenario: burned areas were
primarily composed of tree-crop plantations, industrial plantation forests, and degraded peatlands. This shift
reflects a landscape that has experienced decades of ecological simplification. The conversion to plantations,
construction of drainage canals, and recurrent burning have transformed formerly resilient peat ecosystems
into fire-prone landscapes. Such transitions — from forest-dominated to commodity-driven peatland mosaics
with high fire susceptibility — have been documented at the regional scale by [33].

Quantitatively, the largest burned areas were recorded in 1997 (13,931 ha) and 2015 (13,397 ha). In 1997,
primary forests (swamp, dryland, and mangrove) constituted the greatest share of burned area, whereas in
2015, the largest burned areas were in tree crop plantation (>16,773 ha) and plantation forest (>19,275 ha).
These temporal changes illustrate an important ecological principle: as peatlands degrade, their fire regimes
shift from predominantly climate-driven, episodic events (e.g., 1997) toward human-mediated, recurrent
fires (e.g., 2015 onward). Present-day fire dynamics therefore need to be interpreted as outcomes of long-
term landscape transformation rather than short-term climatic variability alone.

Fire-severity maps derived from the differenced Normalized Burn Ratio (ANBR) emphasize notable high-
severity burns, particularly in 2004 and 2015, where dNBR values exceeded 0.70, signifying deep peat
combustion and nearly complete canopy removal. These high-severity zones closely correspond with areas
experiencing extended hydrological degradation, frequent fires, and extensive drainage, reinforcing the
notion that severely degraded peatlands are more susceptible to intense fires. This trend aligns with remote
sensing studies indicating that deep-burning peat fires produce distinct NBR signatures associated with peat-
layer consumption, soil carbon loss, and long-term vegetation mortality [34]. Spectral indices, especially EVI
and NBR, further indicate that the condition of vegetation prior to major fires is significantly influenced by
large-scale climatic and hydrological stress. In 2015, pre-fire EVI values fell to 0.18, reflecting severe canopy
desiccation due to El Niflo—induced moisture deficits. The widespread decline across vast areas mirrors
broad-scale physiological stress similar to that reported by [30].

Post-fire reductions in EVI and NBR are significant across all fire years, with NBR providing the clearest
distinction between burned and unburned areas due to its sensitivity to NIR-SWIR differences, which respond
to charcoal, ash, and exposed soil [14]. The fire-frequency gradient established in this study — once-burned,
twice-burned, three-times-burned, and four-times-burned — is essential for comprehending how repeated
burning induces ecological regime shifts at the site level. Repeated fire exposure results in a progressive
collapse of vegetation structure. Once-burned plots still support vegetation across all growth stages, from
understory and seedlings to saplings, poles, and trees. Twice-burned plots retain poles, saplings, and
understory, but trees and seedlings are scarce or absent. In three-times-burned plots, only saplings,
seedlings, and understory remain, while poles and trees are no longer present. Four-times-burned plots are
reduced to saplings and understory only.

These structural changes align with the hypothesis that increasing fire frequency alters peat hydrology [35]
and soil chemical properties [36] in ways that diminish the ability of tree species to persist. Extreme
hydrological conditions and low-nutrient, acidic soils in peat swamp forests already pose limitations for many
tree species [37]; repeated fires further exacerbate these constraints, driving stands toward open, low-
stature vegetation. Time-series EVI and NBR profiles stratified by fire frequency demonstrate that all burned
areas exhibit lower spectral index values in post-fire periods compared to pre-fire conditions. Unburned areas
maintain higher index values, whereas repeatedly burned areas show persistently suppressed, fluctuating
values, indicating slowed or arrested vegetation recovery. This dynamic reflects secondary succession
processes repeatedly interrupted by fire. Severe peatland fires are known to require decades for meaningful
recovery [38,39], and under repeated disturbance, the system may never return to pre-fire forest conditions
[40].
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The composition and dominance of plant species along the fire-frequency gradient reinforce this successional
shift. Characteristic peat swamp species dominate once-burned areas but are progressively absent toward
high-frequency fire plots. The persistence of Macaranga pruinosa across disturbance gradients aligns with its
colonization capacity in degraded peatlands [41]. Understory vegetation becomes increasingly dominated by
disturbance-tolerant ferns (Asplenium longissimum, Athyrium esculentum). These IVI patterns highlight a
transition from tree-dominated communities to shrub—fern assemblages in areas subjected to frequent
burning, driven by species with traits that confer high fire tolerance such as rhizomatous growth, rapid
vegetative regeneration, and tolerance to nutrient-poor peat soils.

Vegetation diversity results further support this trajectory. Higher fire frequencies are associated with
decreased species richness and increased community homogenization. Tree and pole diversity collapse after
repeated fires [42], whereas understory diversity increases as early successional species proliferate. This
suggests that high fire frequency eliminates non-fire-resistant species and favors species with rapid dispersal
or vegetative regrowth capacity — consistent with previous research reporting dominance of herbaceous
pioneers within 1-7 years after fire [43,44]. Sapling community similarity decreases with increased fire
frequency, reflecting strong species turnover. However, understory communities converge toward similar
composition across high burn frequencies (Sl up to 83%), indicating a shift toward simplified assemblages and
reduced beta diversity.

Overall synthesis of results across spatial scales demonstrates a consistent ecological pathway linking
landscape degradation, fire regimes, and vegetation recovery. Degraded and repeatedly burned peatlands
tend to transition toward simplified vegetation states with slow or arrested recovery. Landscape hydrological
condition emerges as a foundational determinant of fire persistence and vegetation regrowth. Peatland
recovery cannot be understood solely from plot-level monitoring; it is shaped by interactions between
landscape hydrology, disturbance history, fire frequency, and vegetation feedbacks. These findings
emphasize that restoration strategies must address hydrological degradation at the landscape scale, ensure
sustained fire prevention, and support assisted regeneration where natural recovery stalls.

Conclusions

This study reveals that patterns of vegetation recovery in fire-affected peatlands of eastern Sumatra are
strongly structured by landscape heterogeneity, fire regime characteristics, and cumulative disturbance
intensity. At the landscape scale, 36 peatland ecosystem classes were identified, and only a small subset—
characterised by severe hydrological degradation and land-cover conversion—concentrated the majority of
fire occurrences. Burned-area mapping showed a clear long-term shift from climate-driven fires affecting
primary peat swamp forests in 1997 toward recurrent human-mediated fires dominated by plantation
landscapes in 2015.

Fire severity (ANBR) and spectral indices (EVI, NBR) demonstrated that the most degraded ecosystem classes
experienced the highest levels of canopy loss and peat combustion, with widespread spectral instability even
in non-fire years. At the plot scale, fire frequency emerged as the strongest predictor of ecological response:
once-burned areas retained multi-layer forest structure, whereas three- and four-times-burned areas
showed a near-complete collapse of tree and pole strata, a shift to shrub—fern dominance, reduced species
richness, and increasing community homogenisation.

Overall, the findings indicate that repeated fire drives a transition from peat swamp forest to simplified,
disturbance-tolerant vegetation assemblages with limited natural recovery capacity. This multi-scale
evidence highlights that restoring fire-affected peatlands will require interventions that address both
landscape-level hydrological degradation and site-level ecological thresholds.
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