Penerapan Metode K-Nearest Neighbor dan Support Vector Machine untuk Klasifikasi Kematangan Buah Mengkudu
Abstrak
Buah mengkudu (Morinda citrifolia) merupakan salah satu komoditas ekspor buah-buahan di Indonesia yang selalu tersedia di setiap musim dan dikenal memiliki berbagai manfaat kesehatan. Buah mengkudu berasal dari wilayah Asia Tenggara, termasuk Indonesia, dan sering digunakan dalam pengobatan tradisional. Pada umumnya masyarakat menentukan kematangan buah mengkudu secara manual, yaitu dengan menggunakan penampakan visual. Hal ini menyebabkan adanya perbedaan persepsi dalam menentukan tingkat kematangan buah mengkudu. Oleh karena itu, penelitian ini bertujuan membangun model machine learning untuk klasifikasi tingkat kematangan buah mengkudu. Metode klasifikasi yang digunakan adalah K-Nearest Neighbor (KNN) dan Support Vector Machine (SVM) dengan menggunakan ekstraksi fitur warna Hue Saturation Intensity (HSI) dan ekstraksi fitur tekstur Local Binary Pattern (LBP). Pengklasifikasian yang dilakukan pada buah mengkudu dengan algoritma KNN menghasilkan model klasifikasi yang lebih baik daripada menggunakan algoritma SVM. Akurasi terbaik yang dihasilkan oleh KNN sebesar 88.62% pada k=11, sedangkan akurasi terbaik SVM dengan kernel polynomial sebesar 87.80%, menggunakan parameter C=0.1 Gamma=1, Degree=5, dan coef0=1.0. Hasil ini didapatkan dari data latih dan data uji dengan perbandingan 80:20.
Artikel teks lengkap
Penulis
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.