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Abstract

Sargassum sp. is a type of brown seaweed often found in tropical waters, but it has not been optimally
used. The high cellulose content of Sargassum sp. can be used to produce cellulose nanocrystals (CNC).
CNC can act as a bionanocomposite-reinforced nanomaterial. This study aimed to determine the most
effective sulfuric acid concentration for extracting cellulose nanocrystals from Sargassum sp. CNC was
extracted from Sargassum sp. using acid hydrolysis and sonication. The sulfuric acid concentration was
varied to 30, 40, 50, and 60%. CNC was characterized using Fourier-transform infrared spectroscopy (FTIR),
X-ray diffraction (XRD), and thermogravimetric analysis (TGA). FTIR analysis confirmed the presence of
characteristic CNC functional group peaks, including C-O-C (~1160 cm™*), C-O (~1050-1030 cm™"), and
B-(1>4)-glycosidic C-H (~897 cm™") as the CNC fingerprint. The FTIR findings indicated that the CNC
extracted by sulfuric acid hydrolysis differed significantly from the raw Sargassum sp. material. Additionally,
the XRD results showed that acid hydrolysis substantially affected the amorphous regions of cellulose.
With 40% acid hydrolysis, the XRD analysis showed the highest CNC degree of 77.6%. Thermal analysis
using TGA and DTG revealed that cellulose nanocrystals treated with 40% acid hydrolysis yielded CNC
with enhanced thermal stability, exhibiting a maximum thermal decomposition temperature of 369.60°C.
CNC isolated from Sargassum sp. cellulose has the potential to serve as a suitable source for manufacturing
nanocomposites in various applications, such as pharmaceuticals, food packaging, and biomedical fields.

Keywords: brown algae, crystallinity, FTIR, hydrolysis, sonication

Efek Perlakuan Asam Sulfat pada Ekstraksi Selulosa Nanokristal

dari Rumput Laut Sargassum sp.

Abstrak
Sargassum sp. adalah jenis rumput laut cokelat yang banyak ditemukan di perairan tropis, namun
belum dimanfaatkan secara optimal. Kandungan selulosa yang tinggi dalam Sargassum sp. dapat digunakan
untuk menghasilkan selulosa nanokristal (CNC). CNC dapat digunakan sebagai bahan nano penguat
bionanokomposit. Penelitian ini bertujuan untuk menentukan konsentrasi asam sulfat yang optimum untuk
mengekstraksi nanokristal selulosa dari Sargassum sp. CNC dari Sargassum sp. diekstraksi menggunakan
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metode hidrolisis asam dan sonikasi. Variasi konsentrasi asam sulfat pada proses ekstraksi CNC, yaitu 30,
40, 50, dan 60%. Karakterisasi CNC dilakukan menggunakan spektroskopi inframerah (FTIR), difraksi
sinar-X (XRD), dan analisis termogravimetri (T'GA). Analisis FTIR mengonfirmasi keberadaan puncak
gugus fungsi khas CNC, termasuk C-O-C (\~1160 cm™), C-O (\~1050-1030 cm™"), dan C-H B-(1->4)-
glikosidik (\~897 cm™") sebagai sidik jari CNC. Hal ini menunjukkan bahwa CNC yang diekstraksi melalui
hidrolisis asam sulfat memiliki perbedaan yang signifikan dibandingkan dengan bahan baku Sargassum
sp. Selain itu, hasil XRD menunjukkan bahwa hidrolisis asam berpengaruh pada berkurangnya daerah
amorf pada CNC. Analisis XRD menunjukkan tingkat CNC tertinggi sebesar 77,6% pada hidrolisis asam
sulfat 40%. Analisis termal menggunakan TGA dan DTG menunjukkan bahwa CNC yang diproses dengan
hidrolisis asam sulfat 40% menghasilkan CNC dengan stabilitas termal yang meningkat, menunjukkan suhu
dekomposisi termal sebesar 369,60 °C. CNC yang diisolasi dari Sargassum sp. berpotensi sebagai bahan
pembuatan nanokomposit dalam berbagai aplikasi, misalnya bidang farmasi, pengemasan makanan, dan

biomedis.

Kata kunci: alga cokelat, FTIR, hidrolisis, kristalinitas, sonikasi

INTRODUCTION

Indonesia, as an archipelagic country,
has a large maritime area with a coastline
of 81,290 km (Hikmawati et al.,2023). This
extensive coastline provides abundant marine
resources, including seaweed. Among the
diverse seaweed species, Sargassum sp., a
type of brown macroalgae (Phaeophyceae),
is commonly found along the coastal waters
of Indonesia. However, its potential remains
largely underutilized, and it is often regarded
as waste that disrupts fishing activities
and maritime navigation (Khansa et al,
2024). Sargassum sp. has a rich chemical
composition, containing valuable compounds
such as alginic acid, fucoidan, fucoxanthin,
phenolics (Erniati et al., 2024; Ramlan et al.,
2024), and cellulose (Safitri et al., 2021). The
cellulose content of Sargassum sp. ranges
from 23.97% to 35.22%(Taslim et al., 2017),
indicating significant potential for value-
added applications.

Marine biomass, such as Sargassum
sp., is a promising raw material for producing
cellulose nanocrystals (CNC), which are
renewable and biodegradable nanomaterials.
CNC exhibit exceptional properties, including
high mechanical strength, biocompatibility,
high crystallinity, and large surface area,
making them highly suitable for a wide array
of applications, ranging from reinforcement
in polymer composites and biodegradable
packaging to drug delivery systems (Doh &
Whiteside, 2020; George & Sabapathi, 2015).
Although several studies have explored
CNCs derived from marine algae biomass,
such as Dictyota bartayreisana (Murugesan
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et al.,2024), Gelidiella acerosa (Singh et al.,
2017), and Cladophora glomerata (Plianwong
& Sirirak, 2024), relatively few studies have
investigated CNCs from marine sources such
as Sargassum. Initial studies have indicated
that CNC derived from Sargassum and other
marine algae can enhance the mechanical
and thermal properties of biopolymer films
(Doh, 2020; El Achaby et al., 2018). However,
the extraction processes, particularly the
optimization of acid hydrolysis parameters,
remain inadequately explored.

CNC extraction typically involves
acid hydrolysis to selectively remove the
amorphous regions of cellulose, thereby
isolating the crystalline domains of the
cellulose (Muljani et al., 2023). Mechanical
treatment, such as ultrasonication, is often
used afterward to reduce the particle size to the
nanoscale (Saputri & Sukmawan, 2020). One
critical factor affecting CNC yield and quality
is the concentration of sulfuric acid used for
hydrolysis. Several studies have reported the
potential of brown seaweed (Doh et al., 2020;
Murugesan et al., 2024) as a source of CNC for
hydrolysis using sulfuric acid. However, the
chemical composition and characteristics of
Sargassum are highly dependent on its growing
location, making it important to evaluate the
potential of this species in Indonesian waters,
particularly those around Yogyakarta.

Therefore, this study aimed to
determine the most effective sulfuric
acid concentration for the hydrolysis of
cellulose nanocrystals from Sargassum sp. to
optimize the yield and enhance the quality
of the resulting nanomaterials for potential
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applications. The findings are expected to
support the sustainable utilization of marine
biomass and contribute to the development
of high-performance and environmentally
friendly nanomaterials.

MATERIALS AND METHODS
Preparation of Raw Materials
Sargassum sp. was supplied by Gunung
Kidul Regency, Yogyakarta, Indonesia.
Sargassum sp. was washed and dried in the
sun for two days. Dry Sargassum sp. (moisture
content: 10.50%) was ground using a grinder.
and stored at room temperature before use
in the extraction process (Doh et al.,2020).
Commercial CNC was used as a positive

control and obtained from CelluForce,
Canada.
Pretreatment

The chemical solutions used were
hydrochloric acid (HCI), sodium hydroxide
(NaOH), potassium hydroxide (KOH),
sodium hypochlorite (NaOCIl), glacial acetic
acid, hydrogen peroxide (H,0O,), and sulfuric
acid (H,SO,). All chemical solutions used
were of technical grade. Sargassum sp. (20 g)
was dissolved in 200 mL 0.2 M HCl and heated
in a water bath at 30°C for 2 h. The sample
was centrifuged at 15,000 xg for 10 min. The
residue was separated from the supernatant
and re-suspended in 300 mL distilled water.
The suspension was adjusted to pH 10 using
4% NaOH and heated in a water bath at 75°C
for 3 h.

The heated sample was rinsed with
water until a pH of 7 was reached, and then
centrifuged at 15,000 xg for 10 min. The
residue was separated from the supernatant,
dried in an oven at 65°C for 20 h, and then
added to 350 mL of 10% KOH. The mixture
was heated in a water bath at 80°C for 3 h. The
heated sample was rinsed with tap water until
a pH of 7 was reached, and 50 mL of 6.5%
NaOCI solution was added. The suspension
was stirred and left to stand for 30 min until
the color of the sample brightened.

The sample was rinsed with tap water
3-4 times, and 300 mL of distilled water was
added. Glacial acetic acid was added to adjust
the pH to 5, and the sample was heated in a
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water bath at 75°C for 2 h. The heated sample
was rinsed with distilled water until a pH of 7
was reached, and 20 mL of 10% H,O, solution
was added. The suspension was heated in a
water bath at 80°C for 70 minutes, followed
by 3-4 flushes with distilled water (Doh et al.,
2020).

Acid Hydrolysis

The wet pre-treated sample was added
with 100 mL of H,SO, (30, 40, 50, and 60%),
and then heated in a water bath at 45°C for 30
min. The heated sample was added to 200 mL
of cold water and centrifuged at 15,000 xg for
10 min. The pellets were rinsed with tap water
until pH 7 was reached, and then centrifuged
at 15,000 xg for 10 min (centrifugation was
carried out twice).

The acid-hydrolyzed samples were
added to distilled water and then toned using
an ultrasonic device (UCD 250, Biomaisen,
China) at a frequency of 20 KHz and an
amplitude of 30% of the total power of 500
W for 15 min. CNC was freeze dried using
a freeze dryer, the liquid sample was frozen
at -80°C for 24 h and then subjected to high
vacuum (0.05 mbar) for another 24 h.

Characterization
Yields

Yield is the ratio of the final weight of
a product to the initial weight of a dry sample
(Septiani et al., 2017). The final weight of the
sample was obtained by weighing the freeze-
dried CNC, and the initial weight of the sample
was obtained by weighing the Sargassum sp.
powder.

Fourier transform infrared
spectroscopy (FTIR)

The FTIR spectrum was obtained using
ATR-FTIR (Nicolet iS 5 ATR iD5, Thermo
Scientific, USA) in the range of 500-4000
cm™'. Measurements were made at a scan
resolution of 4 cm™ (Nurhayati et al., 2025).

X-ray diffraction (XRD)

The CNC crystallinity index was
determined using XRD with Cu Ka radiation
(\ = 1.54060 A) in the range of 20 4° to 60°.
The operating conditions were set at 40
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kV and 25 mA. The crystallinity index was
calculated using the Segal method, following
the defined equation. The CNC crystallinity
index was determined using XRD, using Cu
Ka radiation (A = 0.15406 nm) in the range
of 20 4° to 60° with operating conditions set
at 40 kV and 25 mA. The crystallinity index is
calculated using the Segal method, following
the specified equation (Doh et al., 2020).

Crystallinity index (%) =@ x 100

200

Note:

L, = maximum intensity on the field
(200) (20 = 22,4°)

I = minimum intensity in the valley
between the fields (200) dan (110)
(20 = 18,1°)

Thermogravimetric analysis (TGA)

The analysis was carried out under
a nitrogen atmosphere (20 mL/min) with
a heating rate of 10°C/min, covering a
temperature range from 25°C to 500°C (Costa
et al, 2015).

Crystallite size

The crystallite size of the cellulose
nanocrystals (CNCs) was determined using
X-ray diffraction (XRD) analysis. The average
crystallite size (D) was calculated using the
Scherrer equation (Alam et al.,2024), based on
the Full Width at Half Maximum (FWHM) of
the most intense diffraction peak. The FWHM
values were obtained by fitting the XRD peaks
using Gaussian peak fitting in the Origin
Learning for Student software.

__K\
B cos®

Note:

D = average crystallite size (nm),

K = the shape factor (commonly taken
as 0.9),

A = the wavelength of the X-ray
(0.15406 nm),

B = FWHM of the diffraction peak in
radians,

0 = the Bragg angle corresponding to
the peak.
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Data Analysis

The FTIR, XRD, and TGA analyses
were processed and analyzed using Excel and
Origin software. Yield data were collected in
triplicate and analyzed using one-way ANOVA
at a significance level of p<0.05.

RESULT AND DISCUSSION
CNC Yield

Yield is defined as the ratio of the final
weight of a product to the initial weight of the
sample (Septiani et al., 2017). The CNC of
freeze-dried Sargassum sp. is shown in Figure
1. Based on Figure 1, it can be observed that
the CNC extracted from Sargassum sp. is solid,
white, odorless, and tasteless. These findings
are in line with the statement that high-quality
cellulose is usually powdered, white, and
odorless (Pine et al., 2021). While the CNC
from Sargassum sp. does not show a powder
shape but rather a dry solid form, which can
be attributed to the freeze-drying process,
causing the water to evaporate and the sample
to become solid (Agustin & Wibowo, 2021).
The white color of the CNC derived from
Sargassum sp. is associated with the whitening
process (Harpendi et al., 2014).

The CNC yield for each treatment was
calculated to determine the optimal H,SO,
concentration for producing the highest
amount of CNC from Sargassum sp. Yield is
an important indicator of extraction efficiency
(Fransiska et al., 2020). A graph depicting the
CNC results for Sargassum sp. is presented in
Figure 2.

Based on Figure 2, the CNC yield of
Sargassum sp. ranged from 3.79+2.20% to
7.15+1.42%. The highest yield was achieved
using 40% H,SO,, whereas the lowest yield
was observed using 60% H.SO,. This yield
is relatively low compared to that of CNCs
derived from other brown, red, and green
seaweeds. Doh et al. (2020) reported CNC
yields of 25.8 £0.9% and 26.1+1.2% from
Sargassum fluitans and Laminaria japonica
(kombu), respectively. Similarly, Murugesan et
al. (2024) found that Dictyota bartayresiana,
a tropical brown seaweed species, yielded
approximately 10% CNC under optimized
acid hydrolysis conditions.
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Figure 1 Freeze dried cellulose nano crystal from Sargassum sp.
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Figure 2 CNC yield from Sargassum sp. seaweed with varying H,SO, concentrations

Previous research by Harahap et al
(2019) found a similar trend, with CNC corn
cobs extracted using 45% H,SO, yielding
16.98%, lower than the 36.48% yield obtained
with 55% H,SO,. This can occur because
low-concentration H,SO, is less effective in
breaking down all the amorphous parts of
cellulose, causing many cellulose crystals
to remain attached to the cellulose chain,
resulting in a lower number of cellulose
crystals.

Sulfuricacid (H,SO,) at a concentration
of 30-50% is effective in removing amorphous
cellulose, thus enabling the isolation of high
amounts of crystalline cellulose. Higher
yield values correlate with greater efficacy
in producing large quantities of the desired
product (Moranda et al., 2018).

The extraction of Sargassum sp. using
less than 60% H,SO, can be attributed to an
increase in the hydrogen bonds between the
hydroxyl cellulose (OH) groups and water
molecules. Hydrolysis using H,SO, can split
the hydrogen bonds in cellulose, resulting in
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a free OH group formation. The OH group in
cellulose can bind to water molecules (Gian et
al., 2017). The binding of water molecules by
OH groups increases the weight of the CNC,
thereby increasing the percentage of results
(Simarmata et al., 2024).

The CNC yields extracted using 60%
H,SO, decreased because of the removal of
the amorphous regions in the cellulose chain
by H,SO,, leaving only crystalline regions
(Effendi et al, 2015). Sunardi et al. (2019)
also reported a decrease in microcrystalline
cellulose (MCC) yield with an increase in
hydrochloric acid (HCI) concentration.

Fourier Transform Infrared
Spectroscopy (FTIR) of CNC

FTIR spectroscopy was used to
identify the functional groups present in the
compounds. Each functional cluster has a
unique infrared absorption frequency. Figure
3 presents the FTIR spectra of CNCs obtained
at different hydrolysis concentrations are
presented in Figure 3.
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Figure 3 FTIR spectra of CNC commercial and CNC extracted from Sargassum sp. under
different sulfuric acid hydrolysis concentration

The peak observed at 3341 cm™' may
be attributed to the O-H stretching of the
hydroxyl group in cellulose. This aligns with
the findings that OH stretching vibrations
typically appear within the 3500-3200 cm™
range (Theivandran et al., 2015). Additionally,
the peaks around 2900 cm™ are attributed to
the stretching vibrations of the CH groups
(alkanes). This observation aligns with the fact
that peaks in the 2900-2800 cm™' range are
characteristic of CH stretching, particularly
from CH; and CH, groups (Topald et al,
2017).

The peak at 1640 cm™ shows a cluster
vibration of -C=C-, which is in accordance
with the statement by Theivandran et al. (2015)
that peaks in the range of 1680-1640 cm™ are
associated with the stretching vibration of the
-C=C- group in alkenes. The C=C group is
a structural component of the aromatic ring
in lignin (Pambudi et al, 2017). The peak at
1600 cm™ in the Sargassum sp. spectrum
indicates the absorption of infrared radiation
by the lignin aromatic CH group. This is in
accordance with the statement of Natsir et
al. (2022) that the vibration of the stretching
of the CH group aromatic lignin occurs at
approximately 1600 cm™.

The peaks at 1427 cm™ and 1415
cm™' correspond to the aromatic CC group
vibrations. This is in accordance with the

777

statement by Theivandran et al. (2015), who
reported that the vibration of the CC group
stretch in the aromatic ring structure occurs
at 1500-1400 cm™'. The peaks at 1366 cm™
and 1314 cm™ indicate CH cluster vibrations.
Pangau et al. (2017) stated that peaks at
1369 cm™ and 1327 cm™ indicate CH group
vibration of cellulose.

Peaks at 1159, 1108, 1059, and 1029
cm™' show the stretching vibrations of the
cellulose C-O-C group. This is in accordance
with the statement of Bashar et al. (2019),
who indicated that the peaks at 1160, 1110,
1060, and 1028 cm™ indicate the vibration of
the pyranos ring skeleton and glucose. Peaks
at 897 cm™' indicate CH group vibrations
associated with B-glycosidic bonds, which is
consistent with the statement by Abu-Thabit
et al. (2020) that absorption at a peak of 895
cm ™ is associated with CH vibrations (specific
anomeric vibrations of B-glycosidic bonds).

Lower transmission values correspond
to higher absorption of infrared radiation
by the functional groups in the compounds
(Raturandang et al., 2022). The transmission
values of the functional groups are presented
in Table 1.

The transmission values of CNC30,
CNC40, CNC50, and CNC60 were lower than
those of Sargassum sp. at 3341, 2900, 1366,
1314, 1159, 1108, 1056, 1029, and 897 cm™.
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This indicates a higher cellulose content in
the 30%, 40%, 50%, and 60% samples. The
high cellulose content indicates that the non-
cellulose components (lignin, hemicellulose,
alginate, etc.) were successfully reduced
during the pretreatment stage, and cellulose
was successfully extracted from Sargassum sp.
using the acid hydrolysis method.

The O-H stretching band at 3341 cm™
showed reduced transmittance for CNCA40,
indicating stronger hydrogen bond cleavage
during acid hydrolysis. The C-O-C (1159
cm™) and C-O (1203 cm™) bands also
displayed noticeable fluctuations, suggesting
the partial degradation of glycosidic linkages,
particularly at moderate acid concentrations.
In contrast, the C-H (2900 cm™) and aromatic
C-C bands (1427 and 1415 cm™) remained
relatively stable, indicating resistance to acid-
induced structural damage.

So et al. (2021) also reported similar
results in FTIR analysis of cellulose extracted
from Gelidium amansii using CNC extraction,
where cellulose functional groups were found

http://dx.doi.org/10.17844/y5x3as39

at wavenumbers 2892-2930, 1369, 1315,
1160, and 1054 cm™. The discovery of this
wavenumber indicates the successful isolation
of CNC from Gelidium amansii.

CNC30, CNC40, CNC50, and CNC60
showed lower transmission values than
Sargassum sp. at wave numbers 1427, 1415,
and 1203 cm™, which correspond to the
aromatic CC and C-O functional groups
that make up the lignin structure. Lower
transmission values at this number of waves
indicate a higher content of the aromatic
functional groups CC and C in the sample.
This phenomenon can occur due to changes
in the structure of lignin that remain during
sulfuric acid treatment, where the reactive
aromatic ring of lignin is condensed to form
a C-C bond, making lignin denser and less
soluble in acid (Naufala & Pandebesie, 2015)

Cristallinity of CNC

XRD analysis was performed to
determine the CNC crystallinity index.
Peaks with maximum intensity are associated

{200y

7110) |

Intensity (a.u)

40 50 6l

20 (degree)

Figure 4 Diffractogram of CNC commercial and CNC extracted from Sargassum sp. under
different sulfuric acid hydrolysis conditions.
Note: (—)CNC30, (—)CNC40, (—)CNC50, (—)CNC60 are cellulose nanocrystals
obtained by 30%, 40%, 50%; 60% sulfuric acid hydrolysis; (—) commercial CNC and

(=) S. polycystum
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with crystalline peaks, whereas those with
minimum intensity are associated with the
presence of amorphous regions (Suciyati et
al., 2022).

Based on Figure 4, Sargassum sp. has a
wider peak in X-ray diffraction than the other
samples. This is due to the high lignin and
hemicellulose contents of the sample (Doh
et al., 2020; Holilah et al., 2021; Xu & Wang,
2015).

Commercial CNC exhibited
amorphous regions between the peaks at 22.4°
(200) and 16° (110), whereas all CNC samples
from Sargassum sp. indicated the presence of
amorphous regions between the peaks at 22.4°
(200) and 14° (110). The amorphous region
of all samples was observed at 20 = 18°. The
sample crystallinity index was calculated
using the Segal method, and the results are
presented in Table 2.

BasedonTable2,thehighestcrystallinity
index was obtained for the commercial CNC
at 79.1%. However, the peak intensity of the
commercial CNC diffraction at 20 = 22.4° was
lower than that of CNC30, CNC40, CNC50,
and CNC60. This phenomenon can occur
because of the smaller size of commercial
CNGs, resulting in a wider X-ray diffraction
peak with a lower peak intensity. This is in line
with the statement by Sehe et al. (2017), who
stated that smaller crystals produce a wider
peak in X-ray diffraction, while larger crystals
with a single orientation result in a peak of
X-ray diffraction closer to the vertical line.

Commercial CNC produced lower
peaks at 20 = 22.4°, but the peaks were

This work is licensed under CC BY 4.0.

still relatively sharp with lower amorphous
intensities compared to CNC30, CNC40,
CNC50, and CNC60. This indicates the high
content of cellulose crystals in commercial
CNC. This is in accordance with Septriani
& Muldarisnur (2022), who stated that low
noise (amorphous) and sharp crystal peaks
are indicators of the high crystallinity of
nanoparticles.

CNC from Sargassum sp. showed a
fairly high crystallinity index, and the highest
crystallinity index was obtained after 40%
H,SO, treatment. A high crystallinity index
indicates the success of the extraction process
in removing the amorphous part of the
cellulose chain (EI Achaby et al.,2018). CNC
was extracted from Sargassum sp. using 30%
H,SO, exhibited a crystallinity index lower
than 40%. These results are in line with the
research of Rahmi et al. (2023), who showed
that the crystallinity index of cellulose from I.
cylindrica treated with 20% and 30% H,SO,
was lower than that of cellulose treated with
40% H,SO.. A lower crystallinity index occurs
because the low concentration of H,SO, (<
30%) could not been able to degrade the
amorphous part of the cellulose crystalline.

The crystallinity index that decreased
in the treatment with 50% H,SO, and
60% H,SO, indicates the degradation of
crystalline cellulose due to excessively high
H,SO, concentrations. Rahmi et al. (2023)
also showed that the cellulose crystallinity
index of Imperata cylindrica decreased by
50% after H,SO, treatment. This decrease in
the crystallinity index occurs because high

Table 2 Crystallinity index of CNC commercial and CNC extracted from Sargassum sp. under
different sulfuric acid hydrolysis conditions

20 (200) (°) 20 (amorphous) (°) _ o

Sample Cristallinity index (%)

Degree Lo Degree L

CNC30 22.43 12.163 18.12 2.789 77.0
CNC40 22.43 12.638 18.10 2.826 77.6
CNC50 2243  11.686  18.12 2.868 75.4
CNC60 22.45 10.592 18.14 2.753 74.0
Commercial CNC  22.45 9.192 18.28 1.919 79.1

Note: CNC 30, 40, 50, and 60 are cellulose nanocrystals obtained by 30%, 40%, 50% dan 60% sulfuric acid

hydrolysis
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concentrations of H,SO4 (= 50%) can degrade
cellulose crystalline and cellulose interchain
hydrogen bonds, resulting in low cellulose
crystallinity.

The crystallinity of the samples indicates
that they are suitable for nanomaterials, as
they are in the range of 54-88%. This is in
accordance with the statement of Gorbunova
et al. (2023), who stated that the range of CNC
crystallinity index as a nanomaterial amplifier
for biocomposites is 54-88%. H,SO4 40% was
the most effective concentration for extracting
CNC from Sargassum sp. because it produced
the highest crystallinity index. Nanocellulose
with a high crystallinity index has a more
regular and dense crystal arrangement,
resulting in a strong and rigid structure.
This structure allows the use of CNC as a
reinforcing nanomaterial (Fadly et al. 2019).

Thermal Analysis of CNC

TGA was performed to determine the
thermal stability of the sample by measuring
the changes in the mass of the sample over time
and temperature (Apriyanti et al., 2024). An
increase in temperature triggers physical and
chemical changes in the sample, resulting in
mass changes over time (Hu et al., 2014). The
thermogravimetric analysis of commercial
CNC and CNC extracted from Sargassum sp.
under different acid hydrolysis conditions is
shown in Figure 5.

Based on Figure 5, two stages of
decomposition were found in all the analyzed
samples, where the first stage of decomposition
occurred at temperatures below 100°C, while
the second stage of decomposition occurred
in the temperature range of 250-390°C. The
decomposition of samples below 100 °C
indicatesthe evaporation ofabsorbed waterand
low-molecular-weight compounds adsorbed
on the surface of the material (Nurazzi et al.,
2021). Cellulose decomposes at 300°C, whereas
lignin decomposes at 400°C (Henrique et
al., 2015). Hemicellulose decomposes at 220
°C (Escalante et al., 2022). The details of the
initial decomposition temperature (Tonset),
maximum  decomposition  temperature
(Tmax), and residue CNC commercial and
CNC extracted from Sargassum sp. under
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different acid hydrolysis conditions are
presented in Table 3.

Based on Table 3, Sargassum sp. had
the lowest initial decomposition temperature
(Tonset) among the other samples, at
approximately 254°C.  This is due to the
presence of hemicelluloses. Hemicellulose
decomposes at 220°C (Escalante et al,
2022). The acetyl group in hemicellulose can
weaken the intermolecular bonds, making
hemicellulose decompose more easily at
lower temperatures, which contributes to
the weight loss of the sample (Hu et al,
2014). Commercial CNC, CNC30, CNCA40,
CNC50, and CNC60 had a higher Tonset than
Sargassum sp., at approximately 280-300°C.
This indicates the occurrence of a cellulose
decomposition process consisting of several
simultaneous processes, such as dehydration,
depolymerization, and decomposition of
glycosidic units (Henrique et al., 2015).

CNC40, CNC50, and CNC60 had lower
Tonset values than CNC30. This is related
to the concentration of sulfuric acid used
during hydrolysis. Higher acid concentrations
cause cellulose to be hydrolyzed into smaller
sizes (Muljani et al., 2023). Smaller particle
sizes have a high surface area and lower heat
resistance (Marwanto et al., 2021).

Sargassum sp. has two peaks of
maximum  decomposition  temperature
(Tmax) at 270°C and 336°C, which indicate the
decomposition of hemicellulose, crystalline
cellulose, and cellulose pyrolysis. Commercial
CNC, CNC30, CNC40, CNC50, and CNC60
exhibited a single Tmax (sharp peak) at 319-
369°C, indicating the acquisition of crystalline
cellulose with high purity. This is supported
by Bashar et al. (2019) research on thermal
analysis of burlap fibers which showed three
peaks of maximum temperature at 285,
342, and 451°C, which correlated with the
decomposition of hemicellulose, crystalline
cellulose, cellulose pyrolysis, and lignin, while
the CNC sample showed only one peak at a
maximum decomposition temperature of 305-
318°C, proving the acquisition of crystalline
cellulose with high purity.

Commercial CNC exhibited sharp
DTG peaks at a maximum decomposition
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Figure 5 Thermogravimetric analysis of CNC commercial and CNC extracted from Sargassum
sp. under different sulfuric acid hydrolysis conditions: (A) Thermogravimetric (TG) %
weight; (B) Derivative thermogravimetric (DTG). Note: (—) S. polycystum, (—) CNC30,
(—) CNC40, (—) CNC50, (—) CNC60 are cellulose nanocrystals obtained by 30%, 40%,
50%; 60% sulfuric acid hydrolysis; and (—) commercial CNC

Table 3 Tonset, Tmax, and percentage of residue of CNC commercial and CNC extracted from
Sargassum sp. under different sulfuric acid hydrolysis conditions

Sample Tonset (°C) Tmax (°C)  Residue (%)
Sargassum sp. 254.18 27023 39.43
336.99
CNC30 336.30 367.85 15.95
CNC40 332.76 369.60 15.86
CNC50 332.87 366.45 23.19
CNC60 283.28 343.30 16.67
Commercial CNC 307.00 319.16 37.00

Note: CNC 30, 40, 50, and 60 are cellulose nanocrystals obtained by 30%, 40%,

50% dan 60% sulfuric acid hydrolysis

temperature of approximately 319°C, which
was lower than those of the Sargassum
sp. samples, CNC30, CNC40, CNC50,
and CNC60. El Achaby et al. (2018) also
showed that the maximum decomposition
temperature of CNC was lower than that of
Gelidium sesquipedale. This may be due to
the presence of sulfate groups on the CNC
surface, which can reduce the thermal stability
of the CNC. Bashar et al. (2019) stated that
the smaller particle size and higher specific
surface area of CNC, as well as the presence of
more active surface groups, led to lower heat
resistance.

Masyarakat Pengolahan Hasil Perikanan Indonesia

The CNC30, CNC50, and CNC60
samples exhibited Tmax values lower than
that of CNC40. This can occur due to the
lower crystallinity index and the possibility
of replacing the hydroxyl group with a
sulfuric acid group (O-SO3H) during the
acid hydrolysis process. The replacement of
these groups lowers the activation energy
for CNC decomposition, making the sample
less resistant to the pyrolysis. This results
in a dehydration reaction that accelerates
decomposition at lower temperatures (Costa
et al., 2015).
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The CNC40 sample had the highest
maximum  decomposition  temperature
compared to the others because it had a higher
crystallinity index. A higher crystallinity index
indicates greater heat resistance and increases
the maximum decomposition temperature
(Kazharska et al., 2019). A 40% sulfuric acid
concentration is likely the most effective for
extracting CNC from Sargassum sp. because
it has a higher maximum decomposition
temperature than other concentrations.

The highest residue percentage was
obtained for S. polycystum, which was
approximately 39%. Singh et al. (2017) also
showed that Gelidiella acerosa has a higher
residue than CNC, which is 30%.

Cristallin Size of CNC

X-ray diffraction (XRD) analysis
revealed a clear trend in the Full Width at
Half Maximum (FWHM) and crystallite
size of the CNC samples hydrolyzed using
different concentrations of sulfuric acid
(30%, 40%, 50%, and 60%). The CNC 30%
sample exhibited the narrowest FWHM
value (8.57°), corresponding to the highest
crystallite size among the synthesized samples
(approximately 0.94 nm). In contrast, the
CNC 40%, 50%, and 60% samples showed
broader diffraction peaks with FWHM values
exceeding 8.85° and slightly reduced crystallite
sizes in the range of 0.90-0.91 nm. This trend
suggests that higher concentrations of sulfuric
acid induce more extensive hydrolysis, leading
to the fragmentation of the crystalline regions
of cellulose.

http://dx.doi.org/10.17844/y5x3as39

As a result, the crystallites formed were
smaller and more structurally disordered,
consistent with previous studies indicating
that intense acid hydrolysis increases the
amorphous fraction of cellulose nanocrystals
(Beck-Candanedo et al., 2005; Gray, 2013).

Incontrast,thecommercial CNCsample
exhibited a remarkably narrower FWHM
of 1.22° and a significantly larger crystallite
size of 6.61 nm than the synthesized CNCs.
This indicates a higher degree of crystallinity,
likely due to differences in raw material
purity, process control, and post-treatment
techniques used in industrial production.
Commercially produced CNCs are typically
derived from highly purified cellulose sources
and may undergo optimized hydrolysis and
stabilization procedures, which help preserve
and promote the development of larger
crystalline domains. This high crystallinity
enhances the mechanical strength, thermal
stability, and optical clarity of CNC, making
them ideal for advanced applications such as
nanocomposites, coatings, and biomedical
materials (Habibi et al, 2010; Moon et al.,
2011; Wang et al., 2007).

The crystallinity index achieved by
CNC from Sargassum sp. (up to 77.6%) and its
high thermal stability (Tmax up to 369.60°C)
demonstrate characteristics that are in line
with the criteria for such applications (Habibi
et al., 2010; Moon et al., 2011). Although the
crystallite size was relatively small (0.90-0.94
nm), it still fell within the acceptable range
used in nanocomposite material formulations.
However, further characterization, including

Table 4 Crystalline size of CNC commercial and CNC extracted from Sargassum sp. under
under different sulfuric acid hydrolysis conditions

Sample FWHM (°)  Crystalline size(nm)
Sargassum sp. - -
CNC30 8.5731 0.94
CNC40 8.9609 0.90
CNC50 8.8589 0.91
CNC60 8.9813 0.90
Commercial CNC 1.2247 6.61

Note: CNC 30, 40, 50, and 60 are cellulose nanocrystals obtained by 30%, 40%,

50% dan 60% sulfuric acid hydrolysis
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morphological analysis, surface charge, and
dispersion stability, is required to confirm its
suitability for specific applications.

CONCLUSION

FTIR analysis confirmed the reduction
of lignin and hemicellulose in the CNC
of Sargassum sp. after delignification and
bleaching treatment. XRD analysis showed
that CNC had higher crystallinity than the raw
materials, while TGA showed better thermal
stability. Hydrolysis with 30% sulfuric acid
was effective in producing CNC with a high
crystallinity index (77.6%) and significant
thermal stability (Tmax=369.60°C). Treatment
with varying sulfuric acid concentrations had
no significant effect on the crystallite size of
the CNC. The crystallite size remained within
the narrow range of 0.90-0.94 nm. These
findings highlight the potential of Sargassum
sp. as a valuable resource for CNC production,
contributing to its utilization as a nanomaterial
in a wide range of applications.
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