Total Ecosystem Carbon Stock (TECS) in Various Tropical Forest Ecosystems of South Sorong Regency, Southwest Papua Province, Indonesia

Obed Nedjo Lense(1) , Jimmy Frans Wanma(2) , Francina Frenshegty Kesaulija(3) , Fiktor Simbiak(4) , Fadhilah Iqra Mansyur(5) , Armansyah Rachim(6) , Beatrix Wanma(7) , Reynold Kesaulija(8) , Dionysius Simanjorang(9) , Jane Elisabeth Lense(10)
(1) Faculty of Forestry, University of Papua, Manokwari, West Papua, Indonesia 98314,
(2) Faculty of Forestry, University of Papua, Manokwari, West Papua, Indonesia 98314,
(3) Faculty of Forestry, University of Papua, Manokwari, West Papua, Indonesia 98314,
(4) Faculty of Forestry, University of Papua, Manokwari, West Papua, Indonesia 98314,
(5) Faculty of Forestry, University of Papua, Manokwari, West Papua, Indonesia 98314,
(6) Faculty of Forestry, University of Papua, Manokwari, West Papua, Indonesia 98314,
(7) Forestry Department, University of Ottow Geysler, Jayapura, Papua, Indonesia 99224,
(8) Environment, Forestry, and Land Agency of Southwest Papua Province, Indonesia 98315,
(9) Sustainable Forest Management Center (BPHL) Region XVI Manokwari, Papua Barat, Indonesia 98315,
(10) Science for Conservation University of Papua, Manokwari, Papua Barat, Indonesia 98312

Abstract

The significant uncertainty concerning the role of South Sorong’s tropical forests ecosystem in the global carbon cycle is the lack of adequate data on the total carbon content of all their components. This study aimed to fill this data gap by total carbon stock in six South Sorong, Southwest Papua, and Indonesia forest ecosystems.  The above-below-ground (root) carbon stock was calculated using several published allometric equations. The walkey and black and loss-on-ignition method analysed soil carbon stocks. Aboveground live c-stock ranged from 51.9 to 105.5 Mg C ha-1 and soil c-stock from 52.91 to 1,124.3 Mg C ha-1, representing the two most significant C components in all plots. The C in litter (10.5 to 49.9 Mg C ha-1), dead and downed wood (0.2 to 2.9 Mg C ha-1) and roots (9.2 to 58.2 Mg C ha-1) accounted for less than 5.3% of the total C. The total ecosystem carbon stock ranged from 213.0 to 1,217.4 Mg C ha-1.  More C was found in the peat swamp forest in six forest ecosystems, where deeper soil (organic sediment) was the main support factor. Both DLFE and PSFE are unique ecosystems that need to be considered in their management so that we can benefit from those present in local, regional, and global communities.

Full text article

Generated from XML file

References

Adame, M. F., Santini, N. S., Tovilla, C., Vázquez-Lule, A., Castro, L., & Guevara, M. (2015). Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences, 12(12), 3805–3818. https://doi.org/10.5194/bg-12-3805-2015
Aziz, M. A., Hazra, F., Salma, S., & Nursyamsi, D. N. (2017). Soil Chemical Characteristics of Organic and Conventional Agriculture. JOURNAL OF TROPICAL SOILS, 21(1), Article 1. https://doi.org/10.5400/jts.2016.v21i1.19-25
Banuwa, I. S., Afriliyanti, R., Utomo, M., Yusnaini, S., Riniarti, M., Sanjaya, P., Suroso, E., & Hidayat, W. (2019). Short Communication: Estimation of the above- and below-ground carbon stocks in University of Lampung, Indonesia. Biodiversitas Journal of Biological Diversity, 20(3), Article 3. https://doi.org/10.13057/biodiv/d200309
Boonman, C. C. F., van Langevelde, F., Oliveras, I., Couédon, J., Luijken, N., Martini, D., & Veenendaal, E. M. (2020). On the importance of root traits in seedlings of tropical tree species. New Phytologist, 227(1), 156–167.
Carnell, P. E., Windecker, S. M., Brenker, M., Baldock, J., Masque, P., Brunt, K., & Macreadie, P. I. (2018). Carbon stocks, sequestration, and emissions of wetlands in south eastern Australia. Global Change Biology, 24(9), 4173–4184. https://doi.org/10.1111/gcb.14319
Chave, J., Chust, G., Condit, R., Aguilar, S., Perez, R., & Lao, S. (2005). Error propagation and scaling for tropical forest biomass estimates. Tropical Forests and Global Atmospheric Change, 155–163.
Chen, S., Chen, B., Sastrosuwondo, P., Dharmawan, I. W. E., Ou, D., Yin, X., Yu, W., & Chen, G. (2018). Ecosystem carbon stock of a tropical mangrove forest in North Sulawesi, Indonesia. Acta Oceanologica Sinica, 37(12), 85–91. https://doi.org/10.1007/s13131-018-1290-5
Cieszewski, C. J., Zasada, M., Lowe, R. C., & Liu, S. (2021). Estimating Biomass and Carbon Storage by Georgia Forest Types and Species Groups Using the FIA Data Diameters, Basal Areas, Site Indices, and Total Heights. Forests, 12(2), Article 2. https://doi.org/10.3390/f12020141
Clarke, K. R. (1993). Non‐parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117–143.
Dayathilake, D. D. T. L., Lokupitiya, E., & Wijeratne, V. P. I. S. (2021). Estimation of Soil Carbon Stocks of Urban Freshwater Wetlands in the Colombo Ramsar Wetland City and their Potential Role in Climate Change Mitigation. Wetlands, 41(2), 29. https://doi.org/10.1007/s13157-021-01424-7
De Feudis, M., Falsone, G., Vianello, G., Agnelli, A., & Vittori Antisari, L. (2022). Soil organic carbon stock assessment in forest ecosystems through pedogenic horizons and fixed depth layers sampling: What’s the best one? Land Degradation & Development, 33(9), 1446–1458. https://doi.org/10.1002/ldr.4253
Dharmawan, I. W. E. (2021). Mangrove health index distribution on the restored post-tsunami mangrove area in Biak Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 860(1), 012007. https://doi.org/10.1088/1755-1315/860/1/012007
Dharmawan, I. W. E., Ulumuddin, Y. I., & Prayudha, B. (2020). Manual for mangrove community structure monitoring and research in Indonesia.
Fatem, S. M., Djitmau, D. A., Ungirwalu, A., Wanma, A. O., Simbiak, V. I., Benu, N. M. H., Tambing, J., & Murdjoko, A. (2020). Species diversity, composition, and heterospecific associations of trees in three altitudinal gradients in Bird’s Head Peninsula, Papua, Indonesia. Biodiversitas Journal of Biological Diversity, 21(8), Article 8. https://doi.org/10.13057/biodiv/d210824
Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Systems, 6(2), Article 2. https://doi.org/10.3390/soilsystems6020033
Gurung, M. B., Bigsby, H., Cullen, R., & Manandhar, U. (2015). Estimation of carbon stock under different management regimes of tropical forest in the Terai Arc Landscape, Nepal. Forest Ecology and Management, 356, 144–152. https://doi.org/10.1016/j.foreco.2015.07.024
Hairiah, K., Dewi, S., Agus, F., Velarde, S., Andree, E., Rahayu, S., & van Noordwijk, M. (2001). Measuring carbon stocks. World Agroforestry Centre.
Hidayah, Z., Rachman, H. A., & As-Syakur, A. R. (2022, September 1). Mapping of mangrove forest and carbon stock estimation of east coast Surabaya, Indonesia. | Biodiversitas: Journal of Biological Diversity | EBSCOhost. https://doi.org/10.13057/biodiv/d230951
Hilmi, E., Parengrengi, Vikaliana, R., Kusmana, C., Iskandar, Sari, L. K., & Setijanto. (2017). The carbon conservation of mangrove ecosystem applied REDD program. Regional Studies in Marine Science, 16, 152–161. https://doi.org/10.1016/j.rsma.2017.08.005
Hoogsteen, M. J. J., Lantinga, E. A., Bakker, E. J., Groot, J. C. J., & Tittonell, P. A. (2015). Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. European Journal of Soil Science, 66(2), 320–328. https://doi.org/10.1111/ejss.12224
Imani, G., Boyemba, F., Lewis, S., Nabahungu, N. L., Calders, K., Zapfack, L., Riera, B., Balegamire, C., & Cuni-Sanchez, A. (2017). Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa. PLOS ONE, 12(6), e0179653. https://doi.org/10.1371/journal.pone.0179653
Indarto, I., Budiyono, B., Faisol, A., & Novita, E. (2022). Assessment of agricultural drought based on CHIRPS data and SPI method over West Papua – Indonesia. Journal of Water and Land Development; 2022; No 52; 44-52. https://journals.pan.pl/dlibra/doccontent?id=122394
Jones, I. L., DeWalt, S. J., Lopez, O. R., Bunnefeld, L., Pattison, Z., & Dent, D. H. (2019). Above- and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Science of The Total Environment, 697, 133987. https://doi.org/10.1016/j.scitotenv.2019.133987
Kauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Jesus Garcia, M. del C., MacKenzie, R. A., Megonigal, J. P., Murdiyarso, D., Simpson, L., & Hernández Trejo, H. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), e01405. https://doi.org/10.1002/ecm.1405
Kauffman, J. B., & Donato, D. C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests.
Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518–527. https://doi.org/10.1890/13-0640.1
Keller, J. K., & Medvedeff, C. A. (2016). Soil Organic Matter. In Wetland Soils (2nd ed.). CRC Press.
Kho, L. K., & Jepsen, M. R. (2015). Carbon stock of oil palm plantations and tropical forests in Malaysia: A review. Singapore Journal of Tropical Geography, 36(2), 249–266. https://doi.org/10.1111/sjtg.12100
Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128–137.
Kusumaningtyas, M., Hutahaean, A., Fischer, H., Perez, M., Ransby Née Pittauer, D., & Jennerjahn, T. (2018). Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218. https://doi.org/10.1016/j.ecss.2018.12.007
Maturbongs, R. A., Dransfield, J., & Baker, W. (2014). Calamus kebariensis (Arecaceae)—A new montane rattan from New Guinea. Phytotaxa, 163(4), 235–238. https://doi.org/10.11646/PHYTOTAXA.163.4.4
Meng, Y., Bai, J., Gou, R., Cui, X., Feng, J., Dai, Z., Diao, X., Zhu, X., & Lin, G. (2021). Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon. Carbon Balance and Management, 16(1), 8. https://doi.org/10.1186/s13021-021-00172-9
Mensah, S., Noulèkoun, F., & Ago, E. E. (2020). Aboveground tree carbon stocks in West African semi-arid ecosystems: Dominance patterns, size class allocation and structural drivers. Global Ecology and Conservation, 24, e01331. https://doi.org/10.1016/j.gecco.2020.e01331
Mitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 527–534. https://doi.org/10.1038/s41586-018-0300-2
Mizanur Rahman, Md., Nabiul Islam Khan, Md., Fazlul Hoque, A. K., & Ahmed, I. (2015). Carbon stock in the Sundarbans mangrove forest: Spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management, 23(2), 269–283. https://doi.org/10.1007/s11273-014-9379-x
Mukul, S. A., Halim, Md. A., & Herbohn, J. (2020). Forest Carbon Stock and Fluxes: Distribution, Biogeochemical Cycles, and Measurement Techniques. In W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Life on Land (pp. 1–16). Springer International Publishing. https://doi.org/10.1007/978-3-319-71065-5_23-1
Murdiyarso, D., Donato, D., Kauffman, J. B., Kurnianto, S., Stidham, M., & Kanninen, M. (2009). Carbon storage in mangrove and peatland ecosystems: A preliminary account from plots in Indonesia.
Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., & Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 5(12), 1089–1092. https://doi.org/10.1038/nclimate2734
NENGI-BENWARI, A. O., UDOM, B. E., & ORJI, O. A. (2022). CLAY CONTENT, BULK DENSITY AND CARBON STORAGE RELATIONSHIPS IN MANGROVE AND RAINFOREST SOILS DURING DRY AND WET SEASONS. Journal of Global Ecology and Environment, 15(2), Article 2. https://doi.org/10.56557/jogee/2022/v15i27511
Nyirambangutse, B., Zibera, E., Uwizeye, F. K., Nsabimana, D., Bizuru, E., Pleijel, H., Uddling, J., & Wallin, G. (2017). Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest. Biogeosciences, 14(5), 1285–1303. https://doi.org/10.5194/bg-14-1285-2017
Pearson, T. R. H., Brown, S., Murray, L., & Sidman, G. (2017). Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance and Management, 12(1), 3. https://doi.org/10.1186/s13021-017-0072-2
Peck, M., Kaina, G. S., Hazell, R., Isua, B., Alok, C., Paul, L., & Stewart, A. (2017). Estimating carbon stock in lowland Papua New Guinean forest – low density of large trees results in lower than global average carbon stock. https://doi.org/10.1111/aec.12525']
Petter, G., Kreft, H., Ong, Y., Zotz, G., & Cabral, J. S. (2021). Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns. Ecological Modelling, 460, 109735. https://doi.org/10.1016/j.ecolmodel.2021.109735
Ragavan, P., Kumar, S., Kathiresan, K., Mohan, P. M., Jayaraj, R. S. C., Ravichandaran, K., & Rana, T. S. (2021). Biomass and vegetation carbon stock in mangrove forests of the Andaman Islands, India. Hydrobiologia, 848(20), 4673–4693. https://doi.org/10.1007/s10750-021-04651-5
Russell, M. B., Fraver, S., Aakala, T., Gove, J. H., Woodall, C. W., D’Amato, A. W., & Ducey, M. J. (2015). Quantifying carbon stores and decomposition in dead wood: A review. Forest Ecology and Management, 350, 107–128. https://doi.org/10.1016/j.foreco.2015.04.033
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108(24), 9899–9904. https://doi.org/10.1073/pnas.1019576108
Saragi-Sasmito, M. F., Murdiyarso, D., June, T., & Sasmito, S. D. (2019). Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests. Mitigation and Adaptation Strategies for Global Change, 24(4), 521–533. https://doi.org/10.1007/s11027-018-9793-0
Seiwa, K., Sasaki, T., & Masaka, K. (2023). Important role of a few large-diameter tree species in basal area and its increase in an old-growth deciduous broadleaf forest in Japan. Trees, Forests and People, 13, 100421. https://doi.org/10.1016/j.tfp.2023.100421
Shaverdo, H., Panjaitan, R., & Balke, M. (2016). A new, widely distributed species of the Exocelina ekari-group from West Papua (Coleoptera, Dytiscidae, Copelatinae). ZooKeys, 554, 69–85. https://doi.org/10.3897/zookeys.554.6065
Sillanpää, M., Vantellingen, J., & Friess, D. A. (2017). Vegetation regeneration in a sustainably harvested mangrove forest in West Papua, Indonesia. Forest Ecology and Management, 390, 137–146. https://doi.org/10.1016/j.foreco.2017.01.022
Sjögersten, S., de la Barreda-Bautista, B., Brown, C., Boyd, D., Lopez-Rosas, H., Hernández, E., Monroy, R., Rincón, M., Vane, C., Moss-Hayes, V., Gallardo-Cruz, J. A., Infante-Mata, D., Hoyos-Santillan, J., Vidal Solórzano, J., Peralta-Carreta, C., & Moreno-Casasola, P. (2021). Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma, 403. https://doi.org/10.1016/j.geoderma.2021.115173
Sokol, N. W., Sanderman, J., & Bradford, M. A. (2019). Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, 25(1), 12–24. https://doi.org/10.1111/gcb.14482
Stas, S. M., Le, T. C., Tran, H. D., Hoang, T. T. H., van Kuijk, M., Le, A. V., Ngo, D. T., van Oostrum, A., Phillips, O. L., Rutishauser, E., Spracklen, B. D., Tran, T. T. A., Le, T. T., & Spracklen, D. V. (2020). Logging intensity drives variability in carbon stocks in lowland forests in Vietnam. Forest Ecology and Management, 460, 117863. https://doi.org/10.1016/j.foreco.2020.117863
Steinmuller, H. E., Breithaupt, J. L., Rovai, A. S., Engelbert, K. M., Smoak, J. M., Chambers, L. G., Radabaugh, K. R., Moyer, R. P., Chappel, A., Vaughn, D. R., Bianchi, T. S., Twilley, R. R., Pagliosa, P. R., Cifuentes-Jara, M., & Torres, D. (2024). Using loss-on-ignition to estimate total nitrogen content of mangrove soils. Geoderma, 448, 116956. https://doi.org/10.1016/j.geoderma.2024.116956
Sukamto, S., & Rahmat, A. (2023). Evaluation of FTIR, Macro and Micronutrients of Compost from Black Soldier Fly Residual: In Context of Its Use as Fertilizer. ASEAN Journal of Science and Engineering, 3(1), Article 1. https://doi.org/10.17509/ajse.v3i1.42798
Taberima, S., Nugroho, Y. D., & Murdiyarso, D. (2014). The distribution of carbon stock in selected mangrove ecosystem of wetlands Papua: Bintuni, Teminabuan, and Timika Eastern Indonesia. International Conference on Chemical, Environment & Biological Sciences (CEBS-2014) Sept, 17–18.
Tue, N. T., Dung, L. V., Nhuan, M. T., & Omori, K. (2014). Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. CATENA, 121, 119–126. https://doi.org/10.1016/j.catena.2014.05.008
Walter, K., Don, A., Tiemeyer, B., & Freibauer, A. (2016). Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Science Society of America Journal, 80(3), 579–591. https://doi.org/10.2136/sssaj2015.11.0407
Wicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2016). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. International Journal of Remote Sensing, 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679
Xu, L., He, N., & Yu, G. (2016). Methods of evaluating soil bulk density: Impact on estimating large scale soil organic carbon storage. CATENA, 144, 94–101. https://doi.org/10.1016/j.catena.2016.05.001

Authors

Obed Nedjo Lense
obedlense@yahoo.com (Primary Contact)
Jimmy Frans Wanma
Francina Frenshegty Kesaulija
Fiktor Simbiak
Fadhilah Iqra Mansyur
Armansyah Rachim
Beatrix Wanma
Reynold Kesaulija
Dionysius Simanjorang
Jane Elisabeth Lense
Lense, O. N., Wanma, J. F., Kesaulija, K. F., Simbiak, F., Mansyur, F. I., Rachim, A. K., Wanma, B., Kesaulija, R., Simanjorang, D., & Lense, J. E. (2025). Total Ecosystem Carbon Stock (TECS) in Various Tropical Forest Ecosystems of South Sorong Regency, Southwest Papua Province, Indonesia. Jurnal Manajemen Hutan Tropika, 31(3), 215. https://doi.org/10.7226/jtfm.31.3.215

Article Details

How to Cite

Lense, O. N., Wanma, J. F., Kesaulija, K. F., Simbiak, F., Mansyur, F. I., Rachim, A. K., Wanma, B., Kesaulija, R., Simanjorang, D., & Lense, J. E. (2025). Total Ecosystem Carbon Stock (TECS) in Various Tropical Forest Ecosystems of South Sorong Regency, Southwest Papua Province, Indonesia. Jurnal Manajemen Hutan Tropika, 31(3), 215. https://doi.org/10.7226/jtfm.31.3.215