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Abstract 

A significant challenge in medical imaging is the limited availability of high-quality datasets. Generative 

Artificial Intelligence (Generative AI) addresses this issue by generating synthetic medical images to augment 

existing datasets. This study investigates the use of Deep Convolutional Generative Adversarial Networks 

(DCGAN) for data augmentation in Cervical Intraepithelial Neoplasia (CIN) imaging. The dataset used in this 

study consists of 233 training images with a resolution of 256×256 pixels, illustrating the typical limitations of 

small-scale medical datasets.  Two training scenarios were implemented: DCGAN with manual data augmentation 

and DCGAN without manual augmentation. Image quality was evaluated using the Fréchet Inception Distance 

(FID). The results indicate that incorporating data augmentation improves training stability and enhances the 

quality of generated images, achieving an FID of 2.21. In contrast, training DCGAN without manual augmentation 

produced a higher FID score of 2.52, indicating lower image quality. These findings highlight the effectiveness of 

DCGAN for medical image augmentation and its potential to enhance deep learning-based diagnostic models for 

cervical cancer detection and classification. 
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INTRODUCTION 
Medical imaging plays a vital role in disease diagnosis and treatment by providing 

essential insights into pathological conditions. Accurate diagnosis relies not only on the quality 

of image acquisition but also on effective image interpretation. However, assembling large and 

diverse medical image datasets remains a significant challenge, primarily due to ethical 

considerations, patient privacy regulations, and the limited availability of annotated data 

(Pinaya et al. 2023). This problem is especially common in cervical intraepithelial neoplasia 

(CIN), a condition where abnormal cells grow on the surface of the cervix and may lead to 

cervical cancer. It is often hard to collect a large and high-quality set of CIN images.  CIN refers 

to a range of precancerous abnormalities linked to the progression of invasive cervical 

carcinoma. CIN is classified into three stages: CIN1, CIN2, and CIN3 (Wang et al. 2024). 

However, high-quality CIN datasets are scarce, especially for early-stage lesions. This scarcity 

limits the development of reliable deep learning models for automated CIN detection and 

classification. 

Researchers attempt to address this issue by applying data augmentation techniques that 

transform existing images through operations such as rotation, cropping, and resizing. While 

these approaches can enhance model robustness, they do not substantially increase the intrinsic 

diversity of the dataset (Goodfellow et al. 2020). The introduction of redundant or slightly 

altered samples has become a standard procedure to improve network training performance in 

computer vision applications (Smaida et al. 2021). 

This limitation highlights a key research gap: conventional augmentation alone is 

insufficient to address the lack of diversity in CIN datasets, underscoring the need for more 

advanced augmentation strategies capable of generating truly data instances. Generative 

Artificial Intelligence provides a promising direction for alleviating data scarcity, particularly 

 
1 Computer Science, Faculty of Computer Science, Universitas Sriwijaya, Palembang, South Sumatra 
2 Intelligent System Research Group, Faculty of Computer Science, Universitas Sriwijaya, Palembang, South Sumatra 

*Correspondence Author: Surel: aininabilahalfatah@gmail.com 

Tersedia secara daring di: 

https://jurnal.ipb.ac.id/index.php/jika 



168 Nabilah dan Nurmaini JIKA 

within the domain of medical image analysis. Generative AI refers to a class of artificial 

intelligence methods that train model to synthesize new data samples that resemble the 

distribution of the original dataset. Unlike traditional discriminative models, this AI focuses on 

generating new content, such as images, music, text, or video, rather than performing 

classification tasks (Musalamadugu & Kannan 2023). Recently, one of the most significant 

methods developed is Generative Adversarial Networks (GANs) (Goodfellow et al. 2020). 

GANs represent a powerful approach for generating synthetic medical images. Rooted in 

the concept of zero-sum games from game theory, GANs consist of two primary components: 

a generator and a discriminator. These components are trained in opposition, with the generator 

aiming to create realistic images and the discriminator learning to differentiate between real 

and synthetic images. This adversarial training process enables the network to model the 

underlying data distribution and generate new, realistic samples. 

Since their introduction, GANs have attracted considerable attention in medical imaging 

due to their ability to generate realistic synthetic data. The introduction of GANs by  

Goodfellow et al. (2020) marked a significant advancement in deep learning-based data 

synthesis, enabling the production of high-quality images from learned data distributions. 

Several studies have explored the use of GANs for medical data augmentation, addressing the 

challenge of the limited availability of large and diverse annotated datasets. Various techniques 

have been proposed across different medical fields, including Computed Tomography (CT) 

(Liu et al. 2021; Meor Yahaya & Teo 2023; Zhao et al. 2023), Magnetic Resonance Imaging 

(MRI) (Jiang et al. 2021; Alrashedy et al. 2022; Zhang et al. 2022), and X-Rays (Ciano et al. 

2021; Motamed et al. 2021; Sundaram & Hulkund 2021). Several GAN variants have been 

developed to improve the quality of generated images. Methods such as CycleGAN (Zhu et al. 

2017), DualGAN (Yi et al. 2017), CGAN (Mirza & Osindero 2014), and Progressive Growing 

GAN (PGGAN) (Karras et al. 2017), have demonstrated effectiveness in generating high-

quality medical images for augmentation purposes. Additional GAN architectures have been 

proposed to enhance image synthesis quality, Motamed et al. (2021) introduced the Inception-

Augmentation GAN (IAGAN), inspired by DAGAN (Antoniou et al. 2017), which enhances 

the performance of other GAN architectures and significantly improves model accuracy for 

data augmentation. Among these, Deep Convolutional GAN (DCGAN) has been recognized 

for its stability and effectiveness in generating high-quality medical images (Radford et al. 

2015). Radford et al. introduced deep convolution layers and batch normalization in DCGAN, 

resulting in improved training convergence and image realism. Zhang et al. (2023) proposed 

WGAN-GP to address few-shot imbalance datasets, thereby improving the performance of 

classification models when training data are insufficient and unevenly distributed. Huang et al. 

(2021) explored the GAN-Based data augmentation to generate realistic 256 x 256 brain tumor 

MR images with diversity on a small amount of training data for more diversity and exceeding 

performance of GAN-based models. Zhao et al. (2024) demonstrated that cycleGAN-based 

style transfer approach can accurately convert ultrasound images from different devices into 

standardized format, thereby improving image quality and the performance of radiomics 

studies. 

Among existing GAN variants, DCGAN has been widely recognized for its stability and 

effectiveness in generating high-quality medical images (Smaida et al. 2021). Smaida et al. 

(2021) used a DCGAN and GMD model and confirmed that with the help of DCGAN, the 

GMD model (CNN model) can yield a better accuracy compared to traditional methods. 

Wubineh et al. (2024) proposed RES_DGAN data augmentation for classification of cervical 

cells, showed that the performance of the model slightly improves with DCGAN in both 

classification problems using theResNet50V2 and Xception architectures. Similarly, Devi and 

Kumar (2022) demonstrates the use of DCGAN method to expand a retina image dataset, 

successfully generating higher-resolution and higher-quality images that significantly enhanced 

downstream classification accuracy.  
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Despite these advancements, the use of DCGAN specifically for augmenting CIN images 

particularly CIN1, which is frequently underrepresented remains limited. Furthermore, the 

comparative impact of training DCGAN with and without additional manual augmentation have 

not been systematically investigated. To address these gaps, the present study evaluates the 

effectiveness of DCGAN for augmenting CIN1 medical images and to compare the synthetic 

image quality produced under two training scenarios: (1) DCGAN trained with manual 

augmentation and (2) DCGAN trained without manual augmentation. Image quality is assessed 

using the Fréchet Inception Distance (FID). By generating synthetic CIN1 images that capture 

the underlying distribution of real lesions, DCGAN directly addresses the scarcity of CIN 

datasets, forming the basis for the contributions presented in this study. 

 

METHOD 
The proposed framework for CIN image augmentation using DCGAN is illustrated in 

Figure 1. The framework consists of five main stages: data preparation, preprocessing, 

augmentation, model training, and evaluation for generated images. 

 

 
Figure 1  Research methodology 

Each stage is designed to ensure that the generated images are realistic, diverse, and 

suitable for classification tasks. During data preparation, images are selected from the IARC 

dataset, with a focus on the CIN 1 category. In the preprocessing stage, images are cropped and 

resized to ensure consistency. Data augmentation is then applied to increase dataset variability 

through transformations such as rotation, flipping, brightness, and contrast adjustments. The 

DCGAN model is then trained to generate high-quality synthetic images. Finally, the generated 

images are evaluated to determine their similarity to real samples, improving their suitability 

for classification. 

a. Data Preparation 

The dataset used in this study was obtained from the International Agency for Research 

on Cancer (IARC) (International Agency for Research on Cancer 2021) and includes two types 

of cervical cancer screening examinations: Colposcopy and Visual Inspection with Acetic Acid 

(VIA). The colposcopy dataset includes 202 cases, with each case containing four images: an 

untreated image, an image after acetic acid application, an image after iodine application, and 

an image after saline application, yielding a total of 913 images. The VIA dataset comprises 
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187 cases, each containing two images: one before acetic acid application and one after, 

totalling 420 images. 

For this study, all images were categorized into CIN 1, CIN 2, and CIN 3. Only CIN1 

images were selected, as this category is typically underrepresented and clinically challenging. 

Image captured before and after acetic acid application were included to highlight acetowhite 

lesions, which indicate early precancerous changes. An example of CIN 1 images shown at 

Figure 2. After categorization and filtering, the final dataset used for model training consists of 

233 images.  

 

 

Figure 2  Sample images of CIN 1 

b. Pre-Processing 

The images in the dataset contained unnecessary frames, noise along the edges, and 

visible examination tools or lenses. To address these issues, each image was manually cropped 

to retain only the cervix region, as shown in Figure 3. This step ensured that irrelevant areas 

were removed, focusing solely on the medically significant regions. 

 
Figure 3  Before cropping 

 
Figure 4  After cropping 

Figure 3 shows the image before cropping and figure 4 shows the image after cropping 

and taking only the cervix area. Following cropping, all images were resized to a uniform 

dimension of 512×512 pixels to ensure consistency during model training. Figure 5 shows an 

example of images after cropping and resizing. These preprocessing steps helped to 

standardized the dataset and improved input quality for the DCGAN model. 
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Figure 5  Before resized (left) and after resized (right) 

c. Data Augmentation 

To further enhance dataset diversity, nine types of augmentation were applied to each 

image. These augmentations included horizontal flipping, three rotational transformations (90°, 

180°, and 270°), two brightness adjustments (–0.2 and +0.2), and two contrast modifications 

(0.8× and 1.2×). Each transformation was applied independently, resulting in nine augmented 

versions per image. The original images were retained, producing a total of 233 × 10 = 2330 

training samples. The complete augmented dataset was then used as the input for DCGAN 

training. In both training scenarios (with and without augmentation), the models were optimized 

using the Adam optimizer with β₁ = 0.5 and β₂ = 0.999. The augmented model used a learning 

rate of 1 × 10⁻⁴, batch size 32, and latent vector dimension 256, while the non-augmented model 

used a learning rate of 2 × 10⁻⁴, batch size 16, and latent dimension 128. Both models were 

trained for 1500 epochs. To stabilize adversarial training, label smoothing was applied (0.8 for 

real labels and 0.2 for fake labels), and gradient clipping in the range [–1.0, 1.0] was used to 

prevent exploding gradients. Although no explicit random seed was enforced, training behavior 

remained consistent across runs. 

Quantitative evaluation was performed using the Fréchet Inception Distance (FID), 

computed every 500 epochs using a 1:1 ratio of real to generated images. For each FID 

calculation, N = 233 real CIN1 images were compared against 233 generated images, both 

resized to 299 × 299 pixels prior to feature extraction using InceptionV3. 

d. Deep Convolutional Generative Adversarial Networks (DCGAN) 

DCGAN is an improved version of the traditional GAN architecture that incorporates 

deep convolutional layers to enhance the quality and stability of image generation. Introduced 

by Radford et al. (2015), DCGAN addresses challenges in training standard GANs by replacing 

fully connected layers with deep convolutional networks, using batch normalization to stabilize 

training, and adopting LeakyReLU as an activation function in the discriminator. Similar to 

standard GAN, DCGAN consists of two primary components: a generator and a discriminator. 

The generator network that takes random noise z (a random number) and generates images from 

this noise, while the discriminator evaluates whether an image is real or generated (Liu et al. 

2022).  Figure 6 illustrates the interaction between the discriminator and generator in this study, 

showing how adversarial training drives both networks to improve iteratively. 
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Figure 6  Generator function (G) (left) and discriminator function (d) (right) 

The generator network converts random noise vectors into synthetic CIN images using a 

series of up-sampling layers. The architecture begins with a random noise vector of size 256, 

which is processed by a dense layer with 8 × 8 × 512 units and no bias parameters. The bias 

term is excluded because the subsequent batch normalization layer applies a learned shift (β) 

and scale (γ), rendering the bias redundant and preventing parameter duplication. After the 

dense layer, batch normalization and LeakyReLU activation (α = 0.2) are applied, and the 

output is reshaped into 8 × 8 × 512 feature maps. Four transposed convolution blocks then 

perform progressive up-sampling as shown in Figure 6. The output is then reshaped to 8 × 8 × 

512 feature maps. Four transposed convolution blocks perform progressive up-sampling, as 

shown at Figure 6. Each block uses a 4 × 4 kernel with a stride of 2, followed by batch 

normalization and LeakyReLU activation. The output layer generates a 3-channel image with 

tanh activation, producing RGB images in the range [-1, 1]. The discriminator network 

determines whether an image is real or generated. It receives a 128 × 128 × 3 RGB image as 

input and processes it through five convolutional blocks for progressive down-sampling as 

shown at Figure 6. All blocks except the first use batch normalization and LeakyReLU (α = 

0.2). The output from the convolutional layers is flattened, passed through a dropout layer for 

regularization, and finally through a single-unit dense layer with sigmoid activation to yield a 

probability score. 

e. Fréchet Inception Distance (FID) 

The quality of generated images was primarily evaluated using the FID score (Dowson & 

Landau 2003). Heusel et al. (2017) demonstrated that the FID is consistent in measuring 

increased disturbances and aligns with human judgment, also measures the similarity between 

the distribution of generated images and real images. Lower FID scores indicate better quality 

and more realistic synthetic images. The calculation process involved using a pre-trained 

InceptionV3 model (excluding the top classification layer) to extract features, resizing both real 

and generated images to 299 × 299 pixels, calculating means (μ) and covariances (Σ) of the 

feature distributions, and computing the FID using the formula: 
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𝑑2(𝐹, 𝐺) =  |μ1 − μ2|2 + 𝑡𝑟[Σ1 +  Σ2 − 2√(Σ1Σ2)]                                              (1) 

where μ₁, Σ₁ are statistics of real images and μ₂, Σ₂ are statistics of generated images. Both 

generator and discriminator losses were tracked throughout training to monitor convergence 

and stability. 

 

RESULTS AND DISCUSSION 
In this study, DCGAN model was trained under two different scenarios: (1) with data 

augmentation (including flipping, rotation, brightness, and contrast adjustments) and (2) 

without data augmentation. Both models were trained for 1500 epochs. The evaluation was 

conducted by analyzing the generator and discriminator loss curves as well as the FID scores. 

Throughout the training process, the generator loss initially exhibited high fluctuations, 

reflecting the difficulty of early-stage adversarial learning. However, the loss gradually 

stabilized around epoch 1000, indicating that the generator had become increasingly effective 

at producing images that could fool the discriminator. The discriminator loss showed a similar 

pattern of early instability followed by convergence, suggesting that both networks eventually 

reached a balanced adversarial state.  The training results shown that at the beginning of training, 

the generator produced images with unclear structures. As the number of epochs increased, the 

quality of the resulting images improved with more realistic anatomical details as shown in 

Figure 7. 

 
Figure 7  Sample result with data augmentation, generated data at epoch 500 (left)  

                                      and generated data at epoch 1500 (right) 

It can be seen from Figure 7 that there is still a lot of noise and the image is still unclear 

at epoch 500, but at epoch 1500, the generator successfully produced images that exhibited 

more coherent structure and reduced noise levels. The use of label smoothing (0.8 for real 

images and 0.2 for fake images) and gradient clipping ([-1.0, 1.0]) proved effective in 

preventing mode collapse and training instability, which are common challenges in GAN 

training. These stabilization strategies contributed to consistent improvements in image quality 

across the training process. In contrast, images produced without adding image augmentation 

exhibited higher noise levels, a less coherent visual structure, and more pronounced artifacts, 

as shown in Figure 8. In the early training stages around epoch 500, the generated images in 

both with data augmentation and without data augmentation contained the basic color profile 

of CIN cells but lacked proper cellular structure and showed significant artifacts. By epoch 

1500, the model was able to generate more realistic cellular patterns, though some abnormalities 

in texture and shape were still present. 
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Figure 8  Result samples without data augmentation 

 

a. Impact of Manual Data Augmentation 

The improved performance observed in the augmented training scenario can be attributed 

to several interrelated factors that collectively enhanced the learning process. Manual data 

augmentation techniques effectively increased the dataset size from 233 to approximately 2097 

images, providing the model with a more diverse set of examples and reducing the risk of 

overfitting to specific image characteristics. Moreover, transformations such as rotations and 

flips helped the model develop invariance to spatial orientation, which is particularly important 

in medical imaging, as the orientation of cervical cells should not affect classification. In 

addition, brightness and contrast adjustments further enhanced the model's robustness to the 

natural variations in staining and imaging conditions commonly encountered in cytological 

samples. As a result, the generator was able to learn more generalizable feature representations, 

leading to the synthesis of more realistic and visually consistent images. 

b. Impact of Hyperparameters 

Performance differences between the two models can also be attributed to differences in 

hyperparameter configurations. Table 1 summarizes the hyperparameter used in the DCGAN 

models trained with and without manual data augmentation. Several key observations can be 

drawn from this comparison. 

Table 1 Training setup  

Data 

Augmentation 

Hyperparameters 

Shape 
Learning 

Rate 

Batch 

Size 

Latent Space 

Dimension 

With 128 1e-4 32 256 

Without 128 2e-4 16 128 

First, the augmented model uses a larger latent space (256 compared to 128), allowing 

the generator to encode a richer and more diverse set of latent features. This increased 

representational capacity can enhance the quality and variability of generated images. Second, 

the batch size in the augmented model is twice as large (32 versus 16), which contributes to 

more stable gradient updates during training. A larger batch sizes can help stabilize training, 

leading to better generalization and a smoother convergence trajectory. Additionally, the 

learning rate for the augmented model is set to 1 × 10⁻⁴, whereas the non-augmented model 

uses a higher learning rate of 2 × 10⁻⁴. A lower learning rate can contribute to more stable 

training, preventing drastic updates that might destabilize the GAN. 
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c. FID Score Analysis 

The Fréchet Inception Distance (FID) was calculated every 500 epochs to quantitatively 

assess the quality of generated images. Table 2 presents the FID Score obtained at different 

training stages for both models. 

 
Table 2  FID score  

Epoch 
FID score 

With Data Augmentation Without Data Augmentation 

500 2.52 

2.39 

4.01 

3.13 1000 

1500 2.21 2.52 

As shown in Table 2, the DCGAN trained with manual data augmentation exhibited a 

consistent decrease in FID scores throughout training, starting from approximately 2.52 at 

epoch 500 and reaching 2.21 at epoch 1500. In contrast, the model trained without data 

augmentation began with a substantially higher FID score of 4.01 at epoch 500 and decreased 

to 2.52 by the final epoch. The results indicate that applying data augmentation improves the 

quality of generated images, as evidenced by consistently lower FID scores compared to 

training without augmentation. At epoch 500, the FID score with augmentation is 2.52, while 

the model without augmentation scores 4.01. As training progresses, both models improve, but 

the gap remains, with the augmented model achieving 2.21 at epoch 1500, whereas the non-

augmented model scores 2.52. Furthermore, the stability of the training process was influenced 

by differences in hyperparameter settings, particularly batch size and learning rate. The learning 

rate and batch size differed between the two models may have contributed to the observed 

variations in performance. 

d. Discussion 

The combination of data augmentation and modified hyperparameters led to a more stable 

training process and improved image quality. The lower FID scores achieved by the augmented 

model indicate that the generated images are more closely resemble to real samples. While data 

augmentation improves diversity and generalization, it also changes the distribution of training 

data, requiring adjustments in the latent space dimensionality and optimization parameters. The 

findings demonstrate that augmenting the dataset and optimizing hyperparameters significantly 

enhance DCGAN’s ability to generate high-quality synthetic images. Despite increasing the 

effective dataset size to approximately 2097 images, the dataset remains relatively small 

compared to those typically used for GAN training in other domains. Furthermore, Cervical 

Intraepithelial Neoplasia (CIN) images contain complex cellular structures that require high 

fidelity reproduction, making the generation task inherently more challenging compared to 

common GAN applications involving natural images or faces datasets. 

 

CONCLUSION 
The limitation of available datasets remains a major challenge in medical imaging, often 

leading to suboptimal classification performance due to constraints related to patient privacy, 

high acquisition costs, and the need for expert annotation. This study investigated the 

effectiveness of DCGAN for augmenting CIN1 images to address the challenge of limited 

medical imaging data. The experimental results showed that the DCGAN model trained with 

manual data augmentation achieved a lower FID score of 2.21, compared to 2.52 for the model 

trained without augmentation, indicating a measurable improvement in the similarity between 

synthetic and real images. In addition to improved image quality, the augmented training 

scenario exhibited more stable generator and discriminator loss curves after approximately 

1000 epochs, demonstrating improved adversarial convergence. The findings further reveal that 

the differences in hyperparameters—such as the latent dimension (256 vs. 128), batch size (32 

vs. 16), and learning rate (1 × 10⁻⁴ vs. 2 × 10⁻⁴) - play a critical role in training stability and 

output quality. Collectively, these results highlight the importance of combining effective data 
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augmentation strategies with carefully tuned hyperparameters to enhance GAN performance in 

data-limited medical imaging settings.  

Future work should expand on these findings by exploring more advanced GAN 

architectures, systematically analyzing the individual contributions of different augmentation 

techniques, and conducting downstream evaluations using classification models trained with 

the synthetic images. Such evaluations are essential to determine whether improvements in 

generative quality translate into tangible gains in clinical diagnostic performance. 

 

ACKNOWLEDGEMENT 
We would like to thank the Intelligent System Research Group (ISysRG), Faculty of 

Computer Science, Sriwijaya University, Indonesia, for providing the DL infrastructure used in 

this study. We also acknowledge the IARC Cervical Cancer Image Bank for supplying the 

dataset that supported this research. 

 

REFERENCES 
Alrashedy HHN, Almansour AF, Ibrahim DM, Hammoudeh MAA. 2022. BrainGAN: Brain 

MRI Image Generation and Classification Framework Using GAN Architectures and 

CNN Models. Sensors. 22 (11):4297. doi:10.3390/s22114297. 

Antoniou A, StorkeyA, Edwards H. 2017. Data augmentation generative adversarial 

networks. arXiv preprint arXiv:1711.04340. 

Ciano G, Andreini P, Mazzierli T, Bianchini M, Scarselli F. 2021. A Multi-Stage GAN for 

Multi-Organ Chest X-ray Image Generation and Segmentation. Mathematics. 9 

(22):2896. doi:10.3390/math9222896. 

Devi YS, Kumar SP. 2022. DR-DCGAN: A Deep Convolutional Generative Adversarial 

Network (DC-GAN) for Diabetic Retinopathy Image Synthesis. Webology. 19(2). 

https://api.semanticscholar.org/CorpusID:247216499. 

Dowson DC, Landau B V. 2003. The Frkhet Distance between Multivariate Normal 

Distributions. Journal of multivariate analysis. 12(3): 450-455. 

https://api.semanticscholar.org/CorpusID:122512502. 

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, 

Bengio Y. 2020. Generative Adversarial Networks. Communications of the ACM. 63 

(11): 139-144. 

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. 2017 Jun 26. GANs Trained 

by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Advances in 

neural information processing systems. 30. 

Huang P, Liu X, Huang Y. 2021. Data Augmentation For Medical MR Image Using Generative 

Adversarial Networks. ArXiv preprint. abs/2111.14297. 

https://api.semanticscholar.org/CorpusID:244714924. 

International Agency for Research on Cancer. 2021. Cervical Image Bank. 

https://screening.iarc.fr/cervicalimagebank.php. 

Jiang M, Zhi M, Wei L, Yang X, Zhang J, Li Y, Wang P, Huang J, Yang G. 2021. FA-GAN: 

Fused attentive generative adversarial networks for MRI image super-resolution. Comput 

Med Imaging Graph. 92:101969. doi:10.1016/j.compmedimag.2021.101969. 

Karras T, Aila T, Laine S, Lehtinen J. 2017 Okt 27. Progressive Growing of GANs for Improved 

Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196. 

Liu B, Lv J, Fan X, Luo J, Zou T. 2022. Application of an Improved DCGAN for Image 

Generation. Mob Inf Syst. 2022:1–14. doi:10.1155/2022/9005552. 

Liu Y, Chen A, Shi H, Huang S, Zheng W, Liu Z, Zhang Q, Yang X. 2021. CT synthesis from 

MRI using multi-cycle GAN for head-and-neck radiation therapy. Comput Med Imaging 

Graph. 91:101953. doi:10.1016/j.compmedimag.2021.101953. 

  



177 Vol 12 2025 

Meor Yahaya MS, Teo J. 2023. Data augmentation using generative adversarial networks for 

images and biomarkers in medicine and neuroscience. Front Appl Math Stat. 9. 

doi:10.3389/fams.2023.1162760. 

Mirza M, Osindero S. 2014 Nov 6. Conditional Generative Adversarial Nets. arXiv preprint 

arXiv:1411.1784. 

Motamed S, Rogalla P, Khalvati F. 2021. Data augmentation using Generative Adversarial 

Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-

ray images. Informatics Med Unlocked. 27:100779. doi:10.1016/j.imu.2021.100779. 

Musalamadugu TS, Kannan H. 2023 Sep 6. Generative AI for medical imaging analysis and 

applications. Futur Med AI. 1(2). 

Pinaya WHL, Graham MS, Kerfoot E, Tudosiu P-D, Dafflon J, Fernandez V, Sanchez P, 

Wolleb J, da Costa PF, Patel A, et al. 2023. Generative AI for Medical Imaging: extending 

the MONAI Framework.  arXiv preprint arXiv:2307.15208. 

Radford A, Metz L, Chintala S. 2015. Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks. arXiv preprint arXiv:1511.06434. 

Smaida M, Yaroshchak S, Barg Y El. 2021. DCGAN for Enhancing Eye Diseases 

Classification. In: International Workshop on Computer Modeling and Intelligent 

Systems. https://api.semanticscholar.org/CorpusID:234753197. 

Sundaram S, Hulkund N. 2021. GAN-based Data Augmentation for Chest X-ray Classification. 

arXiv preprint arXiv:2107.02970. 

Wang L, Sun B, Xu J, Cao D, Chen Y, Xu Y, Wu D. 2024. Emerging trends and hotspots in 

cervical intraepithelial neoplasia research from 2013 to 2023: A bibliometric analysis. 

Heliyon. 10(11):e32114. doi:10.1016/j.heliyon.2024.e32114. 

Wubineh BZ, Rusiecki A, Halawa K. 2024. Classification of cervical cells from the Pap smear 

image using the RES_DCGAN data augmentation and ResNet50V2 with self-attention 

architecture. Neural Comput Appl. 36(34):21801–21815. doi:10.1007/s00521-024-

10404-x. 

Yi Z, Zhang H, Tan P, Gong M. 2017. DualGAN: Unsupervised Dual Learning for Image-to-

Image Translation. In Proceedings of the IEEE international conference on computer 

vision (pp. 2849-2857). 

Zhang K, Hu H, Philbrick K, Conte GM, Sobek JD, Rouzrokh P, Erickson BJ. 2022. SOUP-

GAN: Super-Resolution MRI Using Generative Adversarial Networks. Tomography. 

8(2):905–919. doi:10.3390/tomography8020073. 

Zhang Y, Wang Z, Zhang Z, Liu J, Feng Y, Wee L, Dekker A, Chen Q, Traverso A. 2023. 

GAN-based one dimensional medical data augmentation. Soft Comput. 27(15):10481–

10491. doi:10.1007/s00500-023-08345-z. 

Zhao B, Cheng T, Zhang X, Wang J, Zhu H, Zhao R, Li D, Zhang Z, Yu G. 2023. CT synthesis 

from MR in the pelvic area using Residual Transformer Conditional GAN. Comput Med 

Imaging Graph. 103:102150. doi:10.1016/j.compmedimag.2022.102150. 

Zhao Z, Qin Y, Shao K, Liu Y, Zhang Y, Li H, Li W, Xu J, Zhang J, Ning B, et al. 2024. 

Radiomics Harmonization in Ultrasound Images for Cervical Cancer Lymph Node 

Metastasis Prediction Using Cycle-GAN. Technol Cancer Res Treat. 23. 

doi:10.1177/15330338241302237. 

Zhu J-Y, Park T, Isola P, Efros AA. 2017 Mar 30. Unpaired Image-to-Image Translation using 

Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE international 

conference on computer vision (pp. 2223-2232). 

 


