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Keywords This study integrates the data derived from remotely sensed data and data derived using socio-geo-
brute force, coffee biophysical aspects, such as elevation, slope, distance from the road and rivers, proximity of the
agroforestry, coffee | lation densi imitv of vill d avisually-based land land
monoculture, decision settlements, population density, proximity of villages, and a visually-based land-use-land cover map.
tree, machine learning The importance value for each variable was computed using several criteria, such as information
gain, Gini index, and gain ratio. Meanwhile, the brute force method was applied to select the most
0) significant variables in the model. The study found that the most significant variables for identifying
coffee agroforestry and monoculture were ARVI, EVI, GARI, NRGI, and VDVI, as well as DEM, slope,

proximity to roads, and visual-based LULC, using the criterion of information gain. The use of existing
land-use and cover maps was the most influential variable in the model. The algorithm achieved an
overall accuracy (OA) of 84.65% and a kappa accuracy (KA) of 82.60%. Based on overall accuracy and
high kappa accuracy, the maps produced facilitate local governments and cooperatives in planning
specific interventions for coffee-producing areas, supporting policies related to sustainable
agriculture, climate-smart agroforestry expansion, and supply chain traceability.

Introduction

Bandung Regency is a region that contributes to Arabica coffee production, with 8,246.31 tons produced in
2022 [1]. According to the BPS [2] of Bandung Regency, the area of land planted with coffee is 13,853 hectares
and will continue to increase in the future. Arabica coffee plantations in Bandung Regency are grown by
farmers in forest areas permitted by the State-owned forestry company (Perum Perhutani) through
Pengelolaan Hutan Bersama Masyarakat (PHBM). As market demand for coffee commodities increases,
coffee plantations in Bandung Regency have begun to be grown on farmers' private land. Agricultural
expansion is a primary driver of deforestation in tropical regions, including West Java. Studies indicate that
90 to 99% of deforestation in the tropics is associated with agriculture, although only 45 to 65% of deforested
land becomes productive agricultural land [3]. Due to the limitation of forest area, while the need for
agricultural land is continuously increasing, the state-owned forest corporation (Perum Perhutani)
collaborated with the local community to utilize the area for agroforestry initiatives, which can help balance
agricultural needs with forest conservation efforts. This collaborative approach may enhance sustainable land
management while addressing the socio-economic needs of local populations.

Agroforestry systems, such as those involving cocoa and teak, are more productive and profitable than
monoculture systems, suggesting that integrating trees into agricultural landscapes can support food security
[4]. These collaborative forest management programs, such as those in West Java, have demonstrated
potential in enhancing both forest ecological conditions and rural livelihoods by engaging local communities
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in sustainable forest management practices [5]. The development of coffee commodities faces constraints as
land use continues to change, raising new issues regarding how to allocate the available land for coffee
cultivation among various existing land uses. Coffee agroforestry development in Bandung Regency has high
potential, as it is one of the best producers of arabica coffee in Indonesia. The high potential of coffee
production in Bandung Regency must be balanced with a comprehensive utilization plan to ensure it is
optimally leveraged. However, there is an unavailability of data on the spatial distribution of coffee
plantations, both those grown under agroforestry and monoculture systems.

Tabular data on the area of coffee plants published by central agencies differ from data found in regional
agencies. Data on the potential of coffee commodities in Bandung Regency is still mixed with data on other
commodities [6]. Therefore, the study aims to develop an algorithm that provides accurate spatial
information (maps) for both coffee plantations in agroforestry and monoculture systems. Mapping of coffee
plantation areas is necessary to achieve data harmony between the central and regional governments,
enabling them to map and develop the existing potential effectively [7]. The use of Landsat 8 imagery, training
datasets, predictors, and the DTML algorithm provides the most reliable classification method in detecting
coffee agroforestry and monoculture in Bandung Regency. This study creating a novel classification approach
for detecting coffee plantations, particularly agroforestry systems that are typically difficult to identify under
dense canopy cover. The study produces the first reliable spatial dataset that separates coffee agroforestry
from monoculture plantations in Bandung Regency. These data fill a critical gap, as previous government
datasets aggregated coffee with other commodities and exhibited discrepancies between central and
regional records.

The availability of spatial information, geophysical data, as well as coffee agroforestry and monoculture
distribution maps, is reported. Therefore, the results serve as a reference in preparing spatial utilization plans
and developing coffee agroforestry at the regional level in Bandung Regency. The resulting mapping
methodology offers a scalable and replicable framework that supports data harmonization —allowing central
and regional agencies to align their reported coffee plantation areas using verifiable spatial outputs rather
than solely administrative statistics. In line with the development of information technology, satellite
imagery-based land cover mapping is becoming increasingly straightforward to conduct because medium-
resolution data are freely available and easily accessible, offering high-quality results. Previous study
highlights the difficulties of mapping coffee agroforestry systems due to spectral similarity between coffee
plants and forest canopies, the structural complexity of multilayered agroforestry arrangements, and varying
topographic conditions [8,9]. The studies note that these factors limit the performance of optical imagery,
which often struggles with spectral mixing and terrain-induced distortion.

To overcome these constraints, a semi-automatic method used to detect agroforestry and monoculture
coffee plants is satellite imagery-based, combined with decision tree machine learning (DTML). This study
emphasize the advantages of Landsat 8 imagery, which can penetrate cloud cover and capture structural
information that enhances the accuracy of coffee coverage mapping. This can be applied in data analysis with
the advantages of the decision tree method, including being easy to understand, practical, simple, and
efficient, as well as applied in various data processing platforms [10]. Based on the problems mentioned
earlier, this study was conducted to develop a DTML algorithm with a primary focus on assessing coffee
plantations with agroforestry and monoculture systems in Bandung Regency.

The integration of various geophysical factors includes spatial data of land cover, elevation, slope, road
proximity, and river proximity in Bandung Regency, combined with spectral variables in the form of
vegetation index. Socioeconomic factors such as road distance, distance from settlements, and proximity to
rivers significantly influence the site selection of coffee plantations in developing countries. These factors
affect the accessibility, economic viability, and sustainability of coffee farming, which are crucial for
optimizing production and ensuring the livelihoods of farmers [11,12]. The development plan for coffee
agroforestry in Bandung Regency requires a comprehensive analysis of commodity-specific classification
methods. This certainly raises the urgency to develop a reliable and accurate decision tree algorithm for land
use classification at the commodity level, specifically coffee agroforestry.

Materials and Methods

The assessment of coffee agroforestry systems using DTML involves a structured workflow that integrates
remote sensing data and socio-geobiophysical attributes. The process begins with (1) Landsat-8 image
acquisition having characteristics as depicted in Table 1, followed by the (2) collection of supporting datasets,
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including socio-economic, geophysical, and biophysical variables. Subsequently, (3) creating synthetic images
through the derivation of spectral indices (e.g., NDVI, NDBI, NDWI, and NRGI), and (4) creating socio-
geobiophysical variables to enhance the predictive capacity of the model. The further steps are (5) a class
scheme development focused in distinguishing between agroforestry-based coffee systems and
monocultures, (6) delineation of training areas and calculation of zonal statistics, which provide
representative samples for model development and validation, (7) attribute selection using four criteria:
Brute Force (BF), Information Gain (IG), Gini Index (Gl), and Gain Ratio (GR), (8) DTML model construction
based on the selected attributes. The resulting model undergoes accuracy testing (9) using established
validation metrics, and the best-performing model is subsequently selected (10). Finally, the validated model
is applied to produce a spatial distribution map that differentiates between coffee agroforestry systems and
monoculture plantations, offering valuable insights for sustainable land-use planning and agroforestry
management. The study workflow is visually depicted in Figure 1.
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Figure 1. Sequential data processing steps used to derive coffee distribution information from Landsat 8, starting with
satellite image acquisition and the compilation of supporting socio-geobiological datasets. Synthetic indices such as
NDVI, NDBI, and NRGI are generated, combined with socio-geobiological variables, and integrated into a classification
scheme. Zonal statistics and attribute selection are then applied to support model development, followed by accuracy
assessment and model selection. This workflow results in the production of coffee assessment maps, illustrating a
systematic and replicable approach to mapping coffee distribution in the study area.

Study Area

This study was conducted through the stages of measurement and data survey in Bandung Regency, located
between 107°14’-107°56’ East Longitude and 06° 49'—07°18’ South Latitude. Data collection in the field used
the purposive sampling method for Cimaung District, Ciwidey District, Ibun District, Kertasari District,
Pangalengan District, Paseh District, and Rancabali District (Figure 2). A total of 60 sample plots (2,056 pixels)
were spread across the district, representing coffee agroforestry and coffee monoculture land cover.

Data Collection and Analysis

Landsat 8 imagery provides a comprehensive set of spectral bands that are widely used for environmental
monitoring, land use/land cover mapping, and resource assessment. Each band is designed to capture
information from specific portions of the electromagnetic spectrum, with spatial resolutions of either 30
meters for multispectral bands or 15 meters for the panchromatic band. The coastal/aerosol band (Band 1)
is useful for coastal and aerosol studies. The visible bands consisting of blue (Band 2), green (Band 3), and red
(Band 4) are essential for natural color composites, vegetation studies, and water body analysis. The near-
infrared (NIR, Band 5) is particularly valuable for vegetation health and biomass monitoring due to its
sensitivity to plant reflectance. Shortwave infrared bands (SWIR-1, Band 6, and SWIR-2, Band 7) enhance the
detection of soil and vegetation moisture as well as geological features. The panchromatic band (Band 8)
offers finer spatial detail at 15 meters, enabling sharper image interpretation and pan-sharpening techniques.
Finally, the cirrus band (Band 9) is designed to detect high-altitude clouds that may affect image analysis
(Table 1).
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Figure 2. Spatial distribution of land cover and administrative boundaries in Bandung Regency, West Java,
Indonesia. The map depicts Bandung Regency (outlined in red), its surrounding by other administrative areas
(Bandung City, West Bandung Regency, Cianjur Regency, and Sumedang Regency), and major landscape
features including elevation gradients and built-up areas. Color variations indicate differences in land cover,
with dense urban zones concentrated in the northern part of the regency. The inset map highlights the
location of Bandung Regency within West Java Province. Overall, the figure illustrates the strong contrast
between highly urbanized northern areas and the predominantly rural, vegetated landscapes in the central
and southern regions.

Table 1. Summarizes of Landsat 8 imagery, including their band designations, spatial resolutions, and wavelength
ranges. The listed bands cover key portions of the electromagnetic spectrum from coastal/aerosol to visible, near-
infrared (NIR), shortwave infrared (SWIR), panchromatic, and cirrus, each serving distinct analytical purposes such as
vegetation monitoring, land-use mapping, moisture detection, and atmospheric correction. Table highlights the
multispectral capability of Landsat 8 for environmental and land-use analysis, including vegetation assessment and
coffee distribution mapping.

Imagery type Channel sensor Spatial resolution (m)  Wavelength (um)
Landsat 8 imagery  Band 1: Coastal/Aerosol 30 0.435-0.451
Band 2: Blue 30 0.452 -0.512
Band 3: Green 30 0.533-0.590
Band 4: Red 30 0.636 - 0.673
Band 5: NIR 30 0.851-0.879
Band 6: SWIR-1 30 1.566 —1.651
Band 7: SWIR-2 30 2.107 —-2.294
Band 8: PAN 15 0.503-0.676
Band 9: Cirrus 30 1.363-1.384

Note: NIR = near infrared, PAN = panchromatic, SWIR = short wave infrared.
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Several measuring instruments were used, such as a Global Positioning System (GPS), a camera, a phi-band,
a clinometer, a compass, a tally sheet, a measuring tape, a rope, and stationery. In addition, data processing
and analysis were carried out using gantum GIS software, Codeblocks 20.03, and rapid miner studio. Primary
data was Landsat 8 imagery, path 121 — row 065, with a resolution of 30 x 30 m recorded on 26 July 2022
(Table 1) and field data. The Landsat 8 imagery was obtained from the United States Geological Survey (USGS)
website.

Secondary data were in the form of geophysical factors, such as spatial data on elevation, slope, road
proximity, and river proximity in Bandung Regency. These data were downloaded from Data DEMNAS and
Data RBI of Geospatial for the Country of Indonesia (https://tanahair.indonesia.go.id/portal-web/unduh
accessed on 26 December 2022). Data pre-processing was carried out to examine satellite imagery data
before conducting further analysis. The procedure started with cloud correction on Landsat 8 imagery, class
scheme creation, training area creation, and synthetic creation (Table 2).

Table 2. Structured pre-processing in ensuring the reliability and analytical value of satellite-derived products,
particularly for applications coffee distribution assessment, including cloud correction, class scheme creation, training
area development, and the generation of synthetic indices. For each step, the table outlines the required input data,
the methods applied such as cloud masking using QA Pixels, visual interpretation of spectral composites, and
mathematical transformations of spectral bands, and the resulting outputs. The listed outputs, including class
schemes, training area datasets, and synthetic indices e.g., NDVI, EVI, NBR, and related vegetation and moisture
metrics, demonstrate how multispectral information from Landsat 8 is systematically processed to support accurate
land-cover mapping.

Stages Pre-processing

Cloud Input: Landsat 8 imagery recorded in 2022.

correction of Method: Cloud masking algorithm Quality Assessment Pixel (QA Pixel).

Landsat 8 Output: Cloud-free Landsat 8 imagery.

imagery

Creating class Input: Cloud-free Landsat 8 imagery recorded in 2022.

schemes Method: Proximity of reflectance values, spectral and spatial observations of cloud-free Landsat 8
imagery.
Output: Scheme of classes, including natural forest, plantation forest, dryland agriculture and shrubs,
plantations, rice fields, water bodies, open land, settlements, coffee agroforestry, and coffee monoculture.

Creating Input: Cloud-free Landsat 8 imagery recorded in 2022.

training areas
(TA)

Method: Interpretation using visual methods using a combination of Red-Green-Blue and NIR-Red-Green
channels of Landsat 8 imagery.

Output: 2056 pixels of TA, including 190 for natural forest, 177 for plantation forest, 348 for dryland
agriculture and shrubs, 200 for plantations, 270 for paddy fields, 101 for water bodies, 130 for open land,
328 for settlements, 177 for coffee agroforestry, 135 for coffee monoculture. 70% of the TA was allocated
for model development, while the remaining 30% was used for model validation (accuracy assessment)

Creating Input: Cloud-free Landsat 8 imagery recorded in 2022.
synthetic Method: Mathematical operations on pixels in Landsat 8 imagery channels.
imagery Output: Atmospheric reflection vegetation index, enhanced vegetation index, green atmospherically

resistant index, modified normalized differences wetness index, green-based, normalized red-green
vegetation index, and visible difference vegetation index.

The study performed several preprocessing steps to ensure data quality and accuracy. Preprocessing typically
involves correcting atmospheric and cloud-related disturbances, since cloud contamination is a common
limitation in optical satellite data. In this study, cloud correction was conducted using the Quality Assessment
(QA Pixel) algorithm to generate a cloud-free image mosaic of the study area, ensuring more reliable spectral
information for subsequent analysis. A series of processing stages was implemented to prepare the imagery
for classification. These included the development of land cover class schemes based on spectral and spatial
characteristics, the delineation of training areas through visual interpretation of composite images (RGB and
NIR combinations), and the generation of synthetic imagery using mathematical transformations of spectral
bands to derive vegetation and wetness indices.

In this study, we applied a decision tree (DT) machine learning algorithm, a widely recognized non-parametric
classification method in remote sensing [13,14], to evaluate whether its application can enhance
classification accuracy despite the moderate spatial resolution of Landsat imagery. The approach emphasizes
the integration of both spectral indices and geophysical variables, with the expectation that combining these
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data sources may improve the separability of land cover classes and support more robust mapping results. The
synthetic images or image indices developed in this study were images that were derived from mathematical
operations using pixels originating from several channels in the imagery [15]. Previous study showed that the
channels influential in vegetation detection were visible waves (red, green, and blue) as well as near-infrared
and mid-infrared [16,17]. This study develops a coffee agroforestry detection algorithm using another
method through the Atmospheric Reflection Vegetation Index (ARVI), Enhanced Vegetation Index (EVI),
Green Atmospherically Resistant Index (GARI), Modified Normalized Differences Wetness Index, green-based
(MNDWIg), Normalized Red-Green Vegetation Index (NRGI), and Visible Difference Vegetation Index (VDVI).

NDVI is widely used for monitoring vegetation dynamics due to its ability to indicate photosynthetic activity
and vegetation greenness, as well as its sensitivity to changes in vegetation cover and environmental
degradation assessment [18]. Meanwhile, ARVI is designed to be less sensitive to atmospheric effects
compared to NDVI. It incorporates the blue channel to correct atmospheric influences on the red channel,
enhancing its reliability in varying atmospheric conditions. This makes ARVI particularly useful in regions with
frequent atmospheric disturbances, as it provides more accurate vegetation monitoring. GARI is similar to
ARVI but focuses on the green spectrum, offering improved resistance to atmospheric effects. It is beneficial
in environments where atmospheric conditions can significantly impact remote sensing data [19].

The MNDWI is used to monitor water bodies and moisture content in vegetation. It is effective in detecting
changes in water surface areas and vegetation moisture, making it valuable for assessing environmental
degradation and managing water resources. MNDW!I has been applied in studies to track changes in water
bodies and wetlands, providing insights into hydrological dynamics and the impacts of land use [20]. The NRGI
is used to assess vegetation health by analyzing the red and green spectral bands. It plays a crucial role in
distinguishing between different types of vegetation and assessing their health status [21]. The VDVI is
designed to enhance the sensitivity of vegetation monitoring, particularly in areas with high vegetation
density. It provides a more dynamic range of vegetation detection, improving the accuracy of monitoring
efforts [22]. Mathematical operations for creating synthetic imagery with Landsat 8 imagery include the
following equations:

ARVI = (NIR — (2 X Red — Blue)) (1)

(NIR+(2 x Red — Blue))

2.5 (NIR — Red)
EVI = (2)
(NIR — 6Red + 7.5Blue + 1)
NIR — (Green — 1.7 (Blue — Red)
NIR + (Green — 1.7 (Blue — Red)

GARI = (3)

MNDWIg — Green — SWIR (4)
Green + SWIR

NRGI = Green — Red (5)

Green + Red

VDVI = ((2 X Green) — Red — Blue) (6)
((2 X Green) + Red + Blue)

This study uses five vegetation and wetness indices to detect cover and water bodies with unique
characteristics (Figure 3). Specific land covers produce reflections with different wavelengths known as hues.
Meanwhile, vegetation cover hues in synthetic imagery, such as ARVI, EVI, GARI, NRGI, and VDVI, produce
bright hues. Land covers in the form of water bodies, open land, and settlements produce darker hues.
Synthetic imagery MNDW!Ig for wetness index shows brighter hues for water bodies, while other land covers
possess darker hues.
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Figure 3. Synthetic vegetation-index maps derived from Landsat 8 imagery for the year 2022, displaying ARVI, EVI,
GARI, NRGI, MNDW!Ig, and VDVI across the study area with administrative boundaries overlaid in red. These panels
illustrate spatial variations in vegetation density, greenness, moisture, and spectral responses, enabling comparison
of how different indices represent ecological conditions. Figure highlights consistent patterns of higher vegetation
activity in darker-toned regions, demonstrating the complementary value of multiple indices for characterizing
landscape-level vegetation dynamics.

Decision Tree Machine Learning Analysis

A decision tree is a classification method used for the induction of machine learning algorithms. The method
uses a tree structure with the root, branch (sub-trees), and leaf nodes [23]. The decision tree method has
been effectively utilized for image classification in land-use and land-cover research [24]. A decision tree is
compiled using Rapidminer software with the C4.5 algorithm, starting with calculating the entropy value.
Based on the description, the construction is performed by dividing data into several small groups with the
same value [25]. The division should decide which variables are the best and most predictive. The creation of
a decision tree hierarchy uses criteria from the variables known as the parameters. A decision tree is created
by dividing the training data set into several different nodes [26].

The measurement of the algorithm starts by calculating the entropy value. In this context, entropy is defined
as the sum of the probabilities of each label multiplied by the log probability of the label. Entropy value
measures the impurity or level of randomness in a data set [27]. The equation for calculating entropy is as
follows:

Entropy (S) = =Y, — Pilog,P; (7)
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Description:

Pi = proportion of data
S =total data set

n =numberofdatains$

Split info value is calculated to state the entropy or impurity of a variable. This value is obtained from the
sum of the proportions of sub-attributes using the following equation:

k Si Zﬁ
Split Info (S,A) = —Z E log”s (8)
i=1
Description:
S =total data set
Si = number of data in sub-variable i

Entropy shows the calculation for obtaining information gain, which is the difference between class entropy,
conditional class entropy, and the selected variable. Information gain is used to measure the change in
entropy before and after class separation [28]. The variable with the highest value is selected for separation,
as reported in the following equation:

n
Information Gain = Entropy (S) — z %Entropy (S) (9)
i=1
Description:
|Si| = number of cases of partition i
S| =number of casesin$S
Si = number of data in sub-variable i

The ranking of variables with gain ratio is used to evaluate the level of importance of all n variables. The
measure is the result of dividing the information gained by the split info.
Gain (S,4)

Gain Ratio = m

(10)

Description:
S = case set
A= variable

The Gini index is used to determine the purity of a particular class after separation based on a particular
variable [29]. The best separation increases the purity of the set produced. The Gini index equation is defined
below when K is a dataset with j being a different class label.

P . n
Gini Index = 1 — Zi:l — P2 (11)
Description:

Pi = data proportion of class-i

The application of big data analytics to spatially referenced data in environmental monitoring presents both
significant challenges and opportunities. The challenges primarily stem from the complexity and
heterogeneity of environmental data, while the opportunities lie in the potential for enhanced predictive
capabilities and decision-making processes. The integration of advanced technologies such as cloud
computing and machine learning can further enhance the utility of big data analytics in this field. This big
data often contains a certain amount of noise and outliers. A decision tree is a method that is sensitive to
noise and outliers. Therefore, one of the disadvantages of the decision tree method is overfitting. Overfitting
occurs because the resulting decision tree model is too complex, so that the model will adjust to the training
data. To overcome this, additional methods should be applied to the decision tree to reduce overfitting and
improve accuracy.

Methods that can be used to overcome overfitting include pruning. Pruning is emphasized by removing
unnecessary nodes in the decision tree [30]. The pruning process is done in two ways: the first is to use pre-
pruning, which is to stop the splits so that the decision tree does not grow larger, which means it will stop
the tree at a specific growth rate. The second, referred to as final pruning, removes split nodes created after
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the tree is fully formed.Pruning is an effort to reduce the number of errors generated in the results of land
cover classification with a decision tree. Previous studies have shown that pruning can effectively improve
accuracy by up to 11% [31]. Other studies show that overfitting can be reduced by pruning and result in a
practical accuracy value of about 92% [32]. Another method to reduce overfitting is to use brute force, which
serves to prune the amount of data that is not influential or not relevant. The brute force method has the
principle of selecting the best set of variables by testing all possible combinations of the selected variables.
The brute force combination is C,{,j being the total number of variables and k being the possible number of
selected variables. Irrelevant or distracting variables often confuse the decision tree machine learning
process, resulting in models with low accuracy. In addition, selecting variables can result in a simpler model
that uses less data and has the capability for land cover classification [33].

Optimization of Model Selection and Parameters

Information gain, Gini index, gain ratio, and brute force are some of the variable selection and ranking
methods used. In this context, information gain is based on entropy to measure the usefulness of variables
[34]. The Gini index determines the purity of a class after separation based on a particular variable. Ranking
with a gain ratio is used to evaluate the level of all variables. Meanwhile, Brute force is a method used to
select the most relevant variables, where a value of 1 shows usage in the classification. The results of Brute
force calculation are in the form of a weight value for each variable used. The straightforward method is used
to solve problems requiring input and consideration [35].

The analysis is continued with the optimization of model parameters to achieve the best classification
accuracy. The criteria used are decision tree, maximal depth, minimal leaf size, pre-pruning, and pruning. The
development of decision tree models often experiences obstacles in the form of data overfitting. The method
used to overcome data overfitting is the use of pre-pruning and pruning [36].

Accuracy Test

The accuracy test analyzes the level of success in classifying objects using the decision tree method.
Commonly used types are overall accuracy (OA) and kappa accuracy (KA). The accuracy test uses the principle
of the confusion matrix as a comparison that contains reference and classification result data.

Results

Selection of the Best Variables and Models

Visual-based Land cover, spectral, and geophysical variables were combined to develop the best model for
detecting the spatial distribution of coffee plants. The selection of variables was carried out by calculating
the weight of each variable, as reported in Tables 3, 4, 5, and 6. The weight value shows a higher relevance
level of the variable. The magnitude affects the amount of information in distinguishing objects within a
particular class. The weight of each variable in Bandung Regency for the geophysical combination can be seen
in Table 3.

Table 3. Relative weights of four geophysical variables such as elevation, slope, road proximity, and river proximity,
calculated using information gain, Gini Index, gain ratio, and a Brute Force Method. These weighting schemes are
applied to assess the influence of each variable within a geospatial analysis framework, enabling comparison across
different feature-selection metrics. The results consistently identify elevation and slope as the most influential
predictors, while road and river proximity exhibit minimal contribution across all weighting methods showed by zero
value in information gain, Gini Index, and gain ratio.

Weight
Variable Information Variable Gini Variable Gain Variable Brute

gain index ratio force
Elevation 1.000 Elevation 1.000 Elevation 1.000 Elevation 1
Slope 0.495 Slope 0.656 Slope 0.646 Slope 1
Road 0.078 Road 0.119 Road 0.020 Road 1
proximity proximity proximity proximity
River 0 River 0 River 0 River 1
proximity proximity proximity proximity
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Geophysical variables provide information about the condition of a land. The uniqueness and characteristics
of the landscape can be seen from the inherent geophysical variables [37]. Table 3 shows that elevation is
the most influential variable in the model, with information gain, Gini index, gain ratio, and brute force values
of 1. Therefore, the root node in the geophysical combination is the elevation variable used as the starting
point for dividing the dataset into homogeneous and smaller subsets. Elevation variables can separate land
cover classes in Bandung Regency with lower entropy values, so that the separation will result in a more
homogeneous class.

Elevation is the most influential variable because the conditions in Badung Regency have significant
differences due to the presence of mountains, highlands, and lowlands. Elevation provides the most accurate
value among other geophysical variables to detect agroforestry coffee land cover based on the habit of
agroforestry coffee planting by the farmers in Bandung Regency, which is easily found at high elevations,
usually more than 1,500 meters above sea level (masl). In addition, based on land suitability data for arabica
coffee cultivation in Bandung Regency, the elevation range is 1,500 to 2,000 masl. Slope is the second ranking
in Table 3, which shows farmers' habits for growing coffee in Bandung Regency. Coffee monoculture will be
planted on gentle to steep slopes, ranging from 8% up to 25%. For accessibility reasons, in transporting coffee
bean production and management, both coffee agroforestry and monoculture were planted close to the road
[38].

River proximity does not affect the spatial distribution of coffee plantations, as the water requirement of
coffee does not require regular irrigation and watering. In Bandung Regency, the microclimate created by
the surrounding vegetation, such as pine trees, helps maintain stable humidity levels, which is beneficial for
coffee cultivation [39]. That is why the coffee plantation does not need direct water irrigation from the river.
Rainfall is another critical factor, as it provides the necessary water supply for coffee plants. The ideal annual
rainfall for Arabica coffee ranges from 1,800 to 2,000 mm, which aligns with the rainfall patterns observed in
Bandung Regency [40]. Consistent rainfall ensures that coffee plants receive adequate water throughout the
year, reducing the need for artificial irrigation and supporting sustainable coffee farming practices [41].
Elevation significantly impacts coffee plantation suitability due to its influence on temperature and
microclimate. Arabica coffee thrives at elevations between 1,000 and 1,500 masl, where temperatures are
cooler and more stable [42,43]. In Bandung Regency, the elevation provides a favorable environment for
coffee growth by creating a microclimate that reduces the risk of pests and diseases, which are more
prevalent at lower altitudes [44].

In contrast, the proximity of roads still influences coffee cultivation. The coffee cultivation in Bandung
Regency, both in agroforestry and monoculture systems, is mostly close to the road network, meeting the
needs of farmers for crop management, harvesting, and distribution. As described in Table 4, the spectral
variables used produce varying effects, and none is the most dominant. ARVI shows the highest information
gain value, while the best NRGI values for both the Gini index and the gain ratio are 1. The ARVI attribute is
the root node in the model with a value of 1 and 0.850 for information gain and gain ratio, respectively. The
attribute is a good vegetation index in Landsat 8 imagery due to resistance to atmospheric effects [45]. These
spectral variables in Table 4 provide a better visual representation of the coffee plants grown in Bandung
Regency.

Table 4. The relative weights of ARVI, EVI, NRGI, GARI, MNDW!Ig, and VDVI indicated that ARVI, EVI, and NRGI
consistently have the highest influence, with values close to 1, while MNDWIg and especially VDVI contribute
minimally to the spectral combination analysis with values close to 0.

Weight
Variable Information Variable Gini Variable Gain Variable Brute
gain index ratio force
ARVI 1.000 NRGI 1.000 NRaGI 1.000 ARVI 1
EVI 0.645 VDVI 0.773 ARVI 0.850 EVI 1
NRGI 0.496 ARVI 0.670 EVI 0.285 NRGI 1
GARI 0.254 EVI 0.484 GARI 0.238 GARI 1
MNDWIg 0.084 GARI 0.224 MNDWIg 0.182 MNDWIg 1
VDVI 0 MNDWIg 0 VvDVI 0 VDVI 1

The combination of red-blue (RB) channels in ARVI attribute minimizes the atmospheric scattering effect
caused by aerosols in the red channel [46]. In addition to the ARVI variable, the EVI and GARI variables are
also well used in Landsat 8 imagery because of their ability to correct for atmospheric effects. Another
variable, MNDW!Ig, is a wetness index used to detect water bodies on the earth's surface [47]. VDVI is a
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vegetation index similar to NDVI, a development that has a similar range of values. Other spectra, such as
EVI, GARI, MNDW!Ig, and VDVI, remain relevant for use in the model. This is because brute force is 1, even
though VDVI is 0 in information gain and gain ratio, as well as 0 for MNDWIg in the Gini index (Table 4).
Therefore, the six variables are still used in spectral combination to build a decision tree algorithm.

Observations by combining spectral and geophysical data were conducted to increase the retrieval of more
information in the model built. Spectral variables have a greater influence on the decision tree model
compared to geophysical factors, as shown in Table 5, which indicates that spectral variables ranked among
the top 6. Spectral variables provide better information on land conditions compared to geophysical
variables. ARVI is the root node in the decision tree with information gain and gain ratio of 1 and 0.950,
respectively (Table 5). Spectral-geophysical combination increases the values of each variable in IG, GI, and
GR. The combination of ancillary data and spectral increases the value of information and influence because
the variables cannot necessarily distinguish land cover well [48]. The variables have a Brute force value of 1,
which is relevant and influential in the decision tree model (Table 5).

Table 5. Relative weights of spectral and geophysical variables derived from four feature-selection criteria to evaluate
their importance in environmental or remote-sensing—based analyses. The table shows that spectral indices
consistently receive the highest weights across all methods, indicating their dominant contribution to model
performance compared with geophysical variables such as elevation, slope, and proximity measures.

Weight
Variable Information gain  Variable Giniindex Variable Gainratio  Variable Brute
force
ARVI 1.000 NRGI 1.000 NRGI 1.000 ARVI 1
EVI 0.827 VDVI 0.881 ARVI 0.950 EVI 1
NRGI 0.755 ARVI 0.828 EVI 0.761 NRGlI 1
GARI 0.637 EVI 0.731 GARI 0.746 GARI 1
MNDWIg 0.555 GARI 0.596 MNDWIg 0.727 MNDWIg 1
VDVI 0.514 MNDWIg 0.479 VDVI 0.666 VDVI 1
Elevation 0.423  Elevation 0.327 Elevation 0.245 Elevation 1
Slope 0.209 Slope 0.215 Slope 0.158 Slope 1
Road proximity 0.033 Road proximity 0.039 Road proximity 0.005 Road proximity 1
River proximity 0 River proximity 0 River proximity 0 River proximity 1

Another combination tested includes spectral, geophysical, and land cover data variables (Table 6). The root
node in the decision tree model is land cover (PL Vis) with an Information Gain of 1, a Gini Index of 1, and a
Gain Ratio of 0.419. Land cover has a high influence and relevance in the decision tree algorithm model. This
is because the variable provides initial information on land cover classes. The combination of spectral-
geophysical with PL Vis provides a model computation similar to supervised classification. The variables PL
Vis, ARVI, EVI, GARI, MNDWIg, NRGI, VDVI, elevation, slope, road proximity, and river proximity affect the
model characterized by a brute force value of 1. The combinations of geophysical, spectral, spectral-
geophysical, and spectral-geophysical-land cover are optimized for each parameter to determine the best
model in the decision tree.

Table 6. The relative importance weights of spectral, geophysical, and land-cover variables as determined by four
feature-selection methods: information gain, Gini index, gain ratio, and brute force. The evaluated variables include
vegetation indices, moisture indices, topographic attributes, proximity measures, and a land-cover parameter (PL Vis),
representing a comprehensive set of environmental predictors. The results show that PL Vis consistently receives the
highest weight across all methods, indicating that land-cover information plays a dominant role in explaining
variability compared with other spectral and geophysical variables.

Weight
Variable Information Variable Gini Variable Gain Variable Brute

gain index ratio force
PL Vis 1.000 PLVis 1.000 NRaGI 1.000 PLVis 1
ARVI 0.419 NRGI 0.251 ARVI 0.950 ARVI 1
EVI 0.347 VDVI 0.222 EVI 0.761 EVI 1
NRGI 0.316 ARVI 0.208 GARI 0.746 GARI 1
GARI 0.267 EVI 0.184 MNDWIg 0.727 MNDWIg 1
MNDWIg 0.232 GARI 0.150 VDVI 0.666 NRGI 1
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Weight

Variable Information Variable Gini Variable Gain Variable Brute

gain index ratio force
VDVI 0.215 MNDWIg 0.120 PLVis 0.419 VDVI 1
Elevation 0.177 Elevation 0.082 Elevation 0.245 Elevation 1
Slope 0.087 Slope 0.054 Slope 0.158 Slope 1
Road 0.014 Road 0.010 Road 0.005 Road 1
proximity proximity proximity proximity
River 0 River 0 River 0 River 1
proximity proximity proximity proximity

Land cover variables provide an initial overview of land use in Bandung Regency based on the mapping that
has been created, but do not specifically show the distribution of coffee agroforestry and coffee monoculture.
Spectral variables in the form of vegetation index can detect land cover in the form of vegetation and non-
vegetation based on the greenness degree value. Bio-socio-geophysical variables provide information on
traditional practices and physical characteristics of coffee planting patterns carried out by farmers, including
suitable altitude (elevation), the slope selected for coffee planting, road access to the planting site (proximity
to roads), and access to irrigation (proximity to rivers). Based on the results given in Table 6, the integration
or combination of spectral variables with bio-socio-geophysical variables as additional information is proven
to increase the percentage of success in land cover classification.

Best Model Parameter Optimization

Parameter optimization uses the iteration method to obtain a combination of 234,256. The optimal value is
determined based on the overall accuracy value [49]. The parameter is selected based on the 10 best rankings
from thousands of combinations. The information gain parameter achieves the highest overall accuracy value
of 84.65% with an 8-fold selection in Table 7. Another parameter selected in the optimization is the Gini
index, with an overall accuracy of 84.23% being the highest. The best information gain parameter requires a
pruning process with a minimum leaf node of 11, a minimum of 31 samples, and a maximum tree depth of
80. Pruning in the optimal model is carried out to cut or remove several unnecessary branches with weak
influences [50]. The process is carried out to develop the reliability and accuracy of the decision tree, which
has been proven to increase overall accuracy [51].

Table 7. The performance of decision tree models optimized under different parameter configurations, including
splitting criteria (IG or Gl), pre-pruning and pruning options, minimal leaf and split sizes, and maximal tree depth. The
results provide a comparative context for understanding how variations in pruning strategies and structural
parameters influence classification accuracy. The table shows that several parameter combinations yield similar high
accuracies around 84%, indicating that the model is relatively robust to these adjustments, with IG-based trees
showing slightly better optimal performance.

Criteria  Pre-pruning Pruning Minimal leaf size ~ Minimal size for split Maximal depth  Overall accuracy (%)

IG F T 11 31 80 84.65
IG F F 60 51 9 84.23
Gl F F 31 70 39 84.23
IG F F 31 1 29 84.14
Gl F T 41 1 50 84.14
IG F T 21 80 100 83.97
IG F F 11 90 100 83.97
IG F F 1 31 9 83.89
IG F F 100 60 19 83.89
IG F T 1 11 100 83.80

Note: F = false, Gl = Gini index, IG = information gain, T = true.

Accuracy Test Results

The models built using different combinations produce varying levels of accuracy. Geophysical combination
uses elevation, slope, road proximity, and river proximity, while spectral combination only adopts the
vegetation index. Observations are made by combining geophysical and spectral variables, as well as
geophysical-spectral-land cover. To address the potential risk of overfitting in the classification process, the
reference samples were systematically divided into two groups. A total of 70% of the samples were allocated
for model development (training), ensuring that the decision tree algorithm could learn the relationships
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between spectral and geophysical variables. The remaining 30% of the samples were reserved exclusively for
validation, thereby providing an independent dataset to evaluate model performance. This separation of
training and validation data is a standard practice in machine learning-based studies, as it enables a more
objective assessment of classification accuracy and ensures that the results are not biased by the data used
for model construction.

In addition, the confusion matrix is arranged to obtain OA and KA values for each combination. The
geophysical combination provides the lowest results with OA and KA of 52.12% and 45.20%, respectively. We
noticed that there is a discrepancy between the overall accuracy (84.65%) and the lower producers’
accuracies for the coffee-related classes (coffee agroforestry/CAF= 68.27%, coffee monoculture/CNF =
57.33%). We acknowledge that while the classification achieved high overall performance, the confusion
matrices indicate challenges in distinguishing between these spectrally and structurally similar classes. CAF
and CNF often share overlapping spectral signatures, particularly in medium-resolution imagery such as
Landsat (30 m), where mixed pixels can obscure subtle differences in canopy structure and understory
conditions. Nonetheless, the inclusion of these classes remains important for our study’s objectives.

Our results highlight both the potential and the limitations of using Landsat imagery for discriminating coffee
production systems. We interpret the relatively lower accuracies not as a shortcoming of the method, but as
evidence of the inherent difficulty of this classification problem. In future work, we plan to address this
limitation by integrating higher-resolution imagery and other additional ancillary variables (e.g., LiDAR,
topography, or climate data), which may enhance class separability. Geophysical variables have low accuracy
in providing additional information to describe the existence of Arabica coffee through habitual patterns [52].
The variables should be combined to obtain higher accuracy results. The combination of geophysical-spectral-
land cover has the highest accuracy value compared to other combinations at 84.65% and 82.60% for OA and
KA. Geophysical-spectral-land cover is the best decision tree algorithm selected from the four existing
combinations (Table 8).

Table 8. The overall accuracy and Kappa accuracy values derived from models built using different combinations of
geophysical, spectral, and land-cover variables. It provides a comparative context to assess how each variable group
or combination influences classification performance. The results show that integrating geophysical, spectral, and
land-cover variables yields the highest accuracies, with OA 84.65% and KA 82.60%, indicating that multi-variable
models perform substantially better than those relying on single variable groups.

Combination of variables Accuracy test results (%) Selected variable
Overall accuracy (OA) Kappa accuracy (KA)

Geophysical 52.12 45.20 Elevation

Spectral 77.49 74.50 ARVI

Geophysical-spectral 80.05 77.40 ARVI

Geophysical-spectral-land cover 84.65 82.60 PLVis

The results of the accuracy test found that the combination of geophysical-spectral variables-land cover, with
an OA of 84.65% was able to provide the best decision tree algorithm to be used in land cover classification,
especially to detect agroforestry and monoculture coffee in Bandung Regency. The decision tree algorithm
with this combination can be used to create a reliable map of agroforestry and monoculture coffee
distribution, which can serve as initial information for policymakers in determining the location of coffee
development in Bandung Regency. The distribution map of agroforestry and monoculture coffee plants will
facilitate policymakers' efforts to assist in the form of seeds, incentives, strengthening production in areas
with great potential, and land intervention, as it has been explicitly mapped for coffee commodities. Figure
4 shows some examples of decision tree algorithm rules from a total of 211 branches. Based on the decision
tree algorithm, PL Vis is the primary variable separating the classification of coffee plant land cover from
others.

The resulting algorithm shows the ability to classify CAF and CNF, with PL Vis = HAL, which serves as the root
node of the model. Decision tree rules are used to produce land classification maps in detecting CAF and CNF.
The land classification maps formed are natural forests (HAL), plantation forests (HTN), plantations (PKB), rice
fields (SWH), water bodies (TBA), open land (TTR), settlements (PMK), CAF, CNF, and dryland agriculture
mixed with shrubs (PLKSBL). Figure 4 shows that the decision tree will classify land cover into coffee
agroforestry by splitting the elevation branch nodes (DEM/Digital Elevation Models), which have values >
1,513.5 masl, road proximity < 1,373 meters, slope value < 37%, and road proximity > 832 meters. The
decision tree will classify coffee monoculture cover by splitting DEM having a value > 1,513.5 masl, distance
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to the road > 1,373 meters, EVI value > 0.570, MNDWIg value > —0.396, NRGI value < 0.192, ARVI value > —
0.999, ARVI value > —0.999, ARVI value > —0.999. The decision tree has many branches to classify coffee

agroforestry and coffee monoculture land cover.
— HAL #HAL
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Note: ARVI = atmospheric reflection vegetation index, CAF = coffee agroforestry, CNF = coffee monoculture, DEM = elevation, EVI = enhanced
vegetation index, HAL = natural forests, HTN = plantation forests, MNDWIg = modified normalized differences wetness index, green base, NRGI =
normalized red-green vegetation index, OLC = other land cover, PKB = estate crop plantation, PLKSBL = dryland agriculture mixed with shrubs,
plvis = land cover, PROX J = road proximity, Prox_s = river proximity.

Figure 4. lllustrates a decision-tree model used for land-cover classification, showing the hierarchical structure of
splitting variables including spectral indices, geophysical parameters, and proximity measures, and the resulting
terminal land-cover classes e.g., HAL or natural forest, CAF or coffee agroforestry, and CNF or coffee monoculture.
The diagram of decision tree provides context for understanding how different environmental predictors interact and
are sequentially selected by the machine-learning algorithm to differentiate between multiple land-cover types. The
figure demonstrates that the model relies on a combination of influential spectral and geophysical variables, indicating
their importance in accurately discriminating land-cover categories.

Land Cover Classification Results

Following the Indonesian National Standard (SNI/Standar Nasional Indonesia) No. 7645—2010 on land cover
classification, we developed 10 classes, including coffee agroforestry and monoculture classes, using the best
decision tree algorithm obtained. The classification map was then developed and depicted in Figure 5. The
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algorithm model provides fairly good classification in distinguishing land cover classes. Coffee agroforestry
and monoculture are spread across several districts. Coffee agroforestry can be found in 12 districts: Pasir
Jambu, Ciwidey, Pangalengan, Cimaung, Banjaran, Rancabali, Pacet, Ibun, Paseh, Cimenyan, Cilengkrang, and
Arjasari.
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Figure 5. The map displays the spatial distribution of land-cover classes in Bandung Regency, generated using a
decision-tree classification algorithm applied to multisource environmental and remote-sensing data. The figure
shows eleven distinct land-cover categories, including primary forest, plantation forest, estate crop plantations, coffee
agroforestry, coffee monoculture, shrub—mixed dryland agriculture, and settlements, each represented by a unique
color. The map highlights substantial heterogeneity in land-cover patterns across the regency, with forested areas
concentrated mainly in the southern and southwestern regions, while agricultural and settlement areas dominate the
central and northern zones. Coffee agroforestry and coffee monoculture can be found in 12 districts: Pasir Jambu,
Ciwidey, Pangalengan, Cimaung, Banjaran, Rancabali, Pacet, Ibun, Paseh, Cimenyan, Cilengkrang, and Arjasari.

In Bandung Regency, coffee agroforestry can be found in highland areas, close to natural and plantation
forests. These results are in line with the government program from Perum Perhutani Forest Management
Unit (FMU) South Bandung for PHBM [53]. In contrast, coffee monoculture is dominantly found in Baleendah
District and the PT Perkebunan Nusantara VIII (PTPN VIII) area due to a shift in commodities planted with tea,
replaced by plants without shade. Misclassification still occurs in a set of pixels in several land cover classes.
An existing obstacle is overfitting, a weakness of decision trees that occurs with complex datasets. The
complexity of the dataset causes the model to follow and adjust the training data [54].

Overfitting might have slightly occurred in Figure 5. One approach to overcoming overfitting is to employ a
pruning method. Pruning is the process of removing branches that do not contribute significantly to the
model's accuracy value. Complexity is reduced with pruning to generalize new data and reduce overfitting
[55]. The classification of coffee monoculture land cover is often wrong due to changes in the function of
several areas. The current price increase has led to private agricultural land in the community being converted
for coffee plantations. The hedge plants surrounding the monoculture provide a visual resemblance to coffee
agroforestry.
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User accuracy (UA) provides the percentage of classification results, representing actual conditions in the
field [56]. Meanwhile, producer accuracy (PA) provides the percentage of each object in a correctly classified
field [57]. UA and PA estimate the overall value, which describes the total value. KA is determined from
objects successfully classified correctly and considers classification errors.

Table 9 presents the misclassification of coffee agroforestry cover, including pixels overlapping natural
forests, mixed dryland agriculture with shrubs, rice fields, plantation forests, plantations, and coffee
monoculture, resulting in a producer accuracy of 68.27%. Coffee agroforestry and coffee monoculture classes
are relatively difficult to distinguish in coarse-resolution imagery in a complex landscape. Mixed pixel is
always a challenge in image classification. At 30 m resolution, pixels often contain multiple land cover types,
complicating classification. This is particularly problematic in heterogeneous landscapes, such as those found
in tropical regions. The presence of mixed pixels can lead to lower classification accuracy for specific crops,
as the spectral signature of a pixel may represent a combination of coffee and surrounding vegetation [58].

Spectral unmixing techniques, such as spectral unmixing, can help address the mixed pixel problem by
decomposing pixel values into their constituent land cover types. This approach has been shown to improve
classification accuracy in complex landscapes. The choice of classification algorithm significantly impacts
accuracy. For instance, support vector machine (SVM) classifiers have been found to outperform random
forest (RF) classifiers at coarser resolutions, suggesting that algorithm choice should be tailored to the specific
resolution and landscape complexity [59]. The object-based image analysis (OBIA), which considers both
spectral and textural information, has been shown to improve classification accuracy for coffee fields,
achieving higher user and producer accuracies compared to pixel-based methods [60]. In this classification,
we found that coffee monocultures have a producer accuracy and user’s accuracy of 57.3% and 59.7%.

Table 9. The confusion matrix for land-cover classification generated using a combined set of spectral, geophysical,
and land-cover variables, showing the number of correctly and incorrectly classified samples for each land-cover
category. It provides context for evaluating classification performance through PA and UA, which quantify class-
specific reliability from reference data and predicted outcomes, respectively. The table demonstrates strong
classification accuracy for most land-cover types particularly water body with UA 93.88%, settlement with UA 93.68%,
dryland agriculture with UA 90.64%, and natural forest with UA 89.72%, while highlighting lower performance in
classes with higher spectral or structural similarity, such as monoculture coffee.

Prediction HAL CAF PMK  TBA TTR PLKSBL SWH  HTN PKB CNF UA

class (%)
HAL 96 6 0 0 0 0 0 4 0 1 89.72
CAF 5 71 0 2 0 3 0 11 0 4 73.96
PMK 0 0 178 2 10 0 0 0 0 0 93.68
TBA 0 0 1 46 2 0 0 0 0 0 93.88
TTR 0 0 12 0 47 1 0 0 0 0 78.33
PLKSBL 1 4 1 0 2 165 3 2 1 19 83.33
SWH 0 1 0 6 0 155 2 0 0 90.64
HTN 7 17 0 0 0 1 0 79 0 0 75.96
PKB 1 1 0 0 1 2 0 0 113 8 89.68
CNF 0 4 0 0 0 21 0 2 2 43 59.72
PA (%) 87.27 68.27 92.71 82.14 75.81 82.50 98.10 79.00 97.41 57.33

Note: CAF = coffee agroforestry, CNF = monoculture coffee, HAL = natural forest, HTN = plantation forest, PA = producer accuracy, PKB = estate crop
plantation, PLKSBL = shrub-mixed dryland agriculture, PMK = settlement, TBA = water body, SWH = dryland agriculture, TTR = bare land, UA = user accuracy.

Table 9 shows that misclassification is not only found in agroforestry and monoculture coffee land cover, but
also in other land cover such as natural forest, plantation forest, settlements, water bodies, open land, dry
land agriculture, shrubs, and estates due to limitations in visual interpretation. The land cover
misclassification occurred due to the limited spatial resolution of the Landsat 8 satellite image used, which
only has a spatial resolution of 30 x 30 m. This causes difficulties in interpretation for land cover with similar
visualization on the image, for example, open land with settlements, wet rice fields with water bodies,
plantation forests with natural forests, and estates with dry land farming shrubs. The integration of spectral
indices with geophysical variables has been shown to significantly improve classification accuracy. This
research is in line with the results in subtropical forest ecosystems, where the combination of spectral,
spatial, and topographic data resulted in an overall classification accuracy of 83.5% for 11 land-cover classes,
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with specific improvements noted in the classification of coniferous and broadleaf forests. Geophysical
variables such as DEM and proximity to roads and rivers provide critical spatial context that enhances the
differentiation of land cover types.

For example, the inclusion of topographic factors in spectral and textural imagery improved classification
accuracy by up to 5.5% [61]. In mountainous regions, the integration of topographic and geographic
information with spectral data has been shown to accurately depict forest distribution and landscape
patterns, with an overall accuracy of 95.49% for forest-cover maps [62]. Data fusion techniques, such as the
integration of multi-source remote sensing data, have proven effective in enhancing spatial, temporal, and
spectral information, leading to improved classification outcomes. For instance, a novel spatial-temporal-
spectral fusion framework achieved the highest classification accuracy of 83.6% in distinguishing various
forest types [63]. The use of ensemble learning methods and machine learning-based data integration
approaches has further improved global-scale forest cover characterization, demonstrating the robustness
of these techniques in enhancing classification accuracy [64].

Different factors affect the selection of training areas, resulting in similarity in the pixel values taken. The
creation of better training areas and land cover interpretation in Landsat 8 imagery (PL Vis) improves accuracy
in classification using a decision tree algorithm [65]. The detection of coffee agroforestry and monoculture
coffee resulting from classification using a decision tree algorithm will be compared in appearance through
high-resolution imagery and compared with photos taken from field data collection. Comparison of coffee
agroforestry and monoculture visualizations can be seen in Table 10.

Table 10. A comparative visualization of CAF and CNF using three complementary data sources: decision-tree
classification results, high-resolution satellite imagery, and field-collected ground-truth photographs. The context of
the figure is to evaluate how well the decision-tree model differentiates structurally complex agroforestry systems
from more uniform monoculture plantations in the landscape. Each row highlights the spatial patterns and visual
characteristics of sample locations, showing clear contrasts in canopy structure, vegetation diversity, and surrounding
land-cover types. The comparison demonstrates that coffee agroforestry typically appears more heterogeneous and
is often situated adjacent to natural forests and mixed agricultural mosaics, whereas monoculture coffee exhibits
more homogeneous spectral patterns and is commonly located near plantation forests or cultivated land.

Land Decision tree classification results High resolution imagery Ground truth
cover
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Note: [] CAF= coffee agroforestry, ICNF: coffee monoculture I: natural forest (primary forest),l = plantation Forest, [I= estate crop plantation, [J= shrub-
mixed dryland agriculture, l: paddy field, I: settlement, I = water body, [I= bare land.

Table 10 shows the proximity of coffee agroforestry and coffee monoculture land cover to others. Coffee
agroforestry is adjacent to natural forest land cover, plantations, and dryland shrub farming. This is
appropriate to the field conditions because coffee agroforestry is located at high elevations. In this context,
natural forests, plantations, and dryland shrub farming are located in the highlands. Coffee monoculture land
cover is closely related to plantation forests, coffee agroforestry, rice fields, and open land. In Bandung
Regency, coffee monoculture is often found adjacent to community-cultivated land. This is appropriate to
the visualization in Figure 4 and Table 10.

Discussion

This study found that the decision tree algorithm was able to classify agroforestry and coffee monoculture
land cover correctly. The overall land cover classification accuracy of 84.65% almost resembles the actual
conditions in the field. It should be noted that pine trees dominate the characteristics of the coffee
agroforestry system in Bandung Regency as shade. This is related to the program of Perum Perhutani that
utilizes the pine plantation forest area as a community co-management area with an agroforestry system, so
it would be difficult to detect the land cover if relying on visual data of land cover instead. The research
findings were that the combination of spectral-geophysical-land cover variables provided the best accuracy
in land cover mapping. Spectral variables with vegetation indices such as ARVI, EVI, GARI, NRGI, and VDVI
gave a range of —0.99 to 0.57 for coffee monoculture land cover. A vegetation index value range of —0.99 to
0.710 would indicate coffee agroforestry land cover.

Elevation was most influential in separating coffee agroforestry land cover from other land cover in Bandung
Regency as a geophysical variable. This is because Arabica coffee is generally planted in the elevation range
of 1,500 to 1,750 masl. Higher elevations are associated with improved coffee quality due to cooler
temperatures and slower bean maturation, which enhance flavor profiles. This is particularly beneficial in
agroforestry systems where shade trees can further modulate microclimates, improving bean quality
attributes such as size and biochemical composition [66]. Coffee agroforestry systems at higher elevations
are better positioned to adapt to climate change due to their enhanced microclimatic conditions and
biodiversity, which can buffer against temperature fluctuations and extreme weather events [67]. Coffee
agroforestry systems at higher elevations can experience a trade-off between yield and quality. While the
quality may improve, the presence of shade trees can reduce yield compared to monoculture systems.
However, the extended maturation period at higher elevations can partially offset this by improving bean
size and weight [68,69].
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Monoculture systems may achieve higher yields at lower elevations due to full sun exposure, but this often
comes at the cost of reduced quality and increased vulnerability to pests and diseases [70]. In monoculture
systems, while elevation can still improve quality, the absence of shade trees may lead to less optimal
microclimatic conditions, potentially affecting the consistency of quality improvements seen in agroforestry
systems [71]. Monoculture systems may struggle with climate adaptation, particularly at lower elevations,
where increased temperatures and reduced water availability can exacerbate stress on coffee plants [72].
Coffee monoculture systems, which involve growing coffee in full sun, are often more productive at lower
elevations where sunlight is more consistent. Studies have shown that coffee plants in monoculture systems
can achieve higher productivity due to increased light exposure, which is beneficial for photosynthesis and
growth. At higher elevations, monoculture systems may face challenges, including increased susceptibility to
temperature extremes and reduced biodiversity.

These factors can lead to higher pest and disease pressures, necessitating more intensive management
practices [73]. Thus, elevation plays a significant role in differentiating between coffee agroforestry and
coffee monoculture systems, affecting various aspects, including coffee quality, yield, and environmental
sustainability. Coffee agroforestry, which integrates shade trees with coffee plants, often benefits from
higher elevations due to cooler temperatures and extended maturation periods, which can enhance coffee
quality. In contrast, coffee monoculture, typically grown in full sun, may not leverage these elevation benefits
as effectively. The following sections explore how elevation influences these two systems. Slope affects the
determination of coffee planting locations chosen by farmers. Farmers have a preference to plant coffee on
gentle to steep slopes < 37%.

Coffee plantations do not depend on irrigation, and it is reasonable that the proximity of rivers does not
influence coffee planting in Bandung Regency. The proximity of roads provides information on the economic
and social linkages of farmers, as coffee will be planted relatively close to roads for easier management,
harvesting, and distribution. Other research may provide different results; hence, the findings in this study
are only applicable on a local scale and not generalizable to other study areas. Therefore, the key step that
can be implemented in other study areas is the method of building the decision tree algorithm, rather than
relying on the results of this study as a reference, because they may yield different results. Land cover
variables proved unable to provide accurate data on the existence of coffee plantations. Land cover data only
provides information on land cover that has proximity to coffee plants, as evidenced by the confusion matrix,
which only provides low accuracy for agroforestry and monoculture coffee. Land cover needs to be combined
with spectral variables and geophysical variables to classify agroforestry and monoculture coffee using the
decision tree method in order to obtain reliable accuracy. It should be underlined that the highest accuracy
is not necessarily the best land cover classification model. A model with high accuracy may have overfitting
constraints. The optimization of model parameters provides the option of using pruning techniques that can
reduce overfitting. The findings of this research prove that pruning can improve accuracy by up to 1%.

This research marks the beginning of a small part of coffee commodity research, which resulted in a map of
coffee agroforestry and monoculture distribution in Bandung Regency. The map of coffee agroforestry and
monoculture distribution in Bandung Regency can serve as supporting material for decision-makers in
formulating policies. After knowing the specific distribution of coffee plantations, the government can
formulate policies regarding the development of sustainable coffee plants in the future. Examples of policy
formulation using basic data on coffee plant distribution maps are: follow-up to the European Union
Deforestation Regulation (EUDR) policy, land traceability, land intervention policy, location of intervention
assistance in the form of seeds and incentives, and estimation of coffee productivity throughout Bandung
Regency. All of these policies require spatially explicit coffee plants as basic information. In addition, efforts
to calculate environmental services also need specific basic data about the area where the value of
environmental services will be calculated.

Research on land cover classification with the decision tree method using spectral and geophysical data
provides a better accuracy value than the research that has been done, with an overall accuracy of 91.48%
[74]. This can occur because the retrieval of training areas in the study is better, and the research area is
smaller than Bandung Regency. In line with the research conducted, the use of vegetation Indices and
biophysical variables helps distinguish between different land cover types, such as urban areas and
vegetation [75]. Additionally, biophysical variables such as DEM and slope are used to improve the
separability of coffee agroforestry and coffee monoculture with other classes, such as natural forest, mixed
dryland agriculture, settlement, bare land, paddy field, estate crop, and water body [76].
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Other studies have examined the performance and accuracy of decision trees, SVM, and Maximum Likelihood
Classifiers (MLC). The results consistently show that decision trees provide competitive, even superior
accuracy. For example, a study comparing decision trees with SVM and MLC found that decision trees
achieved higher accuracy in land cover change assessment. In addition, the integration of decision trees with
OBIA has been shown to improve classification accuracy by developing effective rule sets [77]. Decision tree
classification, when integrated with Landsat data, vegetation indices, and biophysical variables, provides a
powerful tool for land use classification. Its adaptability and accuracy make it a preferred choice in remote
sensing applications; however, ongoing research is needed to address existing challenges and further
enhance its capabilities. Future research is expected to focus on integrating high-resolution imagery and
larger datasets further to improve classification accuracy and applicability in diverse environments [78].

Conclusions

The development of a decision tree algorithm to detect coffee agroforestry and monoculture plantations was
successfully carried out using spectral-geophysical-visually based land cover combinations. Spectral-
geophysical-land cover combinations variables had an overall accuracy and a kappa accuracy of 84.65% and
82.60%, respectively. Information gain was the criterion selected to detect coffee plantations, both in
agroforestry and monoculture systems. The visually-based land cover variable, recognized as the most
significant variable, served as the root node in the decision tree. The best parameters used a minimum leaf
size set and split of 11 and 31, as well as a maximum depth of 80 through pruning. The coffee agroforestry in
Bandung Regency is mainly found in natural forest, having an elevation higher than 1,500 masl, a road
proximity of approximately 1 kilometer, a slope of less than 37%, and an ARVI value of less than —0.999. The
coffee monoculture class also found close to a natural forest, but outside the natural forest, with elevations
of more than 1,500 masl and a road proximity of more than 1 kilometer. The coffee agroforestry and
monoculture classes are mainly approached using spectral variables such as ARVI values more or less than —
0.999, NRGI values less than 0.192, MNDWIg values more than —0.396, and EVI values more than 0.570. The
coffee agroforestry and monoculture were often found close to natural and plantation forests at increasingly
higher elevations. Coffee agroforestry is adjacent to natural forest land cover, plantations, and dryland shrub
farming. On the other hand, coffee monoculture is often found near community-cultivated land.
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