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Abstract

A significant challenge in medical imaging is the limited availability of high-quality datasets. Generative
Artificial Intelligence (Generative Al) addresses this issue by generating synthetic medical images to augment
existing datasets. This study investigates the use of Deep Convolutional Generative Adversarial Networks
(DCGAN) for data augmentation in Cervical Intraepithelial Neoplasia (CIN) imaging. The dataset used in this
study consists of 233 training images with a resolution of 256 %256 pixels, illustrating the typical limitations of
small-scale medical datasets. Two training scenarios were implemented: DCGAN with manual data augmentation
and DCGAN without manual augmentation. Image quality was evaluated using the Fréchet Inception Distance
(FID). The results indicate that incorporating data augmentation improves training stability and enhances the
quality of generated images, achieving an FID of 2.21. In contrast, training DCGAN without manual augmentation
produced a higher FID score of 2.52, indicating lower image quality. These findings highlight the effectiveness of
DCGAN for medical image augmentation and its potential to enhance deep learning-based diagnostic models for
cervical cancer detection and classification.
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INTRODUCTION

Medical imaging plays a vital role in disease diagnosis and treatment by providing
essential insights into pathological conditions. Accurate diagnosis relies not only on the quality
of image acquisition but also on effective image interpretation. However, assembling large and
diverse medical image datasets remains a significant challenge, primarily due to ethical
considerations, patient privacy regulations, and the limited availability of annotated data
(Pinaya et al. 2023). This problem is especially common in cervical intraepithelial neoplasia
(CIN), a condition where abnormal cells grow on the surface of the cervix and may lead to
cervical cancer. It is often hard to collect a large and high-quality set of CIN images. CIN refers
to a range of precancerous abnormalities linked to the progression of invasive cervical
carcinoma. CIN is classified into three stages: CIN1, CIN2, and CIN3 (Wang et al. 2024).
However, high-quality CIN datasets are scarce, especially for early-stage lesions. This scarcity
limits the development of reliable deep learning models for automated CIN detection and
classification.

Researchers attempt to address this issue by applying data augmentation techniques that
transform existing images through operations such as rotation, cropping, and resizing. While
these approaches can enhance model robustness, they do not substantially increase the intrinsic
diversity of the dataset (Goodfellow et al. 2020). The introduction of redundant or slightly
altered samples has become a standard procedure to improve network training performance in
computer vision applications (Smaida et al. 2021).

This limitation highlights a key research gap: conventional augmentation alone is
insufficient to address the lack of diversity in CIN datasets, underscoring the need for more
advanced augmentation strategies capable of generating truly data instances. Generative
Artificial Intelligence provides a promising direction for alleviating data scarcity, particularly
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within the domain of medical image analysis. Generative Al refers to a class of artificial
intelligence methods that train model to synthesize new data samples that resemble the
distribution of the original dataset. Unlike traditional discriminative models, this Al focuses on
generating new content, such as images, music, text, or video, rather than performing
classification tasks (Musalamadugu & Kannan 2023). Recently, one of the most significant
methods developed is Generative Adversarial Networks (GANs) (Goodfellow et al. 2020).

GANSs represent a powerful approach for generating synthetic medical images. Rooted in
the concept of zero-sum games from game theory, GANs consist of two primary components:
a generator and a discriminator. These components are trained in opposition, with the generator
aiming to create realistic images and the discriminator learning to differentiate between real
and synthetic images. This adversarial training process enables the network to model the
underlying data distribution and generate new, realistic samples.

Since their introduction, GANs have attracted considerable attention in medical imaging
due to their ability to generate realistic synthetic data. The introduction of GANs by
Goodfellow et al. (2020) marked a significant advancement in deep learning-based data
synthesis, enabling the production of high-quality images from learned data distributions.
Several studies have explored the use of GANs for medical data augmentation, addressing the
challenge of the limited availability of large and diverse annotated datasets. Various techniques
have been proposed across different medical fields, including Computed Tomography (CT)
(Liu et al. 2021; Meor Yahaya & Teo 2023; Zhao et al. 2023), Magnetic Resonance Imaging
(MRI) (Jiang et al. 2021; Alrashedy et al. 2022; Zhang et al. 2022), and X-Rays (Ciano et al.
2021; Motamed et al. 2021; Sundaram & Hulkund 2021). Several GAN variants have been
developed to improve the quality of generated images. Methods such as CycleGAN (Zhu et al.
2017), DualGAN (Yi et al. 2017), CGAN (Mirza & Osindero 2014), and Progressive Growing
GAN (PGGAN) (Karras et al. 2017), have demonstrated effectiveness in generating high-
quality medical images for augmentation purposes. Additional GAN architectures have been
proposed to enhance image synthesis quality, Motamed et al. (2021) introduced the Inception-
Augmentation GAN (IAGAN), inspired by DAGAN (Antoniou et al. 2017), which enhances
the performance of other GAN architectures and significantly improves model accuracy for
data augmentation. Among these, Deep Convolutional GAN (DCGAN) has been recognized
for its stability and effectiveness in generating high-quality medical images (Radford et al.
2015). Radford et al. introduced deep convolution layers and batch normalization in DCGAN,
resulting in improved training convergence and image realism. Zhang et al. (2023) proposed
WGAN-GP to address few-shot imbalance datasets, thereby improving the performance of
classification models when training data are insufficient and unevenly distributed. Huang et al.
(2021) explored the GAN-Based data augmentation to generate realistic 256 x 256 brain tumor
MR images with diversity on a small amount of training data for more diversity and exceeding
performance of GAN-based models. Zhao et al. (2024) demonstrated that cycleGAN-based
style transfer approach can accurately convert ultrasound images from different devices into
standardized format, thereby improving image quality and the performance of radiomics
studies.

Among existing GAN variants, DCGAN has been widely recognized for its stability and
effectiveness in generating high-quality medical images (Smaida et al. 2021). Smaida et al.
(2021) used a DCGAN and GMD model and confirmed that with the help of DCGAN, the
GMD model (CNN model) can yield a better accuracy compared to traditional methods.
Wubineh et al. (2024) proposed RES DGAN data augmentation for classification of cervical
cells, showed that the performance of the model slightly improves with DCGAN in both
classification problems using theResNet50V2 and Xception architectures. Similarly, Devi and
Kumar (2022) demonstrates the use of DCGAN method to expand a retina image dataset,
successfully generating higher-resolution and higher-quality images that significantly enhanced
downstream classification accuracy.
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Despite these advancements, the use of DCGAN specifically for augmenting CIN images
particularly CIN1, which is frequently underrepresented remains limited. Furthermore, the
comparative impact of training DCGAN with and without additional manual augmentation have
not been systematically investigated. To address these gaps, the present study evaluates the
effectiveness of DCGAN for augmenting CIN1 medical images and to compare the synthetic
image quality produced under two training scenarios: (1) DCGAN trained with manual
augmentation and (2) DCGAN trained without manual augmentation. Image quality is assessed
using the Fréchet Inception Distance (FID). By generating synthetic CIN1 images that capture
the underlying distribution of real lesions, DCGAN directly addresses the scarcity of CIN
datasets, forming the basis for the contributions presented in this study.

METHOD

The proposed framework for CIN image augmentation using DCGAN is illustrated in
Figure 1. The framework consists of five main stages: data preparation, preprocessing,
augmentation, model training, and evaluation for generated images.

IARC Dataset
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Figure 1 Research methodology

Each stage is designed to ensure that the generated images are realistic, diverse, and
suitable for classification tasks. During data preparation, images are selected from the IARC
dataset, with a focus on the CIN 1 category. In the preprocessing stage, images are cropped and
resized to ensure consistency. Data augmentation is then applied to increase dataset variability
through transformations such as rotation, flipping, brightness, and contrast adjustments. The
DCGAN model is then trained to generate high-quality synthetic images. Finally, the generated
images are evaluated to determine their similarity to real samples, improving their suitability
for classification.
a. Data Preparation

The dataset used in this study was obtained from the International Agency for Research
on Cancer (IARC) (International Agency for Research on Cancer 2021) and includes two types
of cervical cancer screening examinations: Colposcopy and Visual Inspection with Acetic Acid
(VIA). The colposcopy dataset includes 202 cases, with each case containing four images: an
untreated image, an image after acetic acid application, an image after iodine application, and
an image after saline application, yielding a total of 913 images. The VIA dataset comprises
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187 cases, each containing two images: one before acetic acid application and one after,
totalling 420 images.

For this study, all images were categorized into CIN 1, CIN 2, and CIN 3. Only CIN1
images were selected, as this category is typically underrepresented and clinically challenging.
Image captured before and after acetic acid application were included to highlight acetowhite
lesions, which indicate early precancerous changes. An example of CIN 1 images shown at
Figure 2. After categorization and filtering, the final dataset used for model training consists of
233 images.

Figure 2 Sample images of CIN 1

b. Pre-Processing

The images in the dataset contained unnecessary frames, noise along the edges, and
visible examination tools or lenses. To address these issues, each image was manually cropped
to retain only the cervix region, as shown in Figure 3. This step ensured that irrelevant areas
were removed, focusing solely on the medically significant regions.

Figure 4 After cropping

Figure 3 shows the image before cropping and figure 4 shows the image after cropping
and taking only the cervix area. Following cropping, all images were resized to a uniform
dimension of 512x512 pixels to ensure consistency during model training. Figure 5 shows an
example of images after cropping and resizing. These preprocessing steps helped to
standardized the dataset and improved input quality for the DCGAN model.
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Figure 5 Before resized (left) and after resized (right)

c. Data Augmentation

To further enhance dataset diversity, nine types of augmentation were applied to each
image. These augmentations included horizontal flipping, three rotational transformations (90°,
180°, and 270°), two brightness adjustments (—0.2 and +0.2), and two contrast modifications
(0.8x and 1.2x). Each transformation was applied independently, resulting in nine augmented
versions per image. The original images were retained, producing a total of 233 x 10 = 2330
training samples. The complete augmented dataset was then used as the input for DCGAN
training. In both training scenarios (with and without augmentation), the models were optimized
using the Adam optimizer with f1 = 0.5 and B2 = 0.999. The augmented model used a learning
rate of 1 x 1074, batch size 32, and latent vector dimension 256, while the non-augmented model
used a learning rate of 2 x 1074, batch size 16, and latent dimension 128. Both models were
trained for 1500 epochs. To stabilize adversarial training, label smoothing was applied (0.8 for
real labels and 0.2 for fake labels), and gradient clipping in the range [-1.0, 1.0] was used to
prevent exploding gradients. Although no explicit random seed was enforced, training behavior
remained consistent across runs.

Quantitative evaluation was performed using the Fréchet Inception Distance (FID),
computed every 500 epochs using a 1:1 ratio of real to generated images. For each FID
calculation, N = 233 real CIN1 images were compared against 233 generated images, both
resized to 299 x 299 pixels prior to feature extraction using InceptionV3.

d. Deep Convolutional Generative Adversarial Networks (DCGAN)

DCGAN is an improved version of the traditional GAN architecture that incorporates
deep convolutional layers to enhance the quality and stability of image generation. Introduced
by Radford ef al. (2015), DCGAN addresses challenges in training standard GANs by replacing
fully connected layers with deep convolutional networks, using batch normalization to stabilize
training, and adopting LeakyReLU as an activation function in the discriminator. Similar to
standard GAN, DCGAN consists of two primary components: a generator and a discriminator.
The generator network that takes random noise z (a random number) and generates images from
this noise, while the discriminator evaluates whether an image is real or generated (Liu ef al.
2022). Figure 6 illustrates the interaction between the discriminator and generator in this study,
showing how adversarial training drives both networks to improve iteratively.
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Figure 6 Generator function (G) (left) and discriminator function (d) (right)

The generator network converts random noise vectors into synthetic CIN images using a
series of up-sampling layers. The architecture begins with a random noise vector of size 256,
which is processed by a dense layer with 8 x 8 x 512 units and no bias parameters. The bias
term is excluded because the subsequent batch normalization layer applies a learned shift ()
and scale (y), rendering the bias redundant and preventing parameter duplication. After the
dense layer, batch normalization and LeakyReLU activation (o = 0.2) are applied, and the
output is reshaped into 8 x 8 x 512 feature maps. Four transposed convolution blocks then
perform progressive up-sampling as shown in Figure 6. The output is then reshaped to 8 x 8 x
512 feature maps. Four transposed convolution blocks perform progressive up-sampling, as
shown at Figure 6. Each block uses a 4 x 4 kernel with a stride of 2, followed by batch
normalization and LeakyReLU activation. The output layer generates a 3-channel image with
tanh activation, producing RGB images in the range [-1, 1]. The discriminator network
determines whether an image is real or generated. It receives a 128 x 128 x 3 RGB image as
input and processes it through five convolutional blocks for progressive down-sampling as
shown at Figure 6. All blocks except the first use batch normalization and LeakyReLU (o =
0.2). The output from the convolutional layers is flattened, passed through a dropout layer for
regularization, and finally through a single-unit dense layer with sigmoid activation to yield a
probability score.

e. Fréchet Inception Distance (FID)

The quality of generated images was primarily evaluated using the FID score (Dowson &
Landau 2003). Heusel ef al. (2017) demonstrated that the FID is consistent in measuring
increased disturbances and aligns with human judgment, also measures the similarity between
the distribution of generated images and real images. Lower FID scores indicate better quality
and more realistic synthetic images. The calculation process involved using a pre-trained
InceptionV3 model (excluding the top classification layer) to extract features, resizing both real
and generated images to 299 x 299 pixels, calculating means (i) and covariances (X) of the
feature distributions, and computing the FID using the formula:
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d2(F,G) = |1y — ol + e[ + 3, — 2/(E3,) (1)
where [, X1 are statistics of real images and 12, X» are statistics of generated images. Both

generator and discriminator losses were tracked throughout training to monitor convergence
and stability.

RESULTS AND DISCUSSION

In this study, DCGAN model was trained under two different scenarios: (1) with data
augmentation (including flipping, rotation, brightness, and contrast adjustments) and (2)
without data augmentation. Both models were trained for 1500 epochs. The evaluation was
conducted by analyzing the generator and discriminator loss curves as well as the FID scores.
Throughout the training process, the generator loss initially exhibited high fluctuations,
reflecting the difficulty of early-stage adversarial learning. However, the loss gradually
stabilized around epoch 1000, indicating that the generator had become increasingly effective
at producing images that could fool the discriminator. The discriminator loss showed a similar
pattern of early instability followed by convergence, suggesting that both networks eventually
reached a balanced adversarial state. The training results shown that at the beginning of training,
the generator produced images with unclear structures. As the number of epochs increased, the
quality of the resulting images improved with more realistic anatomical details as shown in
Figure 7.

Figure 7 Sample result with data augmentation, generated data at epoch 500 (left)
and generated data at epoch 1500 (right)

It can be seen from Figure 7 that there is still a lot of noise and the image is still unclear
at epoch 500, but at epoch 1500, the generator successfully produced images that exhibited
more coherent structure and reduced noise levels. The use of label smoothing (0.8 for real
images and 0.2 for fake images) and gradient clipping ([-1.0, 1.0]) proved effective in
preventing mode collapse and training instability, which are common challenges in GAN
training. These stabilization strategies contributed to consistent improvements in image quality
across the training process. In contrast, images produced without adding image augmentation
exhibited higher noise levels, a less coherent visual structure, and more pronounced artifacts,
as shown in Figure 8. In the early training stages around epoch 500, the generated images in
both with data augmentation and without data augmentation contained the basic color profile
of CIN cells but lacked proper cellular structure and showed significant artifacts. By epoch
1500, the model was able to generate more realistic cellular patterns, though some abnormalities
in texture and shape were still present.
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Generated images at epoch 1500

Figure 8 Result samples without data augmentation

a. Impact of Manual Data Augmentation

The improved performance observed in the augmented training scenario can be attributed
to several interrelated factors that collectively enhanced the learning process. Manual data
augmentation techniques effectively increased the dataset size from 233 to approximately 2097
images, providing the model with a more diverse set of examples and reducing the risk of
overfitting to specific image characteristics. Moreover, transformations such as rotations and
flips helped the model develop invariance to spatial orientation, which is particularly important
in medical imaging, as the orientation of cervical cells should not affect classification. In
addition, brightness and contrast adjustments further enhanced the model's robustness to the
natural variations in staining and imaging conditions commonly encountered in cytological
samples. As a result, the generator was able to learn more generalizable feature representations,
leading to the synthesis of more realistic and visually consistent images.
b. Impact of Hyperparameters

Performance differences between the two models can also be attributed to differences in
hyperparameter configurations. Table 1 summarizes the hyperparameter used in the DCGAN
models trained with and without manual data augmentation. Several key observations can be
drawn from this comparison.

Table 1 Training setup

Data 'Hyperparameters
Augmentation  Shape Learning Bgtch Lat.ent Space
Rate Size Dimension
With 128 le-4 32 256
Without 128 2e-4 16 128

First, the augmented model uses a larger latent space (256 compared to 128), allowing
the generator to encode a richer and more diverse set of latent features. This increased
representational capacity can enhance the quality and variability of generated images. Second,
the batch size in the augmented model is twice as large (32 versus 16), which contributes to
more stable gradient updates during training. A larger batch sizes can help stabilize training,
leading to better generalization and a smoother convergence trajectory. Additionally, the
learning rate for the augmented model is set to 1 x 10, whereas the non-augmented model
uses a higher learning rate of 2 x 10™*. A lower learning rate can contribute to more stable
training, preventing drastic updates that might destabilize the GAN.
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c. FID Score Analysis

The Fréchet Inception Distance (FID) was calculated every 500 epochs to quantitatively
assess the quality of generated images. Table 2 presents the FID Score obtained at different
training stages for both models.

Table 2 FID score

Epoch . . FID seore .
With Data Augmentation Without Data Augmentation
500 2.52 4.01
1000 2.39 3.13
1500 2.21 2.52

As shown in Table 2, the DCGAN trained with manual data augmentation exhibited a
consistent decrease in FID scores throughout training, starting from approximately 2.52 at
epoch 500 and reaching 2.21 at epoch 1500. In contrast, the model trained without data
augmentation began with a substantially higher FID score of 4.01 at epoch 500 and decreased
to 2.52 by the final epoch. The results indicate that applying data augmentation improves the
quality of generated images, as evidenced by consistently lower FID scores compared to
training without augmentation. At epoch 500, the FID score with augmentation is 2.52, while
the model without augmentation scores 4.01. As training progresses, both models improve, but
the gap remains, with the augmented model achieving 2.21 at epoch 1500, whereas the non-
augmented model scores 2.52. Furthermore, the stability of the training process was influenced
by differences in hyperparameter settings, particularly batch size and learning rate. The learning
rate and batch size differed between the two models may have contributed to the observed
variations in performance.

d. Discussion

The combination of data augmentation and modified hyperparameters led to a more stable
training process and improved image quality. The lower FID scores achieved by the augmented
model indicate that the generated images are more closely resemble to real samples. While data
augmentation improves diversity and generalization, it also changes the distribution of training
data, requiring adjustments in the latent space dimensionality and optimization parameters. The
findings demonstrate that augmenting the dataset and optimizing hyperparameters significantly
enhance DCGAN’s ability to generate high-quality synthetic images. Despite increasing the
effective dataset size to approximately 2097 images, the dataset remains relatively small
compared to those typically used for GAN training in other domains. Furthermore, Cervical
Intraepithelial Neoplasia (CIN) images contain complex cellular structures that require high
fidelity reproduction, making the generation task inherently more challenging compared to
common GAN applications involving natural images or faces datasets.

CONCLUSION

The limitation of available datasets remains a major challenge in medical imaging, often
leading to suboptimal classification performance due to constraints related to patient privacy,
high acquisition costs, and the need for expert annotation. This study investigated the
effectiveness of DCGAN for augmenting CIN1 images to address the challenge of limited
medical imaging data. The experimental results showed that the DCGAN model trained with
manual data augmentation achieved a lower FID score of 2.21, compared to 2.52 for the model
trained without augmentation, indicating a measurable improvement in the similarity between
synthetic and real images. In addition to improved image quality, the augmented training
scenario exhibited more stable generator and discriminator loss curves after approximately
1000 epochs, demonstrating improved adversarial convergence. The findings further reveal that
the differences in hyperparameters—such as the latent dimension (256 vs. 128), batch size (32
vs. 16), and learning rate (1 x 10 vs. 2 x 10™) - play a critical role in training stability and
output quality. Collectively, these results highlight the importance of combining effective data
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augmentation strategies with carefully tuned hyperparameters to enhance GAN performance in
data-limited medical imaging settings.

Future work should expand on these findings by exploring more advanced GAN
architectures, systematically analyzing the individual contributions of different augmentation
techniques, and conducting downstream evaluations using classification models trained with
the synthetic images. Such evaluations are essential to determine whether improvements in
generative quality translate into tangible gains in clinical diagnostic performance.
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