Potential Distribution of Tropical Native Gayam Forest Tree (Inocarpus fagifer Forst.) to Cope with the Drought Hazards in Yogyakarta Landscape
Abstract
Yogyakarta's landscape is known for having experienced drought hazard. At the same time, there is a native tropical tree that has the ability to store the water and cope with the emerging drought. In this regard, this study is aiming to evaluate the potential distribution of the tropical native gayam forest tree (Inocarpus fagifer Forst.) to cope with the drought in the Yogyakarta landscape. Samplings of I. fagifer covered four districts (Sleman, Kulonprogo, Bantul, and Gunung Kidul) and one city (Yogyakarta City) and implemented from January to March 2025. The potential distribution was estimated using MaxEnt. The drought was estimated using remote sensing. The resulting model gained an AUC of 0.804, confirming that I. fagifer can adapt to low rainfall and has the potential to inhabit areas with drought. Bantul, Sleman, and Kulonprogo were districts where the I. fagifer potential distribution areas exceeded almost five to seven times the drought areas. This information can be used as a baseline and recommendation from village to district levels to start to mainstream and disseminate the planting of tropical native trees as a nature-based solution to cope with the drought hazards across Yogyakarta's landscape.
Full text article
References
Alzate-Marin, A. L., Bomfim Rodrigues, P. A., Alzate-Martinez, F. A., Pinheiro Machado, G., Martinez, C. A., & Bonifácio-Anacleto, F. (2025). Phenology and spatial genetic structure of Anadenanthera colubrina (Vell.), a resilient species amid territorial transformation in an urban deciduous forest of southeastern Brazil. Genes, 16(4), Article 388. https://doi.org/10.3390/genes16040388
Backer, C. A. & van den Brink, R. C. B. (1963). Flora of Java (spermatophytes only) (Vol I). N.V. P. Noordhoff-Groningen.
de Queiroz, T. F., Baughman, C., Baughman, O., Gara, M., & Williams, N. (2012). Species distribution modeling for conservation of rare, edaphic endemic plants in White River Valley, Nevada. Natural Areas Journal, 32(2), 149–158. https://doi.org/10.3375/043.032.0203
Dong, H., Zhang, N., Shen, S., Zhu, S., Fan, S., & Lu, Y. (2023). Effects of climate change on the spatial distribution of the threatened species Rhododendron purdomii in Qinling-Daba mountains of Central China: Implications for conservation. Sustainability, 15(4), Article 3181. https://doi.org/10.3390/su15043181
Fois, M., Cuena-Lombraña, A., Fenu, G., & Bacchetta, G. (2018). Using species distribution models at a local scale to guide poorly known species, review: Methodological issues and future directions. Ecological Modelling, 385, 124–132. https://doi.org/10.1016/j.ecolmodel.2018.07.018
Gao, B. (1996). NDWI–A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/s0034-4257(96)00067-3
Gardiner, B. (2021). Wind damage to forests and trees: A review with an emphasis on planted and managed forests. Journal of Forest Research, 26(4), 248–266. https://doi.org/10.1080/13416979.2021.1940665
Guo, Z. (2021). Soil hydrology process and rational use of soil water in desert regions. Water, 13(17), Article 2377. https://doi.org/10.3390/w13172377
Hakim, L.& Yuliah. (2018). Peran B2P2BPTH Yogyakarta dalam pelestarian jenis-jenis khas Daerah Istimewa Yogyakarta. Prosiding Seminar Nasional Pendidikan Biologi dan Saintek, 2018, 329–337.
Hale, J. & Butcher, R. (2010). The Dales Ramsar site ecological character description. Department of Climate Change, Energy, the Environment and Water. Retrieved from https://www.dcceew.gov.au/water/wetlands/publications/dales-ramsar-site-ecological-character-description
Hendrayana, H., Riyanto, I. A., & Nuha, A. (2021). Kajian daerah sulit air di Kabupaten Kulon Progo Daerah Istimewa Yogyakarta. LaGeografia, 19(2), 175–192. https://doi.org/10.35580/lageografia.v19i2.15345
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276
Hill, K. E., Hill, R. S., & Watling, J. R. (2014). Do CO2, temperature, rainfall and elevation influence stomatal traits and leaf width in Melaleuca lanceolata across southern Australia? Australian Journal of Botany, 62(8), 666–673. https://doi.org/10.1071/bt14300
Huang, TK., Feng, X., & Derbridge, J.J. (2024). Potential for spatial coexistence of a transboundary migratory species and wind energy development. Science Report, 14, Article 17050. https://doi.org/10.1038/s41598-024-66490-3
Huzsvai, L., & Rajkai, K. (2009). Modeling of plant adaptation to climatic drought induced water deficit. Biologia, 64(3), 536–540. https://doi.org/10.2478/s11756-009-0092-9
Ibeh, K. G., & Akinyele, A. O. (2024). Investigating light and water optimization for early seedling establishment in Albizia lebbeck (L.) Benth. South-east European Forestry, 15(2), 151–159. https://doi.org/10.15177/seefor.24-14
Ikhsan, J., Agustian, D., Faizah, R., Agustina, F., Pratiwi, D. S., & Zainol, M. R. R. M. A. (2024). Mapping drought disaster risk due to climate change in Kulon Progo District, Indonesia. Journal of Advanced Research in Applied Sciences and Engineering Technology, 61(4), 148–161.
Kaewthongrach, R., Vitasse, Y., Lamjiak, T., & Chidthaisong, A. (2019). Impact of severe drought during the strong 2015/2016 El Nino on the phenology and survival of secondary dry Dipterocarp species in Western Thailand. Forests, 10(11), Article 967. https://doi.org/10.3390/f10110967
Khanum, R., Mumtaz, A., & Kumar, S. (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica, 49, 23–31. https://doi.org/10.1016/j.actao.2013.02.007
Kismiantini, K., Husniyah, F., & Montesinos-LÓpez, O. A. (2021). Drought-prone areas mapping using fuzzy c-means method in Gunungkidul district. PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika, 16(2), 217–232.
Ku-Or, Y., Leksungnoen, N., Onwinom, D., & Doomnil, P. (2020). Germination and salinity tolerance of seeds of sixteen Fabaceae species in Thailand for reclamation of salt-affected lands. Biodiversitas, 21, 2188–2200. https://doi.org/10.13057/biodiv/d210547
Marcer, A., Sáe, L., Molowny-Horas, R., Pons, X., & Pino, J. (2013). Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation, 166, 221–230. https://doi.org/10.1016/j.biocon.2013.07.001
Marchin, R. M., Bhandari, R. K., & Wall, W. A. (2009). Are rare species less shade tolerant than common species in fire-prone environments? A test with seven Amorpha (Fabaceae) species. Plant Ecology, 205, 249–260. https://doi.org/10.1007/s11258-009-9614-3
Maridi, Agustina, P., & Saputra, A. (2011). Potential vegetation for soil and water conservation: Case study in Samin Watershed, Central Java. International Conference on Science, Technology and Humanity, 2015, 46–54.
Morin, A., Kadi, F., Porcheron, B., Vriet, C., Maurousset, L., Lemoine, R., Pourtau, N., & Doidy, J. (2022). Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought. Physiologia Plantarum, 174(2), Article e13673. https://doi.org/10.1111/ppl.13673
Müller, J. V. (2024). The Tahitian chestnut [Inocarpus fagifer (Parkinson ex F.A.Zorn) Fosberg, Fabaceae], a neglected multi-purpose tree from the Asia–Pacific region. Discovery Agriculture, 2, Article 7. https://doi.org/10.1007/s44279-024-00020-7
Nurjanah, R. Y., Indradewa, D., & Irwan, S. N. R. (2022). The effect of corncob biochar application and dose reduction of N, P, K fertilizer on growth and yield of soybean (Glycine max L.) in regosol soil, Bantul, Yogyakarta. Ilmu Pertanian, 7(3), 160–170. https://doi.org/10.22146/ipas.72231
Partomihardjo, T., Arifiani, D., Pratama, B. A., & Mahyuni, R. (2014). Jenis-jenis pohon penting di hutan Nusakambangan. LIPI Press, Jakarta.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049
Poggio, L., Simonetti, E., & Gimona, A. (2018). Enhancing the WorldClim data set for national and regional applications. The Science of the Total Environment, 625, 1628–1643. https://doi.org/10.1016/j.scitotenv.2017.12.258
Promnikorn, K., Jutamanee, K., & Kraichak. E. (2019). MaxEnt model for predicting potential distribution of Vitex glabrata R.Br. in Thailand. Agriculture Natural Resource, 53, 44–48.
Putra, Q. I., & Nurjani, E. (2021). Study of meteorological drought and its impact on rainfed paddy productivity in GunungKidul Regency. E3S Web of Conferences, 325, Article 01017. https://doi.org/10.1051/E3SCONF/202132501017
Rana, S. K., Rana, H. K., Ghimire, S. K., Shrestha, K. K., & Ranjitkar, S. (2017). Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of liliaceae in Nepal. Journal of Mountain Science, 14(3), 558–570. https://doi.org/10.1007/s11629-015-3822-1
Rohama, R., & Zainuddin, Z. (2021). Identifikasi senyawa metabolit sekunder pada ekstrak Daun Gayam (Inocarpus Fagifer Fosb) dengan menggunakan KLT: Identification of secondary metabolite compounds on the extract of gayam leaves (Inocarpus fagifer fosb) using TLC. Jurnal Surya Medika, 6(2), 125–129. https://doi.org/10.33084/jsm.v6i2.2129
Sánchez Pérez, M., Feria Arroyo, T. P., Venegas Barrera, C. S., Sosa-Gutiérrez, C., Torres, J., Brown, K. A., Gordillo Pérez, G. (2023). Predicting the impact of climate change on the distribution of Rhipicephalus sanguineus in the Americas. Sustainability, 15, Article 4557. https://doi.org/10.3390/su15054557
Saptutyningsih, E., & Nurcahyani, F. D. (2022). Is social capital important in coping with climate change? A case of agriculture sector in Gunungkidul, Indonesia. E3S Web of Conferences, 361, Article 03002. https://doi.org/10.1051/e3sconf/202236103002
Semu, A.A., Bekele, T, Lulekal, E., Cariñanos, P. & Nemomissa, S. (2021). Projected impact of climate change on habitat suitability of a vulnerable endemic Vachellia negrii (Pic.serm.) Kyal. & Boatwr (Fabaceae) in Ethiopia. Sustainability, 13(20), Article 11275. https://doi.org/10.3390/SU132011275
Smith, A., Sangur, K., Molle, D.F., Haurissa, L., Maulany, G., & Renyaan, B. (2023). Leaf and stomata morphometrics of gayam Inocarpus fagifer (Fabaceae) at different altitudes. Jurnal Riset Biologi dan Aplikasinya, 5(1), 16–26. https://doi.org/10.26740/jrba.v5n1.p16-26
Stephenson, K., Wilson, B., Taylor, M., Mclaren, K., Veen, R., Kunna, J., & Campbell, J. 2022. Modelling climate change impacts on tropical dry forest fauna. Sustainability, 14(8), Article 4760. https://doi.org/10.3390/su14084760
Setyowati, N., & Wawo, A. H. (2015). Mengungkap keberadaan dan potensi gayam (Inocarpus fagifer) sebagai sumber pangan alternatif di Sukabumi, Jawa Barat. Prosiding Seminar Nasional Masyarakat Biodiversitas Indononesia, 1(1), 71–77. https://doi.org/10.13057/psnmbi/m010111
Shao, F., Panahipour, L., Sordi, M. B., Tang, F., Liu, R., & Gruber, R. (2022). Heartwood of Dalbergia cochinchinensis: 4,7,2′-Trihydroxy-4′-methoxyisoflavanol and 6,4′-Dihydroxy-7-methoxyflavane reduce cytokine and chemokine expression in vitro. Molecules, 27(4), Article 1321. https://doi.org/10.3390/molecules27041321
Sosef, M. S. M., & van der Maesen L. J. G. (1997). Inocarpus fagifer. In I. F. Hanum, & L. J. G. van der Maesen (Eds,), Plant resources of South-East Asia: Auxiliary plants (pp. 285–286). Backhuys Publishers, Leiden.
Susilowati, A., Ginting, I. M., Kaban, N. S., Rachmat, H. H., Iswanto, A. H., & Sucipto, T. (2022). Foliar stomata characteristic of fabaceae family in University of Sumatera Utara (USU) green space. IOP Conference Series Earth and Environmental Science, 977(1), Article 012006. https://doi.org/10.1088/1755-1315/977/1/012006
Varghese, D., Radulović, M., Stojković, S., & Crnojević, V. (2021). Reviewing the potential of Sentinel-2 in assessing the drought. Remote Sensing, 13(17), Article 3355. https://doi.org/10.3390/rs13173355
Wawo, A. H., Setyowati, N., & Utami, N. W. (2011). Studi persebaran dan pemanfaatan gayam [Inocarpus fagifer (Parkinson ex Zollinger)] pada beberapa lokasi di Propinsi Daerah Istimewa Yogyakarta. Biosfera, 28(3), 140–151.
Wei, B., Wang, R., Hou, K., Wang, X., & Wu, W. (2018). Predicting the current and future cultivation regions of Carthamus tinctorius using Maxent model under climate change in China. Global Ecology and Conservation, 16, Article E00477. https://doi.org/10.1016/j.gecco.2018.e00477
Yatar, C., Thinkampheang, S., Sungkaew, S., Wachrinrat, C., Asanok, L., Kamyo, T., Hermhuk, S., Kachina, P., Thongsawi, J., Phumphuang, Wm., Yarnvudhi, A., Waengsothorn, S., Cheysawat, S., & Marod, D. (2024). The dynamics of deciduous dipterocarp forest in relation to climate variability in the Sakaerat Biosphere Reserve, Northeastern Thailand. Biodiversitas, 25, 3088–3098. https://doi.org/10.13057/biodiv/d250730
Authors
Copyright (c) 2026 Jurnal Manajemen Hutan Tropika

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.