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ABSTRACT 

Forest fires pose a significant challenge in Riau Province, Indonesia, especially in peatland areas. This 

study employs the Random Forest (RF) algorithm to analyze the confidence levels of hotspots, 

aiming to predict potential fire occurrences and improve fire management strategies. The research 

focuses on peatlands spanning 3.86 million ha, using key variables such as NDVI, surface 

temperature, and peat thickness derived from satellite data. The model achieved an average AUC 

of 0.732 and a classification accuracy of 70.3%, with medium-confidence hotspots demonstrating 

the best predictive performance (AUC: 0.707, F1-score: 0.804). However, the model struggled with 

low-confidence hotspots, reflecting challenges in distinguishing less prominent patterns in the data. 

Compared to other methods, RF demonstrates strong potential in handling complex environmental 

datasets, making it a valuable tool for hotspot prediction. This study contributes to understanding 

forest fire risks in peatlands and provides actionable insights for improving preparedness and 

mitigation efforts.  

Introduction 

Hotspot confidence is an important factor in forest fire preparedness, including resource procurement, 
resource relocation and preparation for fire suppression activities. This confidence value indicates the 
likelihood of a hotspot developing into a fire. It is calculated based on the geometric mean of five factors, 
such as temperature, cloud cover, smoke cover, vegetation and water conditions. These factors help detect 
hotspots using satellite data such as MODIS (Moderate Resolution Imaging Spectroradiometer) to map the 
relationship between hotspots and fire occurrence [1]. Hotspots usually indicate areas with higher 
temperatures than their surroundings, but not all hotspots can be confirmed as a sign of fire. Experts state 
that a hotspot can only be considered a fire indicator if it is detected repeatedly for two to five consecutive 
days. Indonesia has the second largest peatland in the world after Brazil, with 22.5 million ha [2] spread across 
Sumatra, Kalimantan, and Papua [3]. Peatland fires are a recurring problem, causing environmental and 
health damage [4,5]. In 2019, 1.6 million ha of land burned with 22,389 hotspots, mostly on peatlands [6,7]. 
These fires exacerbate global climate change [8] destroying biodiversity [9,10] and produced a haze that 
spread across the country [11]. 

The National Institute of Aeronautics and Space (LAPAN) of Indonesia has established a system to classify 
hotspots based on confidence intervals, which determine the necessary actions to address potential fire risks. 
Hotspots with a confidence level below 30% are categorized as low confidence, requiring monitoring but no 
immediate action. Confidence levels ranging between 30% and 80% fall into the medium confidence 
category, which warrants an alert and preparedness. Lastly, hotspots with confidence levels of 80% or higher 
are categorized as high confidence, demanding immediate countermeasures [12]. In 2019, Indonesia 
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recorded a total of 22,389 hotspots, marking an increase compared to 2018. However, this figure was 
significantly lower–about 45% less–than the 40,727 hotspots detected in 2015. This trend highlights the 
fluctuating nature of hotspot occurrences and underscores the need for effective management strategies to 
mitigate fire risks [13]. 

Interventions to reduce risks and improve forest and land fire preparedness can be achieved by predicting 
the occurrence of such fires [14]. Several studies have applied machine-learning approaches in this domain. 
For example, Murphy [15] introduced a conceptual framework modified to include examples relevant to fire 
and forest management. Stojanova et al. [16] evaluated various machine learning methods for fire prediction 
in Slovenia using geographic, remote sensing, and meteorological data. The methods evaluated included 
single classifiers, such as K-Nearest Neighbor (KNN), naïve Bayes, Decision Trees (DT) using J48 and jRIP 
algorithms, Logistic Regression (LR), Support Vector Machines (SVM), and Bayesian Networks (BN). 
Additionally, ensemble methods, such as AdaBoost, DT with bagging, and Random Forest (RF), were 
examined. The results indicated that ensemble methods, particularly DT with bagging and RF, provided the 
best performance. The bagging method had higher precision, while RF demonstrated better recall.  

In recent studies, Yu et al. [17] applied the RF method to predict fire risks in Cambodia using publicly available 
remote sensing data. Additionally, the maximum entropy (MaxEnt) method was utilized to forecast fire 
occurrences. Another study by de Angelis et al. [18] utilized the maximum entropy (MaxEnt) method to 
predict daily fire risk in the mountainous region of Canton Ticino, Switzerland, incorporating various 
meteorological variables and fire indices. Dutta et al. [19] employed a two-stage approach combining an 
ensemble of unsupervised deep belief neural networks (DBNet) and conventional ensemble machine learning 
to predict weekly forest fire hotspot occurrences. The authors found that the bagging classifier and the 
conventional KNN classifier were the two most accurate models, achieving 94.5% and 91.8% accuracy. 

In Indonesia, Shofiana and Sitanggang [20] analyzed hotspot data from NASA FIRMS for 2014–2015 in 
Sumatra and Kalimantan. Their study identified 484 hotspots using the SPADE algorithm, 58 of which had low 
confidence levels. However, only 21 hotspots were eligible for verification using Landsat-8 satellite images. 
The verification revealed that 85.71% of the hotspots experienced decreased confidence due to haze 
interference. Similarly, Nurpratami and Sitanggang [21] employed a spatial entropy-based DT algorithm to 
classify forest fire hotspots in Bengkalis Regency, Riau Province, using NASA FIRMS data from 2008. The DT 
achieved an average accuracy of 89.04% for the training set and 52.05% for the test set. This study generated 
255 classification rules based on proximity to city centers, rivers, roads, income sources, land cover, 
population, rainfall, schools, temperature, and wind speed. 

Various studies have been conducted on forest and land fire prediction using machine learning approaches, 
particularly RF algorithms [22]. However, no study has specifically addressed the analysis of the confidence 
level of the occurrence of forest and land fire hotspots in peatlands using the RF algorithm. The purpose of 
this research was to overcome the obstacles in analyzing the level of confidence in the occurrence of hotspots 
that have great potential to become actual fire points, as well as anticipatory steps in dealing with recurrent 
forest and land fires. This research is expected to help understand the role of confidence levels in identifying 
the likelihood of fire occurrence. The RF algorithm was used as the confidence analysis approach in this study, 
and three different dataset groupings were used as input variables: Area of Interest (AOI), hotspot 
distribution, and interpretation of land conditions in the Riau Province, Indonesia. 

Materials and Methods 

Location and Time of Research 

The study area is in Riau Province, which has an area of 87,023.66 km2 or 9,068,997 ha with a population of 
6,493,603 people [23]. This study focused on a peat area of 3,863,759.76 ha, which is astronomically located 
at latitudes between 0.86° and 2.49° N and longitudes between 100.30° and 103.76° E (Figure 1). The research 
period was from January 1st to July 31th, 2019. 
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Figure 1. Study area in peatland of Riau Province, Indonesia. 

Data Collection and Analysis Methods 

This study used three different datasets as input variables: Area of Interest (AOI), hotspot distribution, and 
interpretation of land conditions. For each dataset, attributes related to peatland fires were selected. After 
obtaining the relevant attributes, all attributes were combined into one new dataset. The data used in this 
study were obtained from various sources, as described in detail in Table 1. 

Table 1.  Summary of research data used. 

Variable Unit Temporal resolution Spatial resolution Resource 

Area of Interest (AOI)     
Image map of Riau 
Province 

km2 8 days 1 km (0.928 km) C6 MODIS LST MOD11A2 V6 

Riau Province boundary km 2 Unitless Unitless Geospatial Information Agency Indonesia 
(BIG) 

Riau peat area boundary km 2 Unitless Unitless BIG 

Hotspots distribution     
Hotspots – NASA  Day  FIRMS NASA 2019 
Hotspots – BRIN  Day  National Research and Innovation (BRIN) - 

Fire Hotspot 2019 

Interpretation of land 
conditions 

    

NDVI m2 Month 30 Landsat 8 OLI – C2L2 
Elevation m Month 0.27-arcsecond National Digital Elevation Model (DEMNAS)  
Peat thickness m Month AOI Centre for Research and Development of 

Agricultural Land Resources (BBSLDP) 
Surface temperature 
(Temp) 

0C Day AOI C6 MODIS LST MOD11A2 V6 
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Identify Hotspot Distribution and Area of Interest 

Information on the distribution of hotspots within the AOI was represented in maps from satellite imagery 
data (Terra and Aqua C6 MODIS LST MOD11A2 V6) and by considering the AOI boundaries set by the BIG. A 
visual map of the AOI was created using geographic information system software, and the results are shown 
in Figure 2. Results of overlaying the distribution of selected hotspots with MODIS imagery in the AOI. The 
hotspot distribution is identified after data pre-processing, which involves several important steps, such as 
attribute selection, missing value filling, data merging, and distribution balancing for each class. All hotspot 
confidence attribute values from 0 to 100 were used without decimal rounding for the hotspot location 
coordinates. The hotspot dataset was created by selecting hotspot data from the peatlands and obtaining 
peat thickness information. This study used 1,419 datasets selected from 41,059 rows of data sets in 2019. 
Table 2 lists the hotspot confidence categories and frequency intervals before and after the selection. 

 

Figure 2. Results of overlaying the distribution of selected hotspots with MODIS imagery in the AOI area. 

Table 2.  Number of hotspots (before and after selection).  

Hotspot resources Number of hotspots Confidence frequency 

Before selection (Indonesia) After selection (AOI) Low Medium High 

FIRM NASA 19,204 206    
BRIN 21,855 1,213    
Research hotspot datasets  41,059 1,419 121 

(8.53%) 
946 

(66.67%) 
352 

(24.81%) 

 

This research focuses on eight key attributes of hotspots. These include coordinate points (latitude and 
longitude), acquisition date (acq_date), and acquisition time (acq_time). Other attributes are soil type, peat 
thickness class, temperature class (Temp), Normalized Difference Vegetation Index (NDVI) class, and hotspot 
confidence level. These attributes are detailed in Table 3.  
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Table 3. Dataset attribute selection. 

Attribute  Description 

Latitude Latitude coordinates of hotspot (o) 
Longitude Longitude coordinates of hotspot (o) 
Brightness temperature Temperature of hotspot in channel 21 and 22 (K) 
Acq_Date Date of fire incident 
Acq_Time Time of fire occurrence 
Satellite Satellite 
Confidence Hotspot quality (0–100%) 
NDVI Landsat 8 OLI-C2L2 
Surface temperature Temperature of hotspot in channel 31 (K) 
Soil type Soil characteristics 
Peat thickness The size of the peat layer in the soil 

 

Interpretation of Land Conditions 

The NDVI data, derived from Landsat 8 OLI-C2L2 satellite images, was used to represent vegetation land 
cover. Additional variables included Elevation from DEMNAS, peat thickness from BBSLDP, and surface 
temperature from C6 MODIS LST MOD11A2 satellite images. These variables were crucial in determining the 
characteristics of hotspot confidence levels. The classifications of NDVI, peat thickness, surface temperature, 
and soil type were further divided into specific classes with frequency counts, as detailed in Table 4. 

Table 4.  Interpretation of classification distribution of land condition dataset. 

NDVI Peat thickness Surface temperature Soil type 

Classify Freq Classify Freq Classify Freq Classify Freq 

Non-vegetation  2 Shallow 40 ≤20 2 Fibric organosols 65 
Sparse vegetation 27 Medium 291 >20–22 2 Hermic organosols 991 
Medium vegetation 250 Deep 322 >22–24 4 Sapric organosols 363 
Dense vegetation 561 Very deep 766 >24–26 5   
Very dense vegetation 579   >26–28 23   
    >28–30 68   
    >30–32 

>32–34 
>34–36 
>36–38 
>38–40 
>40 

272 
752 
131 

87 
58 
15 

  

 

The land cover dataset was established using spatial operations from Landsat 8 OLI-C2L2 satellite data. Land 
cover value (NDVI) is a spectrum-based greenness index for measuring and monitoring plant growth, 
vegetation cover, and biomass production from multispectral satellite data [24]. NDVI is a combination of the 
red and NIR bands. The NDVI calculation is given by the Equation 1 [25]. 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 (1) 

where NIR is the near-infrared band (0.841–0.876 mm) and red is the red band (0.620–0.670 mm). 

Pre-Processing Data 

After completing the pre-processing steps, the dataset was finalized with 1,419 rows and nine columns. It 
includes a total of eight features, evenly divided into categorical and numerical types. Specifically, there are 
four categorical features and four numerical features. These features are detailed in Table 5. The Pre-
processing was carried out in five stages, as shown in Figure 3. First, it was imported using the pandas library. 
The data used consist of the columns "HSConf_Class,” Soil Type, “Peat thickness," "NDVI," and "Temp.". 
Second, initialize LabelEncoder from the Scikit-Learn library and proceed to the stage, Encoding Categorical 
Variables, to convert each categorical variable into an integer. This stage is performed such that categorical 
variables can be used in classification models that require numerical data. Fourth, normalization or 
standardization was performed using StandardScaler from Scikit-Learn. This normalization ensured that the 
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data had a mean of 0 and a standard deviation of 1. Finally, Train-Test Split. The data were split into training 
(train) and testing (test) data at a ratio of 80:20. Relationship visualization uses Seaborn to create pair plots 
that visualize the relationships between multiple numerical variables and differentiate them by class i as the 
target class, as shown in Figure 4.  

Table 5. Example of a dataset table. 

# 
HSConf_ 
category 

Soil type 
Peat 
thickness 

NDVI_Class 
Surface_ 
Temperature 

Acq_Date 
Acq_TIME 
(WIB) 

1 Low Hemic organosol Very deep Dense vegetation >30–32 2019-01-09 10:45:00 
2 Low Hemic organosol Deep Dense vegetation >34–36 2019-02-06 11:07:00 
…        
1419 High Sapric organosol Medium Very dense vegetation >32–34 2019-07-31 18:43 

 

 

Figure 3. Pre-processing stage. 

 

Figure 4. Seaborn's pair plots visualized the relationship between the numerical variables and target classes. 

Impor Dataset
LabelEncoder 
Initialisation

Encoding 
Categorical 

Variabls

Normalisation or 
Standardisation

Train-Test Split RF Modelling
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Seaborn's pair plot shows the relationship between the four variables of soil type, peat thickness, NDVI, and 
temperature, and the distribution of each variable. The colors in the scatter plot indicate three different 
classes of the HSConf_Class variable: blue (–1.646041450166023), orange (–0.48397738310851723), and 
green (0.6780596839489885). The soil type distribution showed a bimodal pattern, especially for the green 
class, indicating two main data groups for this variable. Similarly, the peat thickness distribution showed two 
major peaks, indicating a potential division of the data into two major groups. The NDVI distribution showed 
several peaks, indicating significant variation in the data, especially for the green and blue classes. The 
temperature distribution showed one main peak with a wide distribution, where the green class appeared to 
be dominant at various temperature values. Analysis of the relationships between the variables showed no 
strong correlation between the pairs of variables tested. For example, the relationship between soil type and 
peat thickness, NDVI and temperature did not show a clear correlation. Similarly, there was no significant 
relationship between peat thickness and NDVI and temperature, and between NDVI and temperature. 

Results 

Classification Modelling using Random Forest Algorithm 

The classification model was constructed using the Random Forest algorithm with 500 DT in the ensemble. A 
10-fold cross-validation method was implemented, with 80% of the dataset utilised for training and 20% for 
testing. This approach ensured a rigorous evaluation of the model’s predictive performance and minimised 
the risk of overfitting. An illustration of the Pythagorean Forest is shown in Figure 5. 

 

Figure 5. Example of Pythagorean random forest target class cumulative hotspot confidence level. 

The model was designed to classify hotspots into three confidence level classes: low, medium, and high. Table 
6 summarised the performance metrics of the classification model for each category. For the low-confidence 
category, the model achieved a high classification accuracy (CA) of 0.911; however, it exhibited a low F1 score 
(0.113) and recall (0.066), indicating difficulties in identifying instances belonging to this category. In contrast, 
the medium-confidence category demonstrated stronger performance, with an F1 score of 0.804, precision 
of 0.739, and recall of 0.882, reflecting the model’s capacity to classify this category effectively. For the high-
confidence category, the model achieved an Area Under the Curve (AUC) score of 0.795 and an F1 score of 
0.499, suggesting moderate performance. On average, across all categories, the model recorded an AUC of 
0.732, a CA of 0.703, and an F1 score of 0.669, indicating its general capability to classify hotspot confidence 
levels. 

Table 6.  Test score model random forest.  

Target class AUC CA F1 Precision Recall 

Low 0.651 0.911 0.113 0.400 0.066 
Medium 0.707 0.715 0.804 0.739 0.882 
High 0.795 0.779 0.499 0.574 0.442 
Average over classes 0.732 0.703 0.669 0.669 0.703 

 

An additional evaluation framework was used to assess the model’s prediction performance, with results 
presented in Table 7. The low-confidence category achieved an impressive AUC score of 0.993, highlighting 
the model’s ability to rank instances accurately. However, its F1 score (0.652) suggested balancing precision 
and recall challenges. The medium-confidence category exhibited excellent performance, with an F1 score of 
0.925, precision of 0.887, and recall of 0.966. The high-confidence category achieved an AUC of 0.978 and an 
F1 score of 0.841, indicating strong performance but with room for improvement in balancing precision and 
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recall. The strongest relationship between variables was observed between soil type and surface 
temperature, which were closely associated with hotspot confidence levels (Figure 6). 

Table 7. Prediction performance score. 

Target class AUC CA F1 Precision Recall 

Low 0.993 0.887 0.652 1 0.484 
Medium 0.973 0.887 0.925 0.887 0.966 
High 0.978 0.887 0.841 0.867 0.816 

 

  
(a) (b) 

Figure 6. Relationships between variables surface temperature and hotspot confidence level (a); surface temperature 

and soil type (b). 

Figure 6a illustrates the relationship between surface temperature and the classification results of the 
Random Forest model across three hotspot confidence levels (low, medium, high). Blue points (high 
confidence) are concentrated in the "High" category, predominantly associated with surface temperatures 
exceeding 30°C, indicating a strong link between high temperatures and high-confidence hotspots. Green 
points (medium confidence) are distributed in the "Medium" category, with surface temperatures ranging 
from 28°C to 32°C, while red points (low confidence) are found in the "Low" category, typically associated 
with surface temperatures below 28°C. This highlights the significance of surface temperature as a critical 
factor influencing hotspot confidence levels. Figure 6b depicts the relationship between surface temperature 
and soil type. Blue points (high confidence) are predominantly observed on organosol sapric soil types, with 
surface temperatures exceeding 30°C, while green points (medium confidence) are spread across all soil 
types, particularly organosol hemic, with temperatures ranging from 28°C to 32°C. Red points (low 
confidence) are primarily found on organosol fibric soil types, associated with surface temperatures below 
28°C. This relationship emphasises that both soil type and surface temperature significantly affect hotspot 
confidence levels, with organosol sapric being more frequently associated with high-confidence hotspots. 

Classification Model Evaluation 

Table 8 shows the confusion matrix of the classification results for each category. The model successfully 
classified 57.4% of high-confidence instances, with a 17.5% misclassification to the medium-confidence 
category. The low-confidence category presented the most challenges, with only 40% of instances classified 
correctly, while the medium-confidence category achieved the highest accuracy at 73.9%. The class 
imbalance in the dataset was evident, with 944 instances of medium confidence compared to 353 high-
confidence and 122 low-confidence instances. 

Table 8. Confusion matrix. 

 Predicted 

A
ct

u
al

 

 High Low Medium  
High 57.4% 0.0% 17.5% 353 
Low 6.2% 40.0% 8.6 % 122 
Medium 36.4% 60.0% 73.9% 944 

 272 20 1127 1419 
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Discussion 

This study successfully demonstrated that the RF algorithm can predict the confidence level of forest fire 
hotspots in peatlands with high accuracy, despite challenges in predicting low-confidence hotspots. One of 
the main findings of this research is its ability to handle large and complex datasets containing numerous 
interrelated variables, such as surface temperature, NDVI, and peat thickness. The RF model also effectively 
mitigates the overfitting issue often encountered with other methods such as DT, which aligns with the 
findings of Stojanova et al. [16], who noted that although RF performs well in terms of recall, its precision 
may be slightly lower compared to other methods. This study also underscores the relevance of satellite data, 
such as MODIS and Landsat 8, in forest fire analysis, which is further supported by Yu et al. [17], who 
emphasised the importance of satellite data in predicting forest fires in regions like Indonesia, which 
frequently experiences peatland fires. 

However, as also observed in many previous studies, the model showed limitations in predicting low-
confidence hotspots, which could be attributed to high variability in the data or unclear data quality. This 
issue is linked to the challenges faced by satellite-based models, which are affected by atmospheric 
conditions and limited data quality. This is consistent with the findings of Shofiana and Sitanggang [20], who 
reported that disturbances such as haze can lead to reduced confidence in identifying actual fires. 
Additionally, class imbalance in the dataset is a significant issue, with the medium-confidence hotspot 
category dominating, causing the model to classify data into this category more frequently, thus reducing the 
prediction accuracy for low- and high-confidence categories. 

One of the key strengths of this study is the ability of the RF model to handle highly complex and large 
datasets, leading to more accurate predictions even with interrelated variables. The RF model proved 
effective in reducing overfitting, a common issue with models like DT, as found by Pang et al. [26], who 
demonstrated that RF could provide higher accuracy in predicting forest fires compared to other models such 
as Naïve Bayes or ID3. Another advantage of the RF model is its ability to manage data with various variables 
without requiring complicated preprocessing, making it an efficient choice in the context of big data analysis. 
However, a major weakness of this study is the class imbalance in the dataset, which causes the model to 
classify more data into the medium-confidence hotspot category. This aligns with the findings of Nurpratami 
and Sitanggang [21], who found difficulty in classifying certain categories in similar datasets using DT 
algorithms. To address this issue, the study by Rosadi et al. [27] used the SMOTE (Synthetic Minority Over-
sampling Technique) method to balance the classes in the dataset, which improved the model’s accuracy in 
predicting categories with fewer data.  

Furthermore, the model is limited in predicting low-confidence hotspots, which reflects the challenges faced 
by satellite-based models, which are heavily influenced by atmospheric conditions and data quality 
limitations. When compared to other studies, one key difference is the success of Random Forest in handling 
larger and more complex data. For instance, the study by Dutta et al. [19] combined deep learning and 
ensemble methods to improve forest fire prediction and obtained better results compared to traditional 
methods such as KNN and DT. However, despite the challenges in predicting low- and high-confidence 
hotspots, the RF model in this study demonstrated superior performance compared to classical methods like 
Naïve Bayes or ID3. Research by Gigović et al. [28] and Unik et al. [29] also showed that RF outperforms 
Support Vector Machines (SVM) in mapping forest fire susceptibility, with better results in terms of prediction 
accuracy. On the other hand, while RF has proven effective in handling large data, the study by Ghali and 
Akhloufi [30] demonstrated that deep learning approaches could be more efficient in detecting and mapping 
forest fires using satellite data. This deep learning technique is more adaptive to dynamic changes in fires 
and provides higher accuracy in spatial analysis. Therefore, the use of deep learning methods, as outlined by 
Ghali and Akhloufi [30], could be the next step in optimising forest fire prediction in this study. 

This research has significant implications for fire risk management, particularly in peatlands. The use of the 
Random Forest algorithm offers the ability to predict fires with a higher level of confidence, which can 
support more targeted and efficient fire mitigation measures. The results of this predictive model can help 
authorities plan and respond to fires more swiftly and effectively, focusing on hotspots with a greater 
potential for fire outbreaks. This is in line with the findings of Pang et al. [26], who emphasised the importance 
of using accurate prediction models to aid in more effective fire prevention planning. However, the challenges 
in predicting low-confidence hotspots suggest that the model needs further refinement, such as by improving 
data representation and introducing more comprehensive variables. The research by Ghali and Akhloufi [30], 
which integrates deep learning techniques, also offers the potential to enhance prediction accuracy, 
especially in detecting hotspots that are difficult to identify with traditional RF methods. Additionally, the 
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research by Sirin and Medvedeva [31], which uses satellite data to detect peatland fires, provides insight into 
the potential use of multispectral data to improve the accuracy of fire mapping. 

While this study offers valuable insights, several questions remain unanswered, presenting opportunities for 
further research. One of the major issues is the class imbalance in the dataset, which can affect the model's 
performance, particularly in predicting low-confidence hotspots. Rosadi et al. [27] shows that the SMOTE 
technique can improve model performance by balancing the classes in an imbalanced dataset, which could 
be applied to address this issue in future research. Furthermore, this study has not explored the possibility 
of integrating other temporal or spatial data that could enhance prediction accuracy, such as soil moisture 
information or more detailed weather data. Future research could consider using more complex models, such 
as deep learning or a combination of more advanced ensemble methods, to handle higher data complexity. 
Research could also explore the variables influencing hotspot confidence, such as the interaction between 
environmental factors and human activities, which could open up opportunities for developing more holistic 
and accurate models. Overall, while challenges in predicting low-confidence hotspots and issues related to 
class imbalance remain, this study shows great potential for the application of Random Forest in future forest 
fire mitigation efforts. Further research addressing these issues, as well as the exploration of additional 
variables, would be highly valuable in improving the accuracy of the model and supporting future forest fire 
mitigation initiatives. 

Conclusions 

The Random Forest algorithm was successfully applied to analyze the confidence level of hotspots in the 
peatlands of Riau Province, which are prone to forest and land fires. The results showed that this approach 
can predict fire potential with good accuracy, although there are challenges in predicting hotspots with low 
confidence levels. In particular, the model performed best in predicting medium-confidence hotspots, 
suggesting a clearer pattern or more representative data in this class. This can be attributed to the physical 
and environmental characteristics of the hotspots, such as surface temperature, NDVI, and peat thickness, 
which may be more consistent in medium-confidence hotspots. However, the main challenge is to predict 
low-confidence hotspots. This difficulty may be due to the high variability and lack of clarity in the data 
associated with low-confidence hotspots, which may require more variables or additional data to improve 
prediction accuracy. This suggests that machine learning models, such as Random Forest, must be 
accompanied by rich and diverse data to improve the prediction performance at all confidence levels. This 
research makes a significant contribution to the understanding and risk management of forest fires in 
peatlands. By improving the accuracy of hotspot predictions, fire mitigation efforts can be optimized, thereby 
reducing the environmental and socioeconomic impacts caused by forest fires. In addition, machine learning 
techniques, such as Random Forest, show great potential for analyzing complex environmental data, opening 
up opportunities for further research to develop more sophisticated and accurate models. Going forward, 
this study recommends collecting and integrating additional data, such as soil moisture, more detailed 
weather data, and information on human activities, to improve the quality and accuracy of the prediction 
model. Thus, this approach can be more effective in assisting the government and other stakeholders in 
making better decisions to prevent and suppress forest fires in peatlands. 
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