Pengembangan Model Prediksi Kelulusan Calon Mahasiswa Sarjana pada Sistem Seleksi SNMPTN IPB

Wadudi Muthahari(1) , Sony Hartono Wijaya(2) , Utami Dyah Syafitri(3)
(1) Program Studi Ilmu Komputer, Sekolah Sains Data, Matematika dan Informatika, IPB University,
(2) Program Studi Ilmu Komputer, Sekolah Sains Data, Matematika dan Informatika, IPB University,
(3) Program Studi Statistika dan Sains Data, Sekolah Sains Data, Matematika dan Informatika, IPB University

Abstrak

Since 2019, the SNMPTN selection process at IPB has used web-based selection media and specific algorithms. However, the process has not yet implemented machine learning-based modeling that can provide recommendations on a student's likelihood of being accepted as an IPB student. This study aims to find out what factors influence prospective students passing the IPB SNMPTN pathway and to develop machine learning modeling using Random Forest and Binary Logistic Regression. Four models were built and trained using hyperparameter tuning. The first model uses all features without balancing. The second model uses all features and SMOTE. The third model uses feature selection and SMOTE, and the fourth uses feature selection by Expert Adjustment (EA) and SMOTE. The results show that the models tested using test data with SMOTE data balancing consistently show higher recall values compared to models without data balancing. The third model with Binary Logistic Regression on West Java data and the second model with Binary Logistic Regression on Non-West Java data show the best recall values of 88.93% and 86.91%, respectively. The modeling results also show that the order of college selection, school index category, academic achievements, and program of study choice significantly impact the prediction of applicants’ passing.

Artikel teks lengkap

Generated from XML file

Penulis

Wadudi Muthahari
dudimuthahari03@apps.ipb.ac.id (Kontak utama)
Sony Hartono Wijaya
Utami Dyah Syafitri
Pengembangan Model Prediksi Kelulusan Calon Mahasiswa Sarjana pada Sistem Seleksi SNMPTN IPB. (2025). Jurnal Ilmu Komputer Dan Agri-Informatika, 12(1), 59-71. https://doi.org/10.29244/jika.12.1.59-71

Rincian Artikel

Cara Mengutip

Pengembangan Model Prediksi Kelulusan Calon Mahasiswa Sarjana pada Sistem Seleksi SNMPTN IPB. (2025). Jurnal Ilmu Komputer Dan Agri-Informatika, 12(1), 59-71. https://doi.org/10.29244/jika.12.1.59-71

Artikel paling banyak dibaca berdasarkan penulis yang sama

Model Klasifikasi Fase Pertumbuhan Tebu dari Citra Sentinel 1 Multi-temporal Menggunakan Algoritma Random Forest

Vandam Caesariadi Bramdito, Sony Hartono Wijaya, Imas Sukaesih Sitanggang
Abstract View : 544
Download :438