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Abstract

Accurate classification of land cover is essential for effective land management and environmental monitoring. This
study aimed to enhance land cover classification for Lombok Island using advanced machine learning algorithms.
The models employed include Random Forest, Gradient Boosting, Decision Tree, and Naive Bayes, integrating a
wide range of variables, such as Landsat satellite imagery, spectral indices, physiographic, climatic, and socio-
economic data. Among these, Random Forest demonstrated the highest model accuracy at 82%, followed by
Gradient Boosting at 80%, Decision Tree at 73%, and Naive Bayes at 61%. In field validation assessments,
comparing the predictions of these machine learning models with ground truth data, Random Forest was the most
reliable, achieving an overall accuracy of 88%. This superior performance is largely due to the multi-variable
approach, which allows the model to mitigate issues like cloud cover in satellite images. The key variables that
significantly influenced the land cover classification on Lombok Island include proximity to settlements,
temperature, and distance to roads. These results provide essential insights for land management strategies,
enabling policymakers and stakeholders to make informed decisions on sustainable development, urban planning,
and environmental conservation in rapidly changing landscapes.
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Introduction

The rapid advancements in machine learning (ML)
technologies have revolutionized various fields, including
environmental science and land management. Accurate land
cover classification is essential for effective environmental
monitoring, sustainable land use planning, and conservation
efforts (Vinaykumar et al., 2023). However, achieving high
accuracy in land cover classification remains challenging due
to the complex and dynamic nature of landscapes (Desjardins
et al., 2023). Traditional methods often struggle to
accommodate the variability in land cover types, leading to
inaccuracies that can significantly impact decision-making
processes (Gavade & Rajpurohit, 2021; Qichietal., 2023).

Lombok Island, a region experiencing rapid urbanization,
agricultural expansion, and environmental change, presents a
unique case for studying land cover dynamics (Rahayu et al.,
2023). The island's diverse ecosystems and the pressures
from human activities require a robust and accurate
classification system to manage and protect its natural
resources effectively (Dewi & Sukmawati, 2020). The
integration of ML approaches with multi-variable driving
factors, such as climate data, topography, and socio-

economic variables, offers a promising solution to improve
the precision of land cover classification (Jaya et al., 2015;
Mitra & Basu, 2023).

ML is favored over traditional methods because it
automates data analysis, efficiently handling vast variables
and generating new insights. Unlike classical techniques,
which struggle with complex datasets, ML excels in
processing and predicting outcomes from large, diverse data
(Purnama etal., 2024). This automated approach allows for a
more precise understanding of Lombok Island's land cover
dynamics, offering greater value in environmental
monitoring and decision-making compared to conventional
methods.

This study explores the application of advanced ML
algorithms, including Random Forest (RF), Gradient
Boosting (GB), Decision Tree (DT), and Naive Bayes (NB),
combined with diverse variables such as satellite imagery,
spectral indices, physiographic attributes, climate data, and
socio-economic factors. By addressing limitations in
traditional methods, such as cloud cover and lack of
contextual data, this research enhances the accuracy of land
cover maps for Lombok Island.
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Methods

Study area Lombok Island (Figure 1a), part of West Nusa
Tenggara, Indonesia, spans approximately 4,739 km? with a
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preparation and analysis (Coban & Erdin, 2020). Spyder

population of around 3.3 million. The island features diverse

land cover, predominantly agriculture (61.4%) and forests
(25.8%). Significant land use changes, including
deforestation and forest degradation, have transformed
forest areas into agricultural land and shrubs (Kim, 2016).
The island's varied topography, from the central volcanic
range with Mount Rinjani (4,732 masl), the second-highest
volcano in Indonesia, to coastal plains, adds complexity to

land cover mapping efforts.

Software Several software tools were utilized for data
collection, processing, and analysis. Google Earth Engine
(GEE) was used for acquiring and processing satellite

(Python 3 studio) was employed for data processing
(Kadiyala & Kumar, 2017).

Variables The variables in this study were divided into
dependent and independent variables. The dependent
variable was the land cover class (Table 1), based on
classifications from the Indonesian Ministry of Forestry and
Environment (MoEF) (Direktorat Jenderal Planologi
Kehutanan, 2015), reclassified into nine categories (Kim,
2016). Independent variables (Table 2) included satellite

images, spectral indices, physiographic, socio-economic,
and climate variables. These variables were chosen to capture

imagery (Qu et al., 2021). ArcGIS facilitated spatial data
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Figure 1 Study area (a) and flowchart of LULC classification and validation process using machine learning algorithms (b).

Table 1

124

LULC class code/dependent variable

New land use/land cover class

Land cover code (class) by Indonesia
Ministry of Environment and Forestry

New class code

Primary forest
Secondary forest
Dry land agriculture

Paddy fields
Grassland/shrubland

Estate crop
Wetlands

Settlement/build up

Other

2001 (Primary dry land forest),
2004 (Primary mangrove forest)
2002 (Secondary dry land forest),
20041 (Secondary mangrove forest)
20091 (Dry land agriculture),
20092 (Mixed dry land agriculture/shrubs)
20093 (Paddy fields)

3000 (Savanna/grassland),

2007 (Shrubs)

2010 (Estate crop agriculture),
2006 (Estate crop forest)

5001 (Water bodies),

20094 (Ponds)

2012 (Settlement),

20121 (Airport/port),

20122 (Transmigration)

2014 (Barren land),

20071 (Swamp shrubs),

20141 (Mines)

1 (PF)
2 (SF)
3 (DLA)

4 (PFi)
5(GS)

6 (EC)
7(W)

8 (SB)

9 (0)
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Table2 Variables independent of the driving factor
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Category Variable Source Type and Refrences
resolution
Satellite Coastal aerosol Landsat 8 SR g Khan et al. (2024); You
images Blue g et al. (2022)
Green S
Red e
Near Infrared (NIR) *?,
SWIR 1 E 2
SWIR 2 S @
Spectral Normalized diference Landsat 8 SR e g da Silva et al. (2020);
indices vegetation index (NDVI) E o Prasad et al. (2022);
Soil-adjusted vegetation g Ei Singgalen (2024)
index (SAVI) g 5
Normalized difference =
water index (NDWI) g f
Enhanced vegetation 8 °
index (EVI) =S
Normalized difference dé %
built-up index (NDBI) g 3
Physiographic ~ Elevation DEM 2 o Le et al. (2022); Qu et
Slope = gL 021)
o oo
Aspect = §
Soil type FAO B o
Social- Population density Central Agency E 2 Gaur & Singh (2023);
economic on Statistics .“g Herwirawan et al.
Near from road Landform map of = (2017); Xie et al.
Near from seatleman Indonesia % (2023)
Near from river E
Near from center _%)
government =
Climate Average temperature Terra Climate g Alzubade et al. (2021);
Average precipitation ﬁ Ibrahim and Ash’aari

(2023)

Data querying/processing The target variable, i.e., land
cover class data, is used as the y variable in the study.
Independent variables are the x variables. The data obtained
from the x and y variables was generated for each pixel by
overlaying them in ArcGIS software and then using the
'Multiple Value Extraction to Points' tool to extract values per
pixel. The overlay process in ArcGIS ensured all raster layers
were harmonized spatially with consistent resolution and
alignment, facilitating the accurate integration of dependent
and independent variables. The resultant dataset, containing
attributes for each data point, was then prepared for ML
algorithms (Figure 1b). To ensure a robust evaluation of the
models, the dataset was split into training and test datasets.
The training dataset comprised 70% of the data, while the
remaining 30% was used for testing. This division ensures
that the models have enough data to learn from while
retaining a sufficient portion for unbiased evaluation of their
performance (Sulova & Arsanjani, 2020; Purnama et al.,
2024).

For the ML models, several algorithms were employed
due to their effectiveness in handling large and complex
datasets. RF,GB, DT, and GB are non-parametric algorithms
that do not assume a specific distribution for the data
(Wedagedaraectal.,2024).

Model evaluation The evaluation of the ML models was
conducted using several performance metrics to ensure the
accuracy and reliability of the land cover classifications. The
primary metrics used were overall accuracy, precision,
recall, and the F1 score (Sulova & Arsanjani, 2020; Purnama
etal.,2024).

Overall accuracy measures the proportion of correctly
classified instances among the total instances as shown in
Equation //]. Precision for each class is the ratio of true
positive predictions to the total predicted positives for that
class, as shown in Equation /2]. Recall/sensitivity for each
class is the ratio of true positive predictions to the total actual
positives for that class, as shown in Equation /3/. The F1
score for each class is the harmonic mean of precision and
recall as shown in Equation /4/.

Lo 1]

Overall accuracy = —
- T2, (ZP; + FP; + TN; + FN;)

TP,
Precision; = ——— 2
' TP +FP [2]
TP,
Recall; = !
Y TR HFN 3]
2.Precision; x Recall;
Fl score;= —————— [4]

Precisionj + Recall;
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note: TPi is true positive value for each class i, FPi is false
positive value for each class i, FNi is false negative value for
each class i, and TNi is true negative value for each class i.

K-fold cross-validation was used to ensure robustness
and generalizability (Equation /57]). The dataset is divided
into k subsets, and the model is trained and validated k times
(Darapureddy et al., 2019), each time with a different subset
as the validation set. Receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC) (Equation
[6]) were used to evaluate the model's ability to distinguish
between classes (Tougui et al., 2021). The ROC curve plots
the true positive rate (TPR) against the false positive rate
(FPR), while AUC provides a single scalar value
summarizing the model's performance across all thresholds.
Feature importance (Equation /7]) was analyzed using
Scikit-learn, ranking variables based on their contribution to
the model's decisions. Higher importance values indicate a
greater impact on the model's predictive capability (Zhang et
al.,2023).

Cross-validation accuracy = %ZL ] Accm‘ac‘yi [5]
AUC = _fol TPR(FPR)A(FPR) [6]
Feature importance (I'I) = Z,ET% x A(f) [7]

note: is set of all DTs in the model, 7is a specific node in a tree
where the feature is used, Nt is the number of samples that
reach node 7, NV is the total number of samples in the dataset,
and Ai(t) is the decrease in impurity (e.g., Gini impurity or
entropy) at node # due to the split on the feature.

Field assessment The field assessment aimed to validate the
accuracy of the land cover classifications generated by the
ML models. The process involved selecting sample points
for each land cover class using a stratified random sampling
approach. For each land cover class, 30 sample points were
selected to ensure adequate representation and reliable
validation. The accuracy of the land cover classifications was
evaluated using the following metrics (Khaldi et al., 2024);
Overall accuracy (OA) (Equation [8]) measures the
proportion of correctly classified instances among the total
instances, Producer's accuracy (PA) (Equation /9/) measures
the accuracy from the perspective of the ground truth (how
well each reference class is classified), and User's accuracy
(UA) (Equation [/0]) measures the accuracy from the
perspective of the classifier (how reliable the classification is
for each class).

0#@ /8]
_ Mii

P 1
o Mii

A [10]

note: Mii is the count of correctly classified instances for
class i, Mij is the count of all actual instances of class
including both correctly and incorrectly classified instances,
Mji is the count of all instances classified as class by the
model, including both correctly and incorrectly classified
instances, »n is class count, and N is count of all actual
instances. The confusion matrix elements Mii, Mij, and Mji
represent the counts of correct and incorrect classifications,
allowing for a detailed assessment of the model's
performance for each land cover class.
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Results

Characteristics of the dataset The distribution of the land
use and cover (LULC) dataset extracted from the MoEF land
cover shows significant variation, with Dryland Agriculture
and Rice Fields as the most dominant classes, covering
36.7% and 32.3% of the dataset respectively. Primary and
Secondary Forests also hold considerable portions, with
17.4% and 10.3%. The dataset incorporates crucial driving
factors, including satellite imagery, climate data,
physiographic attributes, and socio-economic variables.
Spectral indices from Landsat imagery provided key insights
into vegetation density and water presence (Rajeswari &
Rathika, 2024), while climate data, with an average
precipitation of 5.58 mm day" and temperature of 28.21°C,
emphasized environmental variability. Physiographic factors
like soil type and elevation further illustrated the region's
diverse topography, and socio-economic variables
highlighted significant spatial and demographic disparities.
These combined factors are essential in analyzing the
complex interactions driving land cover changes, offering a
comprehensive perspective for predictive modeling and
sustainable land management (Sithole & Odindi, 2015; Yang
etal.,2015).

Accuracy of ML algorithms The performance of the ML
algorithms in classifying LULC on Lombok Island was
rigorously evaluated using multiple metrics (Table 3;
Figure 2). RF emerged as the most accurate model, achieving
an overall accuracy of 82% and a Kappa coefficient of 0.76,
indicating strong agreement with the ground truth data (Ao et
al., 2019). The GB model also performed well, with an
accuracy of 80%, though slightly lower than RF, this is likely
due to GB's sequential learning, which can make it more
sensitive to noise, whereas RF's ensemble approach is more
robust to variability in the dataset. DT and NB models lagged
behind, with accuracies of 73% and 61%, respectively. K-
fold cross-validation was revealed that RF consistently
outperformed the other models across all folds, further
solidifying its reliability. ROC curve analysis provided
additional insights into the models' performance. The RF
model demonstrated exceptional discriminatory power
across all land cover classes, with AUC values close to 1 for
most classes, indicating near-perfect classification
capabilities (Chicco & Jurman, 2023). The ROC/AUC
graphs for RF clearly highlight its ability to separate positive
and negative classes effectively, showcasing its superior
performance across diverse land cover categories. In
contrast, GB, while still effective, showed slightly lower
AUC values in some classes, reflecting its sensitivity to
complex data patterns. DT and NB exhibited significant
drops in performance, particularly for more complex classes,
as evident from their flatter ROC curves, indicating poorer
class discrimination. This comparison highlights RF's
superior ability to distinguish between different land cover
types on Lombok Island. The analysis of feature importance
underscored the critical factors influencing the models'
predictions. In the RF model, variables such as temperature
and settlement proximity were identified as the most
influential, reflecting their significant role in determining
land cover patterns.

The DT model (Figure 3a) classifies land cover classes
based on variables such as proximity to settlements,
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LULC
classification
models

Accuracy of machine learning algorithms

Field assessment accuracy
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Kappa coef.
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Figure2 Accuraccy assesmentresults: K-Fold validation (a), Variables importance (b), ROC/AUC curves (¢).
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Figure3 Examples of branches on a decision tree (a), One of the decision tree (branch) examples in Random Forest (b), One of the
decision tree examples in Gradient Boosting (c).

128



Jurnal Manajemen Hutan Tropika, 31(2), 123—-132, May 2025
EISSN: 2089-2063
DOI: 10.7226/jtfm.31.2.123

elevation, and Landsat band 4, which are selected step by
step to effectively separate the data. For example, the
elevation variable separates samples in the left branch to
predict class 8, while Landsat band 4 in the right branch
predicts class 1 with a clear separation. RF, consisting of
many DTs (Figure 3b), is difficult to track in its entirety
(Wang et al., 2009), but one example tree shows how
variables like band 1, proximity to the government center,
and slope are used to predict land cover classes, with each
tree contributing to the model's complex decision-making. In
GB (Figure 3c¢), one tree shows how the variables Landsat
band 7 and temperature separate the data, with the model
working to correct predictions from the previous tree step by
step, achieving higher accuracy. Meanwhile, Gaussian NB is
a parametric model that assumes Gaussian distribution and
relies on parameters such as mean, variance, and class priors,
where the Dry Land Agriculture class has the highest priority
at 31.27%, influencing the model's tendency to predict
classes with higher initial probabilities when feature
information is not strong enough.

Field assessment of LULC predictive models Land use and
land cover classification maps were generated using RF, GB,
DT, and NB ML algorithms (Figure 4). These maps were
created using rasterio, matplotlib and sklearn libraries, which
allow ML algorithms to read and process raster data
containing spatial information and produce prediction maps.
Each map assigns a code between 1 and 9 to each pixel,
representing the predicted land use class. The differences
observed in these maps stem from the varying prediction
capabilities and methodologies of each algorithm.

Discussion

The RF map stands out for its highest accuracy and
reliability, displaying a more homogeneous color
distribution that more accurately represents the actual land
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use classes. The GB map shows slightly more variability than
RF, though it still maintains a similar level of accuracy. Some
minor differences in predicted classes can be observed in
certain areas when comparing GB to RF. The DT map,
despite offering more detail, has lower accuracy and higher
error rates, with more inconsistencies in color distribution
compared to RF and GB. The NB map, having the lowest
accuracy, shows a highly variable predicted class distribution
and fails to correctly classify some areas.

In field assessments (Table 3), RF demonstrated the
highest overall accuracy (0.88), followed by LULC MoEF
(0.80), GB (0.75), DF (0.65), and NB (0.46). The results
show that RF and GB have good accuracy, particularly for
primary forest and paddy field classes, while DT and NB
show lower accuracy. The RF model achieved superior
performance over the LULC MoEF classification largely due
to its ability to incorporate a diverse set of variables (Patil &
Panhalkar, 2023) beyond just satellite imagery and spectral
indices, which the MoEF model primarily relies on (BSN,
2020). Satellite imagery, while valuable, is often hindered by
cloud cover, leading to gaps in data and less reliable
classifications (Li et al., 2024). This limitation is particularly
problematic for the MoEF model (BSN, 2020), which doesn't
have additional variables to compensate for these gaps. In
contrast, the RF model integrates a wide array of variables
(Purnama et al., 2024), including climate, physiographic, and
socio-economic factors. This multi-variable approach is a
significant advantage because it allows the model to maintain
accuracy even when one variable (Bin et al., 2016; Gavade &
Rajpurohit, 2021), like satellite data, is compromised. For
instance, if cloud cover obscures land features in the satellite
imagery, the RF model can rely more heavily on other
variables, such as elevation or proximity to human
infrastructure, to inform its classifications. This flexibility
and adaptability make the RF model more robust and
accurate, as it can effectively use the available data to
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compensate for any missing or unreliable information from a
single source (Wang & Ma, 2023). The ability of the RF
model to leverage a diverse set of variables ensures that it can
provide more accurate and reliable land cover classifications,
overcoming the limitations that a narrower, single-source
approach like the MoEF model faces. This multi-faceted
approach explains why RF achieves higher overall accuracy
and Kappa statistics, making it a more effective tool for land
cover classification.

The findings of this study have significant implications
for addressing global climate challenges, particularly in
managing land cover changes like deforestation and
agricultural expansion, which influence carbon dynamics.
The use of ML with multi-variable datasets provides a robust
approach for monitoring these changes. Identifying key
factors like temperature and settlement proximity supports
sustainable land use planning and adaptive management to
mitigate climate impacts (Purnama & Coban, 2024).

Conclusion

The results demonstrated that the RF model out-
performed the other models as well as the LULC
classification by the Ministry of Environment and Forestry,
which relies solely on satellite imagery and spectral indices.
The strength of the RF model lies in its ability to incorporate a
diverse range of variables, including climate data,
physiographic attributes, and socio-economic factors,
allowing the model to maintain accuracy even when one or
more variables are limited, such as the issue of cloud cover in
satellite imagery. The RF model achieved the highest field
assessment overall accuracy (0.88) with a high Kappa
statistic (0.86), indicating excellent agreement between the
model's predictions and ground truth data. This study
highlights the importance of a multi-variable approach in ML
models for LULC classification, which can significantly
improve prediction accuracy by leveraging multiple data
sources to overcome the limitations of relying on a single
data source. Furthermore, these findings could influence
local policies in Lombok by providing more accurate data to
guide spatial planning, such as identifying areas for
conservation, urban expansion, or agricultural development.
Such data-driven decision-making supports sustainable land
use management and environmental conservation efforts on
theisland.

Recommendation

It is recommended to integrate more diverse datasets,
such as high-resolution temporal satellite data and detailed
socio-economic indicators, to further enhance LULC
classification accuracy. Additionally, exploring advanced
ML techniques like deep learning could improve predictive
capabilities in complex landscapes. For the Ministry of
Environment and Forestry (MoEF), adopting a multi-
variable with latest technology approach will significantly
enhance the accuracy of land cover maps, leading to better
land management and environmental monitoring across
Indonesia.
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