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ABSTRACT  

Data on the potential of coffee commodities in Bandung Regency is still mixed with data on other 

commodities. Therefore, the study aims to develop an algorithm that provides accurate spatial 

information through maps for both coffee plantations in agroforestry and monoculture systems. 

This study integrates the data derived from remotely sensed data and data derived using socio-geo-

biophysical aspects, such as elevation, slope, distance from the road and rivers, proximity of the 

settlements, population density, proximity of villages, and a visually-based land-use-land cover map. 

The importance value for each variable was computed using several criteria, such as information 

gain, Gini index, and gain ratio. Meanwhile, the brute force method was applied to select the most 

significant variables in the model. The study found that the most significant variables for identifying 

coffee agroforestry and monoculture were ARVI, EVI, GARI, NRGI, and VDVI, as well as DEM, slope, 

proximity to roads, and visual-based LULC, using the criterion of information gain. The use of existing 

land-use and cover maps was the most influential variable in the model. The algorithm achieved an 

overall accuracy (OA) of 84.65% and a kappa accuracy (KA) of 82.60%. Based on overall accuracy and 

high kappa accuracy, the maps produced facilitate local governments and cooperatives in planning 

specific interventions for coffee-producing areas, supporting policies related to sustainable 

agriculture, climate-smart agroforestry expansion, and supply chain traceability. 

Introduction 

Bandung Regency is a region that contributes to Arabica coffee production, with 8,246.31 tons produced in 
2022 [1]. According to the BPS [2] of Bandung Regency, the area of land planted with coffee is 13,853 hectares 
and will continue to increase in the future. Arabica coffee plantations in Bandung Regency are grown by 
farmers in forest areas permitted by the State-owned forestry company (Perum Perhutani) through 
Pengelolaan Hutan Bersama Masyarakat (PHBM). As market demand for coffee commodities increases, 
coffee plantations in Bandung Regency have begun to be grown on farmers' private land. Agricultural 
expansion is a primary driver of deforestation in tropical regions, including West Java. Studies indicate that 
90 to 99% of deforestation in the tropics is associated with agriculture, although only 45 to 65% of deforested 
land becomes productive agricultural land [3]. Due to the limitation of forest area, while the need for 
agricultural land is continuously increasing, the state-owned forest corporation (Perum Perhutani) 
collaborated with the local community to utilize the area for agroforestry initiatives, which can help balance 
agricultural needs with forest conservation efforts. This collaborative approach may enhance sustainable land 
management while addressing the socio-economic needs of local populations.  

Agroforestry systems, such as those involving cocoa and teak, are more productive and profitable than 
monoculture systems, suggesting that integrating trees into agricultural landscapes can support food security  
[4]. These collaborative forest management programs, such as those in West Java, have demonstrated 
potential in enhancing both forest ecological conditions and rural livelihoods by engaging local communities 
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in sustainable forest management practices [5]. The development of coffee commodities faces constraints as 
land use continues to change, raising new issues regarding how to allocate the available land for coffee 
cultivation among various existing land uses. Coffee agroforestry development in Bandung Regency has high 
potential, as it is one of the best producers of arabica coffee in Indonesia. The high potential of coffee 
production in Bandung Regency must be balanced with a comprehensive utilization plan to ensure it is 
optimally leveraged. However, there is an unavailability of data on the spatial distribution of coffee 
plantations, both those grown under agroforestry and monoculture systems. 

Tabular data on the area of coffee plants published by central agencies differ from data found in regional 
agencies. Data on the potential of coffee commodities in Bandung Regency is still mixed with data on other 
commodities [6]. Therefore, the study aims to develop an algorithm that provides accurate spatial 
information (maps) for both coffee plantations in agroforestry and monoculture systems. Mapping of coffee 
plantation areas is necessary to achieve data harmony between the central and regional governments, 
enabling them to map and develop the existing potential effectively [7]. The use of Landsat 8 imagery, training 
datasets, predictors, and the DTML algorithm provides the most reliable classification method in detecting 
coffee agroforestry and monoculture in Bandung Regency. This study creating a novel classification approach 
for detecting coffee plantations, particularly agroforestry systems that are typically difficult to identify under 
dense canopy cover. The study produces the first reliable spatial dataset that separates coffee agroforestry 
from monoculture plantations in Bandung Regency. These data fill a critical gap, as previous government 
datasets aggregated coffee with other commodities and exhibited discrepancies between central and 
regional records. 

The availability of spatial information, geophysical data, as well as coffee agroforestry and monoculture 
distribution maps, is reported. Therefore, the results serve as a reference in preparing spatial utilization plans 
and developing coffee agroforestry at the regional level in Bandung Regency. The resulting mapping 
methodology offers a scalable and replicable framework that supports data harmonization—allowing central 
and regional agencies to align their reported coffee plantation areas using verifiable spatial outputs rather 
than solely administrative statistics. In line with the development of information technology, satellite 
imagery-based land cover mapping is becoming increasingly straightforward to conduct because medium-
resolution data are freely available and easily accessible, offering high-quality results. Previous study 
highlights the difficulties of mapping coffee agroforestry systems due to spectral similarity between coffee 
plants and forest canopies, the structural complexity of multilayered agroforestry arrangements, and varying 
topographic conditions [8,9]. The studies note that these factors limit the performance of optical imagery, 
which often struggles with spectral mixing and terrain-induced distortion.  

To overcome these constraints, a semi-automatic method used to detect agroforestry and monoculture 
coffee plants is satellite imagery-based, combined with decision tree machine learning (DTML). This study 
emphasize the advantages of Landsat 8 imagery, which can penetrate cloud cover and capture structural 
information that enhances the accuracy of coffee coverage mapping. This can be applied in data analysis with 
the advantages of the decision tree method, including being easy to understand, practical, simple, and 
efficient, as well as applied in various data processing platforms [10]. Based on the problems mentioned 
earlier, this study was conducted to develop a DTML algorithm with a primary focus on assessing coffee 
plantations with agroforestry and monoculture systems in Bandung Regency.  

The integration of various geophysical factors includes spatial data of land cover, elevation, slope, road 
proximity, and river proximity in Bandung Regency, combined with spectral variables in the form of 
vegetation index. Socioeconomic factors such as road distance, distance from settlements, and proximity to 
rivers significantly influence the site selection of coffee plantations in developing countries. These factors 
affect the accessibility, economic viability, and sustainability of coffee farming, which are crucial for 
optimizing production and ensuring the livelihoods of farmers [11,12]. The development plan for coffee 
agroforestry in Bandung Regency requires a comprehensive analysis of commodity-specific classification 
methods. This certainly raises the urgency to develop a reliable and accurate decision tree algorithm for land 
use classification at the commodity level, specifically coffee agroforestry. 

Materials and Methods 

The assessment of coffee agroforestry systems using DTML involves a structured workflow that integrates 
remote sensing data and socio-geobiophysical attributes. The process begins with (1) Landsat-8 image 
acquisition having characteristics as depicted in Table 1, followed by the (2) collection of supporting datasets, 
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including socio-economic, geophysical, and biophysical variables. Subsequently, (3) creating synthetic images 
through the derivation of spectral indices (e.g., NDVI, NDBI, NDWI, and NRGI), and (4) creating socio-
geobiophysical variables to enhance the predictive capacity of the model. The further steps are (5) a class 
scheme development focused in distinguishing between agroforestry-based coffee systems and 
monocultures, (6) delineation of training areas and calculation of zonal statistics, which provide 
representative samples for model development and validation, (7) attribute selection using four criteria: 
Brute Force (BF), Information Gain (IG), Gini Index (GI), and Gain Ratio (GR), (8) DTML model construction 
based on the selected attributes. The resulting model undergoes accuracy testing (9) using established 
validation metrics, and the best-performing model is subsequently selected (10). Finally, the validated model 
is applied to produce a spatial distribution map that differentiates between coffee agroforestry systems and 
monoculture plantations, offering valuable insights for sustainable land-use planning and agroforestry 
management. The study workflow is visually depicted in Figure 1.  

 

Figure 1. Sequential data processing steps used to derive coffee distribution information from Landsat 8, starting with 

satellite image acquisition and the compilation of supporting socio-geobiological datasets. Synthetic indices such as 

NDVI, NDBI, and NRGI are generated, combined with socio-geobiological variables, and integrated into a classification 

scheme. Zonal statistics and attribute selection are then applied to support model development, followed by accuracy 

assessment and model selection. This workflow results in the production of coffee assessment maps, illustrating a 

systematic and replicable approach to mapping coffee distribution in the study area.  

Study Area 

This study was conducted through the stages of measurement and data survey in Bandung Regency, located 
between 107°14’–107°56’ East Longitude and 06° 49’–07°18’ South Latitude. Data collection in the field used 
the purposive sampling method for Cimaung District, Ciwidey District, Ibun District, Kertasari District, 
Pangalengan District, Paseh District, and Rancabali District (Figure 2). A total of 60 sample plots (2,056 pixels)  
were spread across the district, representing coffee agroforestry and coffee monoculture land cover. 

Data Collection and Analysis 

Landsat 8 imagery provides a comprehensive set of spectral bands that are widely used for environmental 
monitoring, land use/land cover mapping, and resource assessment. Each band is designed to capture 
information from specific portions of the electromagnetic spectrum, with spatial resolutions of either 30 
meters for multispectral bands or 15 meters for the panchromatic band. The coastal/aerosol band (Band 1) 
is useful for coastal and aerosol studies. The visible bands consisting of blue (Band 2), green (Band 3), and red 
(Band 4) are essential for natural color composites, vegetation studies, and water body analysis. The near-
infrared (NIR, Band 5) is particularly valuable for vegetation health and biomass monitoring due to its 
sensitivity to plant reflectance. Shortwave infrared bands (SWIR-1, Band 6, and SWIR-2, Band 7) enhance the 
detection of soil and vegetation moisture as well as geological features. The panchromatic band (Band 8) 
offers finer spatial detail at 15 meters, enabling sharper image interpretation and pan-sharpening techniques. 
Finally, the cirrus band (Band 9) is designed to detect high-altitude clouds that may affect image analysis 
(Table 1). 
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Figure 2. Spatial distribution of land cover and administrative boundaries in Bandung Regency, West Java, 
Indonesia. The map depicts Bandung Regency (outlined in red), its surrounding by other administrative areas 
(Bandung City, West Bandung Regency, Cianjur Regency, and Sumedang Regency), and major landscape 
features including elevation gradients and built-up areas. Color variations indicate differences in land cover, 
with dense urban zones concentrated in the northern part of the regency. The inset map highlights the 
location of Bandung Regency within West Java Province. Overall, the figure illustrates the strong contrast 
between highly urbanized northern areas and the predominantly rural, vegetated landscapes in the central 
and southern regions. 

Table 1. Summarizes of Landsat 8 imagery, including their band designations, spatial resolutions, and wavelength 

ranges. The listed bands cover key portions of the electromagnetic spectrum from coastal/aerosol to visible, near-

infrared (NIR), shortwave infrared (SWIR), panchromatic, and cirrus, each serving distinct analytical purposes such as 

vegetation monitoring, land-use mapping, moisture detection, and atmospheric correction. Table highlights the 

multispectral capability of Landsat 8 for environmental and land-use analysis, including vegetation assessment and 

coffee distribution mapping. 

Imagery type Channel sensor Spatial resolution (m) Wavelength (µm) 

Landsat 8 imagery 
 
 
 
 
 
 
 

Band 1: Coastal/Aerosol 
Band 2: Blue 
Band 3: Green 
Band 4: Red 
Band 5: NIR 
Band 6: SWIR-1 
Band 7: SWIR-2 
Band 8: PAN 
Band 9: Cirrus 

30 
30 
30 
30 
30 
30 
30 
15 
30 

0.435 – 0.451 
0.452 – 0.512 
0.533 – 0.590 
0.636 – 0.673 
0.851 – 0.879 
1.566 – 1.651 
2.107 – 2.294 
0.503 – 0.676 
1.363 – 1.384 

Note: NIR = near infrared, PAN = panchromatic, SWIR = short wave infrared. 
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Several measuring instruments were used, such as a Global Positioning System (GPS), a camera, a phi-band, 
a clinometer, a compass, a tally sheet, a measuring tape, a rope, and stationery. In addition, data processing 
and analysis were carried out using qantum GIS software, Codeblocks 20.03, and rapid miner studio. Primary 
data was Landsat 8 imagery, path 121 – row 065, with a resolution of 30 × 30 m recorded on 26 July 2022 
(Table 1) and field data. The Landsat 8 imagery was obtained from the United States Geological Survey (USGS) 
website.   

Secondary data were in the form of geophysical factors, such as spatial data on elevation, slope, road 
proximity, and river proximity in Bandung Regency. These data were downloaded from Data DEMNAS and 
Data RBI of Geospatial for the Country of Indonesia (https://tanahair.indonesia.go.id/portal-web/unduh 
accessed on 26 December 2022). Data pre-processing was carried out to examine satellite imagery data 
before conducting further analysis. The procedure started with cloud correction on Landsat 8 imagery, class 
scheme creation, training area creation, and synthetic creation (Table 2). 

Table 2. Structured pre-processing in ensuring the reliability and analytical value of satellite-derived products, 

particularly for applications coffee distribution assessment, including cloud correction, class scheme creation, training 

area development, and the generation of synthetic indices. For each step, the table outlines the required input data, 

the methods applied such as cloud masking using QA Pixels, visual interpretation of spectral composites, and 

mathematical transformations of spectral bands, and the resulting outputs. The listed outputs, including class 

schemes, training area datasets, and synthetic indices e.g., NDVI, EVI, NBR, and related vegetation and moisture 

metrics, demonstrate how multispectral information from Landsat 8 is systematically processed to support accurate 

land-cover mapping. 

Stages Pre-processing 

Cloud 
correction of 
Landsat 8 
imagery 

Input: Landsat 8 imagery recorded in 2022. 
Method: Cloud masking algorithm Quality Assessment Pixel (QA Pixel). 
Output: Cloud-free Landsat 8 imagery. 

Creating class 
schemes 

Input: Cloud-free Landsat 8 imagery recorded in 2022. 
Method: Proximity of reflectance values, spectral and spatial observations of cloud-free Landsat 8 
imagery. 
Output: Scheme of classes, including natural forest, plantation forest, dryland agriculture and shrubs, 
plantations, rice fields, water bodies, open land, settlements, coffee agroforestry, and coffee monoculture. 

Creating 
training areas 
(TA) 

Input: Cloud-free Landsat 8 imagery recorded in 2022. 
Method: Interpretation using visual methods using a combination of Red-Green-Blue and NIR-Red-Green 
channels of Landsat 8 imagery. 
Output: 2056 pixels of TA, including 190 for natural forest, 177 for plantation forest, 348 for dryland 
agriculture and shrubs, 200 for plantations, 270 for paddy fields, 101 for water bodies, 130 for open land, 
328 for settlements, 177 for coffee agroforestry, 135 for coffee monoculture. 70% of the TA was allocated 
for model development, while the remaining 30% was used for model validation (accuracy assessment) 

Creating 
synthetic 
imagery 

Input: Cloud-free Landsat 8 imagery recorded in 2022. 
Method: Mathematical operations on pixels in Landsat 8 imagery channels. 
Output: Atmospheric reflection vegetation index, enhanced vegetation index, green atmospherically 
resistant index, modified normalized differences wetness index, green-based, normalized red-green 
vegetation index, and visible difference vegetation index. 

The study performed several preprocessing steps to ensure data quality and accuracy. Preprocessing typically 
involves correcting atmospheric and cloud-related disturbances, since cloud contamination is a common 
limitation in optical satellite data. In this study, cloud correction was conducted using the Quality Assessment 
(QA Pixel) algorithm to generate a cloud-free image mosaic of the study area, ensuring more reliable spectral 
information for subsequent analysis. A series of processing stages was implemented to prepare the imagery 
for classification. These included the development of land cover class schemes based on spectral and spatial 
characteristics, the delineation of training areas through visual interpretation of composite images (RGB and 
NIR combinations), and the generation of synthetic imagery using mathematical transformations of spectral 
bands to derive vegetation and wetness indices. 

In this study, we applied a decision tree (DT) machine learning algorithm, a widely recognized non-parametric 
classification method in remote sensing [13,14], to evaluate whether its application can enhance 
classification accuracy despite the moderate spatial resolution of Landsat imagery. The approach emphasizes 
the integration of both spectral indices and geophysical variables, with the expectation that combining these 
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data sources may improve the separability of land cover classes and support more robust mapping results.The 
synthetic images or image indices developed in this study were images that were derived from mathematical 
operations using pixels originating from several channels in the imagery [15]. Previous study showed that the 
channels influential in vegetation detection were visible waves (red, green, and blue) as well as near-infrared 
and mid-infrared [16,17]. This study develops a coffee agroforestry detection algorithm using another 
method through the Atmospheric Reflection Vegetation Index (ARVI), Enhanced Vegetation Index (EVI), 
Green Atmospherically Resistant Index (GARI), Modified Normalized Differences Wetness Index, green-based 
(MNDWIg), Normalized Red-Green Vegetation Index (NRGI), and Visible Difference Vegetation Index (VDVI).  

NDVI is widely used for monitoring vegetation dynamics due to its ability to indicate photosynthetic activity 
and vegetation greenness, as well as its sensitivity to changes in vegetation cover and environmental 
degradation assessment [18]. Meanwhile, ARVI is designed to be less sensitive to atmospheric effects 
compared to NDVI. It incorporates the blue channel to correct atmospheric influences on the red channel, 
enhancing its reliability in varying atmospheric conditions. This makes ARVI particularly useful in regions with 
frequent atmospheric disturbances, as it provides more accurate vegetation monitoring. GARI is similar to 
ARVI but focuses on the green spectrum, offering improved resistance to atmospheric effects. It is beneficial 
in environments where atmospheric conditions can significantly impact remote sensing data [19].  

The MNDWI is used to monitor water bodies and moisture content in vegetation. It is effective in detecting 
changes in water surface areas and vegetation moisture, making it valuable for assessing environmental 
degradation and managing water resources. MNDWI has been applied in studies to track changes in water 
bodies and wetlands, providing insights into hydrological dynamics and the impacts of land use [20]. The NRGI 
is used to assess vegetation health by analyzing the red and green spectral bands. It plays a crucial role in 
distinguishing between different types of vegetation and assessing their health status [21]. The VDVI is 
designed to enhance the sensitivity of vegetation monitoring, particularly in areas with high vegetation 
density. It provides a more dynamic range of vegetation detection, improving the accuracy of monitoring 
efforts [22]. Mathematical operations for creating synthetic imagery with Landsat 8 imagery include the 
following equations: 

𝐴𝑅𝑉𝐼 =
(𝑁𝐼𝑅 − (2 × 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒))

(𝑁𝐼𝑅+(2 × 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒))
  (1) 

𝐸𝑉𝐼 =
2.5 (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 − 6𝑅𝑒𝑑 + 7.5𝐵𝑙𝑢𝑒 + 1)
  (2) 

𝐺𝐴𝑅𝐼 =
𝑁𝐼𝑅 − (𝐺𝑟𝑒𝑒𝑛 − 1.7 (𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑)

𝑁𝐼𝑅 + (𝐺𝑟𝑒𝑒𝑛 − 1.7 (𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑)
  (3) 

𝑀𝑁𝐷𝑊𝐼𝑔 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
  (4) 

𝑁𝑅𝐺𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑
  (5) 

𝑉𝐷𝑉𝐼 =
((2 × 𝐺𝑟𝑒𝑒𝑛) − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒)

((2 × 𝐺𝑟𝑒𝑒𝑛) + 𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒)
  (6) 

This study uses five vegetation and wetness indices to detect cover and water bodies with unique 
characteristics (Figure 3). Specific land covers produce reflections with different wavelengths known as hues. 
Meanwhile, vegetation cover hues in synthetic imagery, such as ARVI, EVI, GARI, NRGI, and VDVI, produce 
bright hues. Land covers in the form of water bodies, open land, and settlements produce darker hues. 
Synthetic imagery MNDWIg for wetness index shows brighter hues for water bodies, while other land covers 
possess darker hues. 
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Figure 3. Synthetic vegetation-index maps derived from Landsat 8 imagery for the year 2022, displaying ARVI, EVI, 

GARI, NRGI, MNDWIg, and VDVI across the study area with administrative boundaries overlaid in red. These panels 

illustrate spatial variations in vegetation density, greenness, moisture, and spectral responses, enabling comparison 

of how different indices represent ecological conditions. Figure highlights consistent patterns of higher vegetation 

activity in darker-toned regions, demonstrating the complementary value of multiple indices for characterizing 

landscape-level vegetation dynamics. 

Decision Tree Machine Learning Analysis 

A decision tree is a classification method used for the induction of machine learning algorithms. The method 
uses a tree structure with the root, branch (sub-trees), and leaf nodes [23]. The decision tree method has 
been effectively utilized for image classification in land-use and land-cover research [24]. A decision tree is 
compiled using Rapidminer software with the C4.5 algorithm, starting with calculating the entropy value. 
Based on the description, the construction is performed by dividing data into several small groups with the 
same value [25]. The division should decide which variables are the best and most predictive. The creation of 
a decision tree hierarchy uses criteria from the variables known as the parameters. A decision tree is created 
by dividing the training data set into several different nodes [26]. 

The measurement of the algorithm starts by calculating the entropy value. In this context, entropy is defined 
as the sum of the probabilities of each label multiplied by the log probability of the label. Entropy value 
measures the impurity or level of randomness in a data set [27]. The equation for calculating entropy is as 
follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = − ∑ − 𝑃ᵢ 𝑙𝑜𝑔₂𝑃ᵢ 𝑛
𝑖=1  (7) 
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Description:  

𝑃𝑖  = proportion of data 

S  = total data set 

n  = number of data in S 

Split info value is calculated to state the entropy or impurity of a variable. This value is obtained from the 
sum of the proportions of sub-attributes using the following equation: 

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑆, 𝐴) = − ∑
𝑆ᵢ

𝑆
 𝑙𝑜𝑔2

𝑆ᵢ

𝑆

𝑘

𝑖=1
  (8) 

Description: 

S = total data set 

Si = number of data in sub-variable i 

Entropy shows the calculation for obtaining information gain, which is the difference between class entropy, 
conditional class entropy, and the selected variable. Information gain is used to measure the change in 
entropy before and after class separation [28]. The variable with the highest value is selected for separation, 
as reported in the following equation: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) − ∑
|𝑆ᵢ|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆ᵢ)

𝑛

𝑖=1
  (9) 

Description: 

|Si| = number of cases of partition i     

|S| = number of cases in S 

Si = number of data in sub-variable i 

The ranking of variables with gain ratio is used to evaluate the level of importance of all n variables. The 
measure is the result of dividing the information gained by the split info. 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 =  
𝐺𝑎𝑖𝑛 (𝑆,𝐴)

𝑆𝑝𝑙𝑖𝑡 𝑖𝑛𝑓𝑜(𝑆,𝐴)
  (10) 

Description: 

S = case set 

A = variable 

The Gini index is used to determine the purity of a particular class after separation based on a particular 
variable [29]. The best separation increases the purity of the set produced. The Gini index equation is defined 
below when K is a dataset with j being a different class label. 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑ − 𝑃𝑖2  
𝑛

𝑖=1
 (11)  

Description: 

𝑃𝑖 = data proportion of class-i 

The application of big data analytics to spatially referenced data in environmental monitoring presents both 
significant challenges and opportunities. The challenges primarily stem from the complexity and 
heterogeneity of environmental data, while the opportunities lie in the potential for enhanced predictive 
capabilities and decision-making processes. The integration of advanced technologies such as cloud 
computing and machine learning can further enhance the utility of big data analytics in this field. This b ig 
data often contains a certain amount of noise and outliers. A decision tree is a method that is sensitive to 
noise and outliers. Therefore, one of the disadvantages of the decision tree method is overfitting. Overfitting 
occurs because the resulting decision tree model is too complex, so that the model will adjust to the training 
data.  To overcome this, additional methods should be applied to the decision tree to reduce overfitting and 
improve accuracy. 

Methods that can be used to overcome overfitting include pruning. Pruning is emphasized by removing 
unnecessary nodes in the decision tree [30]. The pruning process is done in two ways: the first is to use pre-
pruning, which is to stop the splits so that the decision tree does not grow larger, which means it will stop 
the tree at a specific growth rate. The second, referred to as final pruning, removes split nodes created after 
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the tree is fully formed.Pruning is an effort to reduce the number of errors generated in the results of land 
cover classification with a decision tree. Previous studies have shown that pruning can effectively improve 
accuracy by up to 11% [31]. Other studies show that overfitting can be reduced by pruning and result in a 
practical accuracy value of about 92% [32]. Another method to reduce overfitting is to use brute force, which 
serves to prune the amount of data that is not influential or not relevant. The brute force method has the 
principle of selecting the best set of variables by testing all possible combinations of the selected variables. 

The brute force combination is 𝐶𝑘
𝑗
, j being the total number of variables and k being the possible number of 

selected variables. Irrelevant or distracting variables often confuse the decision tree machine learning 
process, resulting in models with low accuracy. In addition, selecting variables can result in a simpler model 
that uses less data and has the capability for land cover classification [33]. 

Optimization of Model Selection and Parameters 

Information gain, Gini index, gain ratio, and brute force are some of the variable selection and ranking 
methods used. In this context, information gain is based on entropy to measure the usefulness of variables 
[34]. The Gini index determines the purity of a class after separation based on a particular variable. Ranking 
with a gain ratio is used to evaluate the level of all variables. Meanwhile, Brute force is a method used to 
select the most relevant variables, where a value of 1 shows usage in the classification. The results of Brute 
force calculation are in the form of a weight value for each variable used. The straightforward method is used 
to solve problems requiring input and consideration [35].  

The analysis is continued with the optimization of model parameters to achieve the best classification 
accuracy. The criteria used are decision tree, maximal depth, minimal leaf size, pre-pruning, and pruning. The 
development of decision tree models often experiences obstacles in the form of data overfitting. The method 
used to overcome data overfitting is the use of pre-pruning and pruning [36]. 

Accuracy Test 

The accuracy test analyzes the level of success in classifying objects using the decision tree method. 
Commonly used types are overall accuracy (OA) and kappa accuracy (KA). The accuracy test uses the principle 
of the confusion matrix as a comparison that contains reference and classification result data. 

Results  

Selection of the Best Variables and Models 

Visual-based Land cover, spectral, and geophysical variables were combined to develop the best model for 
detecting the spatial distribution of coffee plants. The selection of variables was carried out by calculating 
the weight of each variable, as reported in Tables 3, 4, 5, and 6. The weight value shows a higher relevance 
level of the variable. The magnitude affects the amount of information in distinguishing objects within a 
particular class. The weight of each variable in Bandung Regency for the geophysical combination can be seen 
in Table 3. 

Table 3. Relative weights of four geophysical variables such as elevation, slope, road proximity, and river proximity, 

calculated using information gain, Gini Index, gain ratio, and a Brute Force Method. These weighting schemes are 

applied to assess the influence of each variable within a geospatial analysis framework, enabling comparison across 

different feature-selection metrics. The results consistently identify elevation and slope as the most influential 

predictors, while road and river proximity exhibit minimal contribution across all weighting methods showed by zero 

value in information gain, Gini Index, and gain ratio. 

Weight 

Variable Information 
gain 

Variable Gini 
index 

Variable Gain 
ratio 

Variable Brute 
force 

Elevation 1.000 Elevation 1.000 Elevation 1.000 Elevation 1 
Slope 0.495 Slope 0.656 Slope 0.646 Slope 1 
Road 
proximity 

0.078 Road 
proximity 

0.119 Road 
proximity 

0.020 Road 
proximity 

1 

River 
proximity 

0 River 
proximity 

0 River 
proximity 

0 River 
proximity 

1 
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Geophysical variables provide information about the condition of a land. The uniqueness and characteristics 
of the landscape can be seen from the inherent geophysical variables [37]. Table 3 shows that elevation is 
the most influential variable in the model, with information gain, Gini index, gain ratio, and brute force values 
of 1. Therefore, the root node in the geophysical combination is the elevation variable used as the starting 
point for dividing the dataset into homogeneous and smaller subsets. Elevation variables can separate land 
cover classes in Bandung Regency with lower entropy values, so that the separation will result in a more 
homogeneous class. 

Elevation is the most influential variable because the conditions in Badung Regency have significant 
differences due to the presence of mountains, highlands, and lowlands. Elevation provides the most accurate 
value among other geophysical variables to detect agroforestry coffee land cover based on the habit of 
agroforestry coffee planting by the farmers in Bandung Regency, which is easily found at high elevations, 
usually more than 1,500 meters above sea level (masl). In addition, based on land suitability data for arabica 
coffee cultivation in Bandung Regency, the elevation range is 1,500 to 2,000 masl. Slope is the second ranking 
in Table 3, which shows farmers' habits for growing coffee in Bandung Regency. Coffee monoculture will be 
planted on gentle to steep slopes, ranging from 8% up to 25%. For accessibility reasons, in transporting coffee 
bean production and management, both coffee agroforestry and monoculture were planted close to the road 
[38]. 

River proximity does not affect the spatial distribution of coffee plantations, as the water requirement of  
coffee does not require regular irrigation and watering. In Bandung Regency, the microclimate created by 
the surrounding vegetation, such as pine trees, helps maintain stable humidity levels, which is beneficial for 
coffee cultivation [39]. That is why the coffee plantation does not need direct water irrigation from the river.  
Rainfall is another critical factor, as it provides the necessary water supply for coffee plants. The ideal annual 
rainfall for Arabica coffee ranges from 1,800 to 2,000 mm, which aligns with the rainfall patterns observed in 
Bandung Regency [40]. Consistent rainfall ensures that coffee plants receive adequate water throughout the 
year, reducing the need for artificial irrigation and supporting sustainable coffee farming practices [41]. 
Elevation significantly impacts coffee plantation suitability due to its influence on temperature and 
microclimate. Arabica coffee thrives at elevations between 1,000 and 1,500 masl, where temperatures are 
cooler and more stable [42,43]. In Bandung Regency, the elevation provides a favorable environment for 
coffee growth by creating a microclimate that reduces the risk of pests and diseases, which are more 
prevalent at lower altitudes [44]. 

In contrast, the proximity of roads still influences coffee cultivation. The coffee cultivation in Bandung 
Regency, both in agroforestry and monoculture systems, is mostly close to the road network, meeting the 
needs of farmers for crop management, harvesting, and distribution. As described in Table 4, the spectral 
variables used produce varying effects, and none is the most dominant. ARVI shows the highest information 
gain value, while the best NRGI values for both the Gini index and the gain ratio are 1. The ARVI attribute is 
the root node in the model with a value of 1 and 0.850 for information gain and gain ratio, respectively. The 
attribute is a good vegetation index in Landsat 8 imagery due to resistance to atmospheric effects [45]. These 
spectral variables in Table 4 provide a better visual representation of the coffee plants grown in Bandung 
Regency. 

Table 4. The relative weights of ARVI, EVI, NRGI, GARI, MNDWIg, and VDVI indicated that ARVI, EVI, and NRGI 

consistently have the highest influence, with values close to 1, while MNDWIg and especially VDVI contribute 

minimally to the spectral combination analysis with values close to 0. 

Weight 

Variable Information 
gain 

Variable Gini 
index 

Variable Gain 
ratio 

Variable Brute 
force 

ARVI 1.000 NRGI 1.000 NRGI 1.000 ARVI 1 
EVI 0.645 VDVI 0.773 ARVI 0.850 EVI 1 
NRGI 0.496 ARVI 0.670 EVI 0.285 NRGI 1 
GARI 0.254 EVI 0.484 GARI 0.238 GARI 1 
MNDWIg 0.084 GARI 0.224 MNDWIg 0.182 MNDWIg 1 
VDVI 0 MNDWIg 0 VDVI 0 VDVI 1 

The combination of red-blue (RB) channels in ARVI attribute minimizes the atmospheric scattering effect 
caused by aerosols in the red channel [46]. In addition to the ARVI variable, the EVI and GARI variables are 
also well used in Landsat 8 imagery because of their ability to correct for atmospheric effects. Another 
variable, MNDWIg, is a wetness index used to detect water bodies on the earth's surface [47]. VDVI is a 
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vegetation index similar to NDVI, a development that has a similar range of values. Other spectra, such as 
EVI, GARI, MNDWIg, and VDVI, remain relevant for use in the model. This is because brute force is 1, even 
though VDVI is 0 in information gain and gain ratio, as well as 0 for MNDWIg in the Gini index (Table 4). 
Therefore, the six variables are still used in spectral combination to build a decision tree algorithm. 

Observations by combining spectral and geophysical data were conducted to increase the retrieval of more 
information in the model built. Spectral variables have a greater influence on the decision tree model 
compared to geophysical factors, as shown in Table 5, which indicates that spectral variables ranked among 
the top 6. Spectral variables provide better information on land conditions compared to geophysical  
variables. ARVI is the root node in the decision tree with information gain and gain ratio of 1 and 0.950, 
respectively (Table 5). Spectral-geophysical combination increases the values of each variable in IG, GI, and 
GR. The combination of ancillary data and spectral increases the value of information and influence because 
the variables cannot necessarily distinguish land cover well [48]. The variables have a Brute force value of 1, 
which is relevant and influential in the decision tree model (Table 5). 

Table 5. Relative weights of spectral and geophysical variables derived from four feature-selection criteria to evaluate 

their importance in environmental or remote-sensing–based analyses. The table shows that spectral indices 

consistently receive the highest weights across all methods, indicating their dominant contribution to model 

performance compared with geophysical variables such as elevation, slope, and proximity measures. 

Weight 

Variable Information gain Variable Gini index Variable Gain ratio Variable Brute 
force 

ARVI 1.000 NRGI 1.000 NRGI 1.000 ARVI 1 
EVI 0.827 VDVI 0.881 ARVI 0.950 EVI 1 
NRGI 0.755 ARVI 0.828 EVI 0.761 NRGI 1 
GARI 0.637 EVI 0.731 GARI 0.746 GARI 1 
MNDWIg 0.555 GARI 0.596 MNDWIg 0.727 MNDWIg 1 
VDVI 0.514 MNDWIg 0.479 VDVI 0.666 VDVI 1 
Elevation 0.423 Elevation 0.327 Elevation 0.245 Elevation 1 
Slope 0.209 Slope 0.215 Slope 0.158 Slope 1 
Road proximity 0.033 Road proximity 0.039 Road proximity 0.005 Road proximity 1 
River proximity 0 River proximity 0 River proximity 0 River proximity 1 

Another combination tested includes spectral, geophysical, and land cover data variables (Table 6). The root 
node in the decision tree model is land cover (PL Vis) with an Information Gain of 1, a Gini Index of 1, and a 
Gain Ratio of 0.419. Land cover has a high influence and relevance in the decision tree algorithm model. This 
is because the variable provides initial information on land cover classes. The combination of spectral-
geophysical with PL Vis provides a model computation similar to supervised classification. The variables PL 
Vis, ARVI, EVI, GARI, MNDWIg, NRGI, VDVI, elevation, slope, road proximity, and river proximity affect the 
model characterized by a brute force value of 1. The combinations of geophysical, spectral, spectral-
geophysical, and spectral-geophysical-land cover are optimized for each parameter to determine the best 
model in the decision tree. 

Table 6. The relative importance weights of spectral, geophysical, and land-cover variables as determined by four 

feature-selection methods: information gain, Gini index, gain ratio, and brute force. The evaluated variables include 

vegetation indices, moisture indices, topographic attributes, proximity measures, and a land-cover parameter (PL Vis), 

representing a comprehensive set of environmental predictors. The results show that PL Vis consistently receives the 

highest weight across all methods, indicating that land-cover information plays a dominant role in explaining 

variability compared with other spectral and geophysical variables. 

Weight 

Variable Information 
gain 

Variable Gini 
index 

Variable Gain 
ratio 

Variable Brute 
force 

PL Vis 1.000 PL Vis 1.000 NRGI 1.000 PL Vis 1 
ARVI 0.419 NRGI 0.251 ARVI 0.950 ARVI 1 
EVI 0.347 VDVI 0.222 EVI 0.761 EVI 1 
NRGI 0.316 ARVI 0.208 GARI 0.746 GARI 1 
GARI 0.267 EVI 0.184 MNDWIg 0.727 MNDWIg 1 
MNDWIg 0.232 GARI 0.150 VDVI 0.666 NRGI 1 
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Weight 

Variable Information 
gain 

Variable Gini 
index 

Variable Gain 
ratio 

Variable Brute 
force 

VDVI 0.215 MNDWIg 0.120 PL Vis 0.419 VDVI 1 
Elevation 0.177 Elevation 0.082 Elevation 0.245 Elevation 1 
Slope 0.087 Slope 0.054 Slope 0.158 Slope 1 
Road 
proximity 

0.014 Road 
proximity 

0.010 Road 
proximity 

0.005 Road 
proximity 

1 

River 
proximity 

0 River 
proximity 

0 River 
proximity 

0 River 
proximity 

1 

Land cover variables provide an initial overview of land use in Bandung Regency based on the mapping that 
has been created, but do not specifically show the distribution of coffee agroforestry and coffee monoculture. 
Spectral variables in the form of vegetation index can detect land cover in the form of vegetation and non-
vegetation based on the greenness degree value. Bio-socio-geophysical variables provide information on 
traditional practices and physical characteristics of coffee planting patterns carried out by farmers, including 
suitable altitude (elevation), the slope selected for coffee planting, road access to the planting site (proximity 
to roads), and access to irrigation (proximity to rivers). Based on the results given in Table 6, the integration 
or combination of spectral variables with bio-socio-geophysical variables as additional information is proven 
to increase the percentage of success in land cover classification. 

Best Model Parameter Optimization 

Parameter optimization uses the iteration method to obtain a combination of 234,256. The optimal value is 
determined based on the overall accuracy value [49]. The parameter is selected based on the 10 best rankings 
from thousands of combinations. The information gain parameter achieves the highest overall accuracy value 
of 84.65% with an 8-fold selection in Table 7. Another parameter selected in the optimization is the Gini 
index, with an overall accuracy of 84.23% being the highest. The best information gain parameter requires a 
pruning process with a minimum leaf node of 11, a minimum of 31 samples, and a maximum tree depth of 
80. Pruning in the optimal model is carried out to cut or remove several unnecessary branches with weak 
influences [50]. The process is carried out to develop the reliability and accuracy of the decision tree, which 
has been proven to increase overall accuracy [51]. 

Table 7. The performance of decision tree models optimized under different parameter configurations, including 

splitting criteria (IG or GI), pre-pruning and pruning options, minimal leaf and split sizes, and maximal tree depth. The 

results provide a comparative context for understanding how variations in pruning strategies and structural 

parameters influence classification accuracy. The table shows that several parameter combinations yield similar high 

accuracies around 84%, indicating that the model is relatively robust to these adjustments, with IG–based trees 

showing slightly better optimal performance. 

Criteria Pre-pruning Pruning Minimal leaf size Minimal size for split Maximal depth Overall accuracy (%) 

IG F T 11 31 80 84.65 
IG F F 60 51 9 84.23 
GI F F 31 70 39 84.23 
IG F F 31 1 29 84.14 
GI F T 41 1 50 84.14 
IG F T 21 80 100 83.97 
IG F F 11 90 100 83.97 
IG F F 1 31 9 83.89 
IG F F 100 60 19 83.89 
IG F T 1 11 100 83.80 

Note: F = false, GI = Gini index, IG = information gain, T = true. 

Accuracy Test Results 

The models built using different combinations produce varying levels of accuracy. Geophysical combination 
uses elevation, slope, road proximity, and river proximity, while spectral combination only adopts the 
vegetation index. Observations are made by combining geophysical and spectral variables, as well as 
geophysical-spectral-land cover. To address the potential risk of overfitting in the classification process, the 
reference samples were systematically divided into two groups. A total of 70% of the samples were allocated 
for model development (training), ensuring that the decision tree algorithm could learn the relationships 
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between spectral and geophysical variables. The remaining 30% of the samples were reserved exclusively for 
validation, thereby providing an independent dataset to evaluate model performance. This separation of 
training and validation data is a standard practice in machine learning-based studies, as it enables a more 
objective assessment of classification accuracy and ensures that the results are not biased by the data used 
for model construction.  

In addition, the confusion matrix is arranged to obtain OA and KA values for each combination. The 
geophysical combination provides the lowest results with OA and KA of 52.12% and 45.20%, respectively. We 
noticed that there is a discrepancy between the overall accuracy (84.65%) and the lower producers ’ 
accuracies for the coffee-related classes (coffee agroforestry/CAF= 68.27%, coffee monoculture/CNF = 
57.33%). We acknowledge that while the classification achieved high overall performance, the confusion 
matrices indicate challenges in distinguishing between these spectrally and structurally similar classes. CAF 
and CNF often share overlapping spectral signatures, particularly in medium-resolution imagery such as 
Landsat (30 m), where mixed pixels can obscure subtle differences in canopy structure and understory 
conditions. Nonetheless, the inclusion of these classes remains important for our study’s objectives.  

Our results highlight both the potential and the limitations of using Landsat imagery for discriminating coffee 
production systems. We interpret the relatively lower accuracies not as a shortcoming of the method, but as 
evidence of the inherent difficulty of this classification problem. In future work, we plan to address this 
limitation by integrating higher-resolution imagery and other additional ancillary variables (e.g., LiDAR, 
topography, or climate data), which may enhance class separability. Geophysical variables have low accuracy 
in providing additional information to describe the existence of Arabica coffee through habitual patterns [52]. 
The variables should be combined to obtain higher accuracy results. The combination of geophysical-spectral-
land cover has the highest accuracy value compared to other combinations at 84.65% and 82.60% for OA and 
KA. Geophysical-spectral-land cover is the best decision tree algorithm selected from the four existing 
combinations (Table 8). 

Table 8. The overall accuracy and Kappa accuracy values derived from models built using different combinations of 

geophysical, spectral, and land-cover variables. It provides a comparative context to assess how each variable group 

or combination influences classification performance. The results show that integrating geophysical, spectral, and 

land-cover variables yields the highest accuracies, with OA 84.65% and KA 82.60%, indicating that multi-variable 

models perform substantially better than those relying on single variable groups. 

Combination of variables Accuracy test results (%) Selected variable 

Overall accuracy (OA) Kappa accuracy (KA)  

Geophysical 52.12 45.20 Elevation 
Spectral 77.49 74.50 ARVI 
Geophysical-spectral 80.05 77.40 ARVI 
Geophysical-spectral-land cover 84.65 82.60 PL Vis 

The results of the accuracy test found that the combination of geophysical-spectral variables-land cover, with 
an OA of 84.65% was able to provide the best decision tree algorithm to be used in land cover classification, 
especially to detect agroforestry and monoculture coffee in Bandung Regency. The decision tree algorithm 
with this combination can be used to create a reliable map of agroforestry and monoculture coffee 
distribution, which can serve as initial information for policymakers in determining the location of coffee 
development in Bandung Regency. The distribution map of agroforestry and monoculture coffee plants will 
facilitate policymakers' efforts to assist in the form of seeds, incentives, strengthening production in areas 
with great potential, and land intervention, as it has been explicitly mapped for coffee commodities. Figure 
4 shows some examples of decision tree algorithm rules from a total of 211 branches. Based on the decision 
tree algorithm, PL Vis is the primary variable separating the classification of coffee plant land cover from 
others.  

The resulting algorithm shows the ability to classify CAF and CNF, with PL Vis = HAL, which serves as the root 
node of the model. Decision tree rules are used to produce land classification maps in detecting CAF and CNF. 
The land classification maps formed are natural forests (HAL), plantation forests (HTN), plantations (PKB), rice 
fields (SWH), water bodies (TBA), open land (TTR), settlements (PMK), CAF, CNF, and dryland agriculture 
mixed with shrubs (PLKSBL). Figure 4 shows that the decision tree will classify land cover into coffee 
agroforestry by splitting the elevation branch nodes (DEM/Digital Elevation Models), which have values > 
1,513.5 masl, road proximity ≤ 1,373 meters, slope value ≤ 37%, and road proximity > 832 meters. The 
decision tree will classify coffee monoculture cover by splitting DEM having a value > 1,513.5 masl, distance 
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to the road > 1,373 meters, EVI value > 0.570, MNDWIg value > –0.396, NRGI value ≤ 0.192, ARVI value > –
0.999, ARVI value > –0.999, ARVI value > –0.999. The decision tree has many branches to classify coffee 
agroforestry and coffee monoculture land cover. 

 
Note: ARVI = atmospheric reflection vegetation index, CAF = coffee agroforestry, CNF = coffee monoculture, DEM = elevation, EVI = enhanced 
vegetation index, HAL = natural forests, HTN = plantation forests, MNDWIg = modified normalized differences wetness index, green base, NRGI = 
normalized red-green vegetation index, OLC = other land cover, PKB = estate crop plantation, PLKSBL = dryland agriculture mixed with shrubs, 
plvis = land cover, PROX J = road proximity, Prox_s = river proximity.  

Figure 4. Illustrates a decision-tree model used for land-cover classification, showing the hierarchical structure of 

splitting variables including spectral indices, geophysical parameters, and proximity measures, and the resulting 

terminal land-cover classes e.g., HAL or natural forest, CAF or coffee agroforestry, and CNF or coffee monoculture. 

The diagram of decision tree provides context for understanding how different environmental predictors interact and 

are sequentially selected by the machine-learning algorithm to differentiate between multiple land-cover types. The 

figure demonstrates that the model relies on a combination of influential spectral and geophysical variables, indicating 

their importance in accurately discriminating land-cover categories. 

Land Cover Classification Results 

Following the Indonesian National Standard (SNI/Standar Nasional Indonesia) No. 7645–2010 on land cover 
classification, we developed 10 classes, including coffee agroforestry and monoculture classes, using the best 
decision tree algorithm obtained. The classification map was then developed and depicted in Figure 5. The 
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algorithm model provides fairly good classification in distinguishing land cover classes. Coffee agroforestry 
and monoculture are spread across several districts. Coffee agroforestry can be found in 12 districts: Pasir 
Jambu, Ciwidey, Pangalengan, Cimaung, Banjaran, Rancabali, Pacet, Ibun, Paseh, Cimenyan, Cilengkrang, and 
Arjasari. 

Figure 5. The map displays the spatial distribution of land-cover classes in Bandung Regency, generated using a 

decision-tree classification algorithm applied to multisource environmental and remote-sensing data. The figure 

shows eleven distinct land-cover categories, including primary forest, plantation forest, estate crop plantations, coffee 

agroforestry, coffee monoculture, shrub–mixed dryland agriculture, and settlements, each represented by a unique 

color. The map highlights substantial heterogeneity in land-cover patterns across the regency, with forested areas 

concentrated mainly in the southern and southwestern regions, while agricultural and settlement areas dominate the 

central and northern zones. Coffee agroforestry and coffee monoculture can be found in 12 districts: Pasir Jambu, 

Ciwidey, Pangalengan, Cimaung, Banjaran, Rancabali, Pacet, Ibun, Paseh, Cimenyan, Cilengkrang, and Arjasari. 

In Bandung Regency, coffee agroforestry can be found in highland areas, close to natural and plantation 
forests. These results are in line with the government program from Perum Perhutani Forest Management 
Unit (FMU) South Bandung for PHBM [53]. In contrast, coffee monoculture is dominantly found in Baleendah 
District and the PT Perkebunan Nusantara VIII (PTPN VIII) area due to a shift in commodities planted with tea, 
replaced by plants without shade. Misclassification still occurs in a set of pixels in several land cover classes. 
An existing obstacle is overfitting, a weakness of decision trees that occurs with complex datasets. The 
complexity of the dataset causes the model to follow and adjust the training data [54]. 

Overfitting might have slightly occurred in Figure 5. One approach to overcoming overfitting is to employ a 
pruning method. Pruning is the process of removing branches that do not contribute significantly to the 
model's accuracy value. Complexity is reduced with pruning to generalize new data and reduce overfitting 
[55]. The classification of coffee monoculture land cover is often wrong due to changes in the function of 
several areas. The current price increase has led to private agricultural land in the community being converted 
for coffee plantations. The hedge plants surrounding the monoculture provide a visual resemblance to coffee 
agroforestry. 
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User accuracy (UA) provides the percentage of classification results, representing actual conditions in the 
field [56]. Meanwhile, producer accuracy (PA) provides the percentage of each object in a correctly classified 
field [57]. UA and PA estimate the overall value, which describes the total value. KA is determined from 
objects successfully classified correctly and considers classification errors. 

Table 9 presents the misclassification of coffee agroforestry cover, including pixels overlapping natural 
forests, mixed dryland agriculture with shrubs, rice fields, plantation forests, plantations, and coffee 
monoculture, resulting in a producer accuracy of 68.27%. Coffee agroforestry and coffee monoculture classes 
are relatively difficult to distinguish in coarse-resolution imagery in a complex landscape. Mixed pixel is 
always a challenge in image classification. At 30 m resolution, pixels often contain multiple land cover types, 
complicating classification. This is particularly problematic in heterogeneous landscapes, such as those found 
in tropical regions. The presence of mixed pixels can lead to lower classification accuracy for specific crops, 
as the spectral signature of a pixel may represent a combination of coffee and surrounding vegetation [58].  

Spectral unmixing techniques, such as spectral unmixing, can help address the mixed pixel problem by 
decomposing pixel values into their constituent land cover types. This approach has been shown to improve 
classification accuracy in complex landscapes. The choice of classification algorithm significantly impacts 
accuracy. For instance, support vector machine (SVM) classifiers have been found to outperform random 
forest (RF) classifiers at coarser resolutions, suggesting that algorithm choice should be tailored to the specific 
resolution and landscape complexity [59]. The object-based image analysis (OBIA), which considers both 
spectral and textural information, has been shown to improve classification accuracy for coffee fields, 
achieving higher user and producer accuracies compared to pixel-based methods [60]. In this classification, 
we found that  coffee monocultures have a producer accuracy and user’s accuracy of 57.3% and 59.7%. 

Table 9. The confusion matrix for land-cover classification generated using a combined set of spectral, geophysical, 

and land-cover variables, showing the number of correctly and incorrectly classified samples for each land-cover 

category. It provides context for evaluating classification performance through PA and UA, which quantify class-

specific reliability from reference data and predicted outcomes, respectively. The table demonstrates strong 

classification accuracy for most land-cover types particularly water body with UA 93.88%, settlement with UA 93.68%, 

dryland agriculture with UA 90.64%, and natural forest with UA 89.72%, while highlighting lower performance in 

classes with higher spectral or structural similarity, such as monoculture coffee. 

Prediction  
class 

HAL CAF PMK TBA TTR PLKSBL SWH HTN PKB CNF UA 
(%) 

 

HAL 96 6 0 0 0 0 0 4 0 1 89.72  

CAF 5 71 0 2 0 3 0 11 0 4 73.96  

PMK 0 0 178 2 10 0 0 0 0 0 93.68  

TBA 0 0 1 46 2 0 0 0 0 0 93.88  

TTR 0 0 12 0 47 1 0 0 0 0 78.33  

PLKSBL 1 4 1 0 2 165 3 2 1 19 83.33  

SWH 0 1 0 6 0 7 155 2 0 0 90.64  

HTN 7 17 0 0 0 1 0 79 0 0 75.96  

PKB 1 1 0 0 1 2 0 0 113 8 89.68  

CNF 0 4 0 0 0 21 0 2 2 43 59.72  

PA (%) 87.27 68.27 92.71 82.14 75.81 82.50 98.10 79.00 97.41 57.33 
 

 

Note: CAF = coffee agroforestry, CNF = monoculture coffee, HAL = natural forest, HTN = plantation forest, PA = producer accuracy, PKB = estate crop 

plantation, PLKSBL = shrub-mixed dryland agriculture, PMK = settlement, TBA = water body, SWH = dryland agriculture, TTR = bare land, UA = user accuracy. 

Table 9 shows that misclassification is not only found in agroforestry and monoculture coffee land cover, but 
also in other land cover such as natural forest, plantation forest, settlements, water bodies, open land, dry 
land agriculture, shrubs, and estates due to limitations in visual interpretation. The land cover 
misclassification occurred due to the limited spatial resolution of the Landsat 8 satellite image used, which 
only has a spatial resolution of 30 × 30 m. This causes difficulties in interpretation for land cover with similar 
visualization on the image, for example, open land with settlements, wet rice fields with water bodies, 
plantation forests with natural forests, and estates with dry land farming shrubs. The integration of spectral 
indices with geophysical variables has been shown to significantly improve classification accuracy. This 
research is in line with the results in subtropical forest ecosystems, where the combination of spectral, 
spatial, and topographic data resulted in an overall classification accuracy of 83.5% for 11 land-cover classes, 
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with specific improvements noted in the classification of coniferous and broadleaf forests. Geophysical 
variables such as DEM and proximity to roads and rivers provide critical spatial context that enhances the 
differentiation of land cover types.  

For example, the inclusion of topographic factors in spectral and textural imagery improved classification 
accuracy by up to 5.5% [61]. In mountainous regions, the integration of topographic and geographic 
information with spectral data has been shown to accurately depict forest distribution and landscape 
patterns, with an overall accuracy of 95.49% for forest-cover maps [62]. Data fusion techniques, such as the 
integration of multi-source remote sensing data, have proven effective in enhancing spatial, temporal, and 
spectral information, leading to improved classification outcomes. For instance, a novel spatial-temporal-
spectral fusion framework achieved the highest classification accuracy of 83.6% in distinguishing various 
forest types [63]. The use of ensemble learning methods and machine learning-based data integration 
approaches has further improved global-scale forest cover characterization, demonstrating the robustness 
of these techniques in enhancing classification accuracy [64]. 

Different factors affect the selection of training areas, resulting in similarity in the pixel values taken. The 
creation of better training areas and land cover interpretation in Landsat 8 imagery (PL Vis) improves accuracy 
in classification using a decision tree algorithm [65]. The detection of coffee agroforestry and monoculture 
coffee resulting from classification using a decision tree algorithm will be compared in appearance through 
high-resolution imagery and compared with photos taken from field data collection. Comparison of coffee 
agroforestry and monoculture visualizations can be seen in Table 10.  

Table 10. A comparative visualization of CAF and CNF using three complementary data sources: decision-tree 

classification results, high-resolution satellite imagery, and field-collected ground-truth photographs. The context of 

the figure is to evaluate how well the decision-tree model differentiates structurally complex agroforestry systems 

from more uniform monoculture plantations in the landscape. Each row highlights the spatial patterns and visual 

characteristics of sample locations, showing clear contrasts in canopy structure, vegetation diversity, and surrounding 

land-cover types. The comparison demonstrates that coffee agroforestry typically appears more heterogeneous and 

is often situated adjacent to natural forests and mixed agricultural mosaics, whereas monoculture coffee exhibits 

more homogeneous spectral patterns and is commonly located near plantation forests or cultivated land. 

Land 
cover 

Decision tree classification results High resolution imagery Ground truth 

CAF 

  

 

 
CAF 

   
 

BD1204B 

BD1204B 

BD1218B 
BD1218B 
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CNF 

   
CNF 

   

Note:  CAF= coffee agroforestry, CNF= coffee monoculture = natural forest (primary forest), = plantation Forest, = estate crop plantation, = shrub-

mixed dryland agriculture,  = paddy field, = settlement,  = water body, = bare land. 

Table 10 shows the proximity of coffee agroforestry and coffee monoculture land cover to others. Coffee 
agroforestry is adjacent to natural forest land cover, plantations, and dryland shrub farming. This is 
appropriate to the field conditions because coffee agroforestry is located at high elevations. In this context, 
natural forests, plantations, and dryland shrub farming are located in the highlands. Coffee monoculture land 
cover is closely related to plantation forests, coffee agroforestry, rice fields, and open land. In Bandung 
Regency, coffee monoculture is often found adjacent to community-cultivated land. This is appropriate to 
the visualization in Figure 4 and Table 10. 

Discussion 

This study found that the decision tree algorithm was able to classify agroforestry and coffee monoculture 
land cover correctly. The overall land cover classification accuracy of 84.65% almost resembles the actual 
conditions in the field. It should be noted that pine trees dominate the characteristics of the coffee 
agroforestry system in Bandung Regency as shade. This is related to the program of Perum Perhutani that 
utilizes the pine plantation forest area as a community co-management area with an agroforestry system, so 
it would be difficult to detect the land cover if relying on visual data of land cover instead. The research 
findings were that the combination of spectral-geophysical-land cover variables provided the best accuracy 
in land cover mapping. Spectral variables with vegetation indices such as ARVI, EVI, GARI, NRGI, and VDVI 
gave a range of –0.99 to 0.57 for coffee monoculture land cover. A vegetation index value range of –0.99 to 
0.710 would indicate coffee agroforestry land cover.  

Elevation was most influential in separating coffee agroforestry land cover from other land cover in Bandung 
Regency as a geophysical variable. This is because Arabica coffee is generally planted in the elevation range 
of 1,500 to 1,750 masl. Higher elevations are associated with improved coffee quality due to cooler 
temperatures and slower bean maturation, which enhance flavor profiles. This is particularly beneficial in 
agroforestry systems where shade trees can further modulate microclimates, improving bean quality 
attributes such as size and biochemical composition [66]. Coffee agroforestry systems at higher elevations 
are better positioned to adapt to climate change due to their enhanced microclimatic conditions and 
biodiversity, which can buffer against temperature fluctuations and extreme weather events [67]. Coffee 
agroforestry systems at higher elevations can experience a trade-off between yield and quality. While the 
quality may improve, the presence of shade trees can reduce yield compared to monoculture systems. 
However, the extended maturation period at higher elevations can partially offset this by improving bean 
size and weight [68,69]. 

BD1291B 
BD1291B 

BD1227B 
BD1227B 
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Monoculture systems may achieve higher yields at lower elevations due to full sun exposure, but this often 
comes at the cost of reduced quality and increased vulnerability to pests and diseases [70]. In monoculture 
systems, while elevation can still improve quality, the absence of shade trees may lead to less optimal 
microclimatic conditions, potentially affecting the consistency of quality improvements seen in agroforestry 
systems [71]. Monoculture systems may struggle with climate adaptation, particularly at lower elevations, 
where increased temperatures and reduced water availability can exacerbate stress on coffee plants  [72].  
Coffee monoculture systems, which involve growing coffee in full sun, are often more productive at lower 
elevations where sunlight is more consistent. Studies have shown that coffee plants in monoculture systems 
can achieve higher productivity due to increased light exposure, which is beneficial for photosynthesis and 
growth. At higher elevations, monoculture systems may face challenges, including increased susceptibility to 
temperature extremes and reduced biodiversity.  

These factors can lead to higher pest and disease pressures, necessitating more intensive management 
practices [73]. Thus, elevation plays a significant role in differentiating between coffee agroforestry and 
coffee monoculture systems, affecting various aspects, including coffee quality, yield, and environmental 
sustainability. Coffee agroforestry, which integrates shade trees with coffee plants, often benefits from 
higher elevations due to cooler temperatures and extended maturation periods, which can enhance coffee 
quality. In contrast, coffee monoculture, typically grown in full sun, may not leverage these elevation benefits 
as effectively. The following sections explore how elevation influences these two systems. Slope affects the 
determination of coffee planting locations chosen by farmers. Farmers have a preference to plant coffee on 
gentle to steep slopes ≤ 37%. 

Coffee plantations do not depend on irrigation, and it is reasonable that the proximity of rivers does not 
influence coffee planting in Bandung Regency. The proximity of roads provides information on the economic 
and social linkages of farmers, as coffee will be planted relatively close to roads for easier management, 
harvesting, and distribution. Other research may provide different results; hence, the findings in this study 
are only applicable on a local scale and not generalizable to other study areas. Therefore, the key step that 
can be implemented in other study areas is the method of building the decision tree algorithm, rather than 
relying on the results of this study as a reference, because they may yield different results. Land cover 
variables proved unable to provide accurate data on the existence of coffee plantations. Land cover data only 
provides information on land cover that has proximity to coffee plants, as evidenced by the confusion matrix, 
which only provides low accuracy for agroforestry and monoculture coffee. Land cover needs to be combined 
with spectral variables and geophysical variables to classify agroforestry and monoculture coffee using the 
decision tree method in order to obtain reliable accuracy. It should be underlined that the highest accuracy 
is not necessarily the best land cover classification model. A model with high accuracy may have overfitting 
constraints. The optimization of model parameters provides the option of using pruning techniques that can 
reduce overfitting. The findings of this research prove that pruning can improve accuracy by up to 1%. 

This research marks the beginning of a small part of coffee commodity research, which resulted in a map of 
coffee agroforestry and monoculture distribution in Bandung Regency. The map of coffee agroforestry and 
monoculture distribution in Bandung Regency can serve as supporting material for decision-makers in 
formulating policies. After knowing the specific distribution of coffee plantations, the government can 
formulate policies regarding the development of sustainable coffee plants in the future. Examples of policy 
formulation using basic data on coffee plant distribution maps are: follow-up to the European Union 
Deforestation Regulation (EUDR) policy, land traceability, land intervention policy, location of intervention 
assistance in the form of seeds and incentives, and estimation of coffee productivity throughout Bandung 
Regency. All of these policies require spatially explicit coffee plants as basic information. In addition, efforts 
to calculate environmental services also need specific basic data about the area where the value of 
environmental services will be calculated. 

Research on land cover classification with the decision tree method using spectral and geophysical data 
provides a better accuracy value than the research that has been done, with an overall accuracy of 91.48% 
[74]. This can occur because the retrieval of training areas in the study is better, and the research area is 
smaller than Bandung Regency. In line with the research conducted, the use of vegetation Indices and 
biophysical variables helps distinguish between different land cover types, such as urban areas and 
vegetation [75]. Additionally, biophysical variables such as DEM and slope are used to improve the 
separability of coffee agroforestry and coffee monoculture with other classes, such as natural forest, mixed 
dryland agriculture, settlement, bare land, paddy field, estate crop, and water body [76]. 
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Other studies have examined the performance and accuracy of decision trees, SVM, and Maximum Likelihood 
Classifiers (MLC). The results consistently show that decision trees provide competitive, even superior 
accuracy. For example, a study comparing decision trees with SVM and MLC found that decision trees 
achieved higher accuracy in land cover change assessment. In addition, the integration of decision trees with 
OBIA has been shown to improve classification accuracy by developing effective rule sets [77]. Decision tree 
classification, when integrated with Landsat data, vegetation indices, and biophysical variables, provides a 
powerful tool for land use classification. Its adaptability and accuracy make it a preferred choice in remote 
sensing applications; however, ongoing research is needed to address existing challenges and further 
enhance its capabilities. Future research is expected to focus on integrating high-resolution imagery and 
larger datasets further to improve classification accuracy and applicability in diverse environments [78]. 

Conclusions 

The development of a decision tree algorithm to detect coffee agroforestry and monoculture plantations was 
successfully carried out using spectral-geophysical-visually based land cover combinations. Spectral-
geophysical-land cover combinations variables had an overall accuracy and a kappa accuracy of 84.65% and 
82.60%, respectively. Information gain was the criterion selected to detect coffee plantations, both in 
agroforestry and monoculture systems. The visually-based land cover variable, recognized as the most 
significant variable, served as the root node in the decision tree. The best parameters used a minimum leaf 
size set and split of 11 and 31, as well as a maximum depth of 80 through pruning. The coffee agroforestry in 
Bandung Regency is mainly found in natural forest, having an elevation higher than 1,500 masl, a road 
proximity of approximately 1 kilometer, a slope of less than 37%, and an ARVI value of less than –0.999. The 
coffee monoculture class also found close to a natural forest, but outside the natural forest, with elevations 
of more than 1,500 masl and a road proximity of more than 1 kilometer. The coffee agroforestry and 
monoculture classes are mainly approached using spectral variables such as ARVI values more or less than –
0.999, NRGI values less than 0.192, MNDWIg values more than –0.396, and EVI values more than 0.570. The 
coffee agroforestry and monoculture were often found close to natural and plantation forests at increasingly 
higher elevations. Coffee agroforestry is adjacent to natural forest land cover, plantations, and dryland shrub 
farming. On the other hand, coffee monoculture is often found near community-cultivated land. 
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