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Abstrak 

Kebakaran hutan dan lahan (karhutla) di Indonesia berkontribusi signifikan terhadap penurunan kualitas 

udara melalui peningkatan konsentrasi PM2.5. Penelitian ini menganalisis pola spasial-temporal sebaran titik 

panas dan estimasi konsentrasi PM2.5 di Provinsi Riau, Jambi, dan Sumatera Selatan selama Agustus–Oktober 

2023. Data titik panas MODIS dianalisis menggunakan algoritma ST-DBSCAN dengan pengaturan parameter 

jarak spasial, jarak temporal, dan jumlah minimum titik untuk mengidentifikasi klaster kebakaran. Estimasi PM2.5 

diperoleh dari konversi Aerosol Optical Depth (AOD) MODIS menggunakan model empiris. Hasil menunjukkan 

bahwa ST-DBSCAN efektif dalam mengidentifikasi klaster titik panas, dengan kepadatan klaster tertinggi teramati 

di Provinsi Sumatera Selatan. Rata-rata estimasi PM2.5 tercatat sebesar 50,51 µg/m³ di Provinsi Riau, 48,16 µg/m³ 

di Provinsi Jambi, dan 41,59 µg/m³ di Provinsi Sumatera Selatan. Konsentrasi PM2.5 tertinggi terjadi di Provinsi 

Riau pada bulan Oktober dan melampaui ambang batas pedoman kualitas udara WHO. Temuan ini menegaskan 

adanya keterkaitan kuat antara dinamika spasial-temporal karhutla dan peningkatan polusi udara, serta 

menunjukkan potensi pendekatan ini dalam mendukung analisis risiko lingkungan dan kesehatan. 

Kata Kunci: karhutla, PM2.5, spasial-temporal, ST-DBSCAN, titik panas. 

 

Abstract 

Forest and land fires in Indonesia significantly degrade air quality by increasing PM2.5 concentrations. 

This study examines the spatiotemporal patterns of fire hotspot distribution and estimated PM2.5 concentrations 

in Riau, Jambi, and South Sumatra Provinces during August–October 2023. MODIS fire hotspot data were 

analyzed using the ST-DBSCAN algorithm with defined spatial distance, temporal distance, and minimum point 

parameters to identify fire clusters. PM2.5 concentrations were estimated by converting MODIS Aerosol Optical 

Depth (AOD) using an empirical model. The results demonstrate that ST-DBSCAN effectively identifies fire 

hotspot clusters, with the highest cluster density observed in South Sumatra Province. The average estimated 

PM2.5 concentrations were 50.51 µg/m³ in Riau, 48.16 µg/m³ in Jambi, and 41.59 µg/m³ in South Sumatra. The 

highest PM2.5 levels occurred in Riau Province in October, exceeding the World Health Organization air quality 

guideline. These findings reveal a strong spatiotemporal association between fire activity and elevated particulate 

pollution and highlight the potential of this approach to support environmental and health risk assessments related 

to wildfire events. 

Keywords: hotspot, forest and land fire, PM2.5, spatiotemporal, ST-DBSCAN. 

 

PENDAHULUAN  
Kebakaran hutan dan lahan (karhutla) merupakan salah satu bencana ekologis yang paling 

sering terjadi di kawasan tropis, khususnya Indonesia. Dalam beberapa dekade terakhir, 

intensitas dan frekuensi kejadian karhutla meningkat seiring dengan perubahan iklim global, 

tekanan terhadap ekosistem hutan, serta praktik pembukaan lahan dengan cara pembakaran 

(Field et al. 2009). Penelitian oleh Vásquez et al. (2021) menunjukkan bahwa kebakaran di 

lahan gambut Indonesia melepaskan emisi gas rumah kaca dalam jumlah besar. Karhutla tidak 
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hanya menimbulkan kerusakan pada lingkungan dan ekosistem, tetapi juga mengancam 

kesehatan masyarakat secara signifikan akibat tingginya paparan polusi udara, terutama partikel 

halus seperti PM2.5 (particulate matter dengan ukuran ≤ 2.5 mikrometer). Partikel ini mampu 

masuk hingga ke paru-paru bagian terdalam dan menyebabkan berbagai gangguan pernapasan, 

kardiovaskular, bahkan kematian dini (WHO 2021). Paparan PM2.5 dalam jangka pendek 

maupun panjang telah dikaitkan dengan peningkatan risiko penyakit jantung iskemik, strok, 

hingga komplikasi kehamilan seperti kelahiran prematur dan keguguran (Chen et al. 2025; Wei 

et al. 2024; Liu et al. 2018). 

Tiga provinsi di Pulau Sumatera, yaitu Riau, Jambi, dan Sumatera Selatan, dikenal 

sebagai wilayah dengan risiko karhutla tinggi di Indonesia. Hal ini disebabkan oleh kombinasi 

faktor seperti luasnya ekosistem lahan gambut yang mudah terbakar saat mengering, tekanan 

ekonomi terhadap konversi lahan menjadi perkebunan, serta minimnya pengawasan di wilayah 

terpencil (Miettinen et al. 2017). Menurut Kementerian Lingkungan Hidup dan Kehutanan 

(Kepmen LHK 2017), ketiga provinsi tersebut menyumbang sebagian besar luas area gambut 

di Sumatera, dengan Riau mencapai lebih dari 5 juta hektare. Kondisi ini menjadikan kawasan 

tersebut sangat rentan terhadap kebakaran skala besar, terutama pada musim kemarau. 

Sumatera Selatan sendiri mencatat lebih dari 33.000 titik panas pada tahun 2015, sekitar 72% 

di antaranya berada di lahan gambut (Nurhayati et al. 2021; Hawam dan Aulady 2024; Rahmat 

dan Sitanggang 2020). 

Data dari World Health Organization (WHO) menunjukkan bahwa batas aman harian 

PM2.5 adalah 15 µg/m³. Namun, di wilayah terdampak karhutla, nilai ini dapat meningkat 

drastis jauh di atas ambang tersebut. Karhutla di kawasan gambut menghasilkan asap yang lebih 

pekat dan persisten karena sifatnya yang membakar hingga ke dalam tanah. Kebanyakan 

kebakaran ini dipicu oleh aktivitas manusia, khususnya untuk pembukaan lahan pertanian dan 

perkebunan, terutama di area gambut yang mudah terbakar dan menghasilkan emisi PM2.5 

dalam jumlah besar (Sze dan Lee 2019; Hawam dan Aulady 2024; Nurhayati et al. 2021). 

Beberapa penelitian menunjukkan bahwa pengukuran langsung PM2.5 di wilayah ini 

masih sangat terbatas karena keterbatasan stasiun pemantauan kualitas udara (Rendana et al. 

2022). Oleh karena itu, pendekatan berbasis penginderaan jauh menjadi alternatif penting dalam 

mengestimasi kualitas udara dan mendeteksi potensi kebakaran (Gupta et al. 2006). Data citra 

satelit seperti MODIS (Moderate Resolution Imaging Spectroradiometer) menyediakan 

informasi harian mengenai titik panas (hotspot) dan ketebalan aerosol di atmosfer (Aerosol 

Optical Depth/AOD). Titik panas merupakan indikator awal keberadaan api aktif, sedangkan 

AOD mencerminkan konsentrasi partikel aerosol di kolom atmosfer. Integrasi keduanya 

memberikan gambaran menyeluruh mengenai lokasi, waktu, dan potensi dampak karhutla 

terhadap kualitas udara. 

Namun, sebagian besar studi sebelumnya cenderung menganalisis titik panas atau AOD 

secara terpisah tanpa integrasi spasial-temporal yang memadai, sehingga berpotensi kehilangan 

konteks penting dalam memahami proses propagasi asap dan hubungan dinamis antara sumber 

emisi dan konsentrasi partikulat di atmosfer (Sofyan et al. 2022; Levy et al. 2023). Pendekatan 

terpisah ini membuat interpretasi hubungan antara intensitas kebakaran, distribusi spasial asap, 

dan peningkatan konsentrasi PM2.5 menjadi kurang akurat, terutama pada wilayah dengan 

dinamika meteorologi yang kompleks seperti Sumatera. Oleh karena itu, diperlukan pendekatan 

analisis yang mampu mengintegrasikan dimensi spasial dan temporal secara simultan, sehingga 

pola kejadian karhutla dan dampaknya terhadap kualitas udara dapat diidentifikasi secara lebih 

komprehensif. 

Algoritma Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise 

(ST-DBSCAN) digunakan dalam penelitian ini untuk mengidentifikasi klaster titik panas 

berdasarkan kedekatan spasial dan temporal (Birant dan Kut 2007). ST-DBSCAN telah 

diterapkan dalam berbagai studi sebelumnya untuk menganalisis distribusi titik panas di 

wilayah seperti Riau, Sulawesi, dan Sumatera Selatan. Hasil studi tersebut menunjukkan bahwa 

metode ini mampu mengelompokkan kejadian kebakaran ke dalam berbagai pola, termasuk 
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stasioner, reappearing, acak, sesekali, dan berpindah (track clusters), yang berkaitan dengan 

dinamika intensitas dan waktu kejadian kebakaran (Faraouk et al. 2023; Vatresia et al. 2020; 

Trisminingsih dan Shaztika 2016). Pendekatan klasterisasi dengan ST-DBSCAN di Pulau 

Sumatra telah terbukti efektif dalam mengidentifikasi pola kejadian kebakaran hutan. Sujiono 

(2023) melaporkan bahwa selama periode 2014–2019, sekitar 46,74% dari total titik panas di 

Sumatra membentuk klaster, yang menunjukkan potensi tinggi sebagai indikator kebakaran 

aktif. 

Meskipun demikian, studi-studi tersebut umumnya terbatas pada klasterisasi titik panas 

tanpa mengintegrasikan estimasi PM2.5 sebagai indikator dampak kualitas udara. Selain itu, 

penerapan algoritma ST-DBSCAN dan model empiris NASA ARSET memiliki tantangan 

tersendiri, seperti sensitivitas terhadap variasi parameter spasial dan temporal yang dapat 

memengaruhi hasil klasterisasi dan estimasi. Penelitian ini bertujuan untuk mengisi celah 

tersebut dengan menggabungkan analisis spasial-temporal titik panas menggunakan ST-

DBSCAN dan estimasi konsentrasi PM2.5 dari data AOD MODIS berdasarkan model empiris 

NASA ARSET (2018). Karena studi serupa masih sangat terbatas pada konteks wilayah 

Sumatera, penelitian ini diharapkan dapat menjadi studi awal yang memberikan dasar bagi 

pengembangan metode integratif serupa di masa mendatang. 

 

METODE 
Penelitian ini dilakukan di Provinsi Riau, Jambi, dan Sumatera Selatan dengan cakupan 

waktu Agustus hingga Oktober 2023. Metode penelitian mencakup: (1) akuisisi dan pra-

pemrosesan data titik panas dan data Aerosol Optical Depth (AOD) dari citra satelit MODIS; 

(2) analisis klaster titik panas menggunakan algoritma ST-DBSCAN (Birant dan Kut 2007); 

serta (3) estimasi konsentrasi PM2.5 berdasarkan nilai AOD melalui model konversi empiris 

dari NASA ARSET. Analisis spasial-temporal dilakukan untuk mengevaluasi hubungan antara 

klaster kebakaran dan peningkatan PM2.5 di wilayah terdampak menggunakan hybrid matching 

(pencocokan spasial–temporal) (Zhang et al. 2019). 

Tahapan Penelitian 

Penelitian ini terdiri dari beberapa tahapan, dimulai dari identifikasi masalah, 

pengumpulan dan praproses data, analisis spasial-temporal menggunakan algoritma ST-

DBSCAN, hingga estimasi konsentrasi PM2.5 berdasarkan klaster kebakaran yang terbentuk 

sebagaimana dapat dilihat pada Gambar 1.  

 
Gambar 1  Tahapan penelitian 
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Data dan Sumber Data 

Data utama terdiri dari dua jenis: data titik panas dan data aerosol optik atau Aerosol 

Optical Depth (AOD). Data titik panas diperoleh dari produk MODIS (Moderate Resolution 

Imaging Spectroradiometer) Collection 6.1 Active Fire (MOD14/MYD14) yang diakses 

melalui FIRMS (Fire Information For Resource Management System) NASA (National 

Aeronautics and Space Administration) dalam format CSV. MODIS merupakan sensor pada 

satelit Terra dan Aqua yang secara luas digunakan untuk pemantauan titik panas. Sensor ini 

memiliki kemampuan mendeteksi anomali termal secara harian dengan resolusi spasial 1 km 

untuk kanal termal dan cakupan global. Data titik panas ini mencakup informasi lokasi (latitude 

dan longitude), waktu kejadian, tingkat kepercayaan (confidence), dan kecerahan (brightness) 

(NASA Earthdata 2023).  

Tabel 1  Data titik panas MODIS 
 

Latitude Longitude 
Kecerahan  

(Kelvin) 
Tanggal  

Nilai  

kepercayaan 

Level 

kepercayaan 

-0.9 101.7 310 2023-01-01 21 Low 

-1.3 101.8 318.6 2023-01-01 66 Nominal 

1.7 101.5 311.6 2023-01-05 35 Nominal 

-0.5 101.7 313.4 2023-01-06 62 Nominal 

-0.9 103.1 316.1 2023-01-06 40 Nominal 

* Brightness temperature pada tabel ini dinyatakan dalam satuan Kelvin (K), sesuai dengan keluaran standar produk 

MODIS, dan digunakan langsung dalam analisis tanpa konversi ke derajat Celsius 
 

Data AOD berasal dari produk MODIS Level 2 (MOD04_L2 dan MYD04_L2) dalam 

format HDF, yang mencakup nilai AOD per piksel dengan resolusi spasial 10 km dan resolusi 

temporal harian (NASA 2025). Total titik panas yang digunakan berjumlah sekitar 8000 titik 

data untuk ketiga provinsi dalam periode studi, sedangkan data AOD terdiri dari 527 file HDF 

granula harian yang mencakup wilayah studi. Sumber data ini kompatibel dengan penerapan 

algoritma ST-DBSCAN (Faraouk et al. 2023; Trisminingsih dan Shaztika 2016). Contoh data 

yang digunakan dalam analisis ditampilkan pada Tabel 1 dan Tabel 2, yang masing-masing 

menunjukkan atribut titik panas dan data AOD dari produk MODIS. 

Tabel 2  Data AOD MODIS 
 

Latitude Longitude Tanggal AOD 

-1.6 100.2 2023-08-25 -9999 

-3.5 105.2 2023-08-25 -9999 

-4.2 102.2 2023-08-25 -9999 

-1.7 102.3 2023-08-25 699 

-3.6 103.4 2023-08-25 391 

*Nilai AOD didapat dari atribut Deep_Blue_Aerosol_Optical_Depth_550_Land pada dataset 
 

Pra-Pemrosesan Data 

Pra-pemrosesan mencakup beberapa tahap. Pertama, data titik panas disaring berdasarkan 

nilai kepercayaan ≥ 30% untuk menghilangkan titik-titik yang kurang dapat diandalkan. 

Penyaringan berdasarkan nilai kepercayaan merupakan praktik umum dalam analisis spasial-

temporal kebakaran hutan, karena nilai ini mencerminkan tingkat keyakinan algoritma MODIS 

dalam mendeteksi titik panas.  

 



216 Lukman, Sitanggang, dan Hardhienata JIKA 

 
(a) Spasial 

 
(b) Temporal 

 

Gambar 2  Irisan data titik panas dan AOD MODIS. (a) AOD seluruh Sumatra, titik panas pada area studi (Riau, Jambi, 

Sumatera Selatan); (b) AOD dan titik panas yang difilter khusus untuk area studi 

 

Beberapa penelitian sebelumnya juga menggunakan ambang batas kepercayaan ≥ 30% 

untuk menjaga cakupan deteksi yang lebih luas dan tetap mempertahankan integritas analisis 

spasial, khususnya di wilayah tropis yang rentan terhadap kebakaran (Cahyani et al. 2024; 

Kirana et al. 2023; Unik et al. 2025). Selanjutnya, data AOD diubah dari format HDF menjadi 

data frame terstruktur menggunakan pustaka Python seperti Pyhdf dan Pandas. Data waktu dari 

kedua sumber diubah ke format temporal (tanggal dan waktu) standar untuk memungkinkan 

penggabungan spasial-temporal. Visualisasi irisan data secara spasial dan temporal dapat dilihat 

pada Gambar 2. 

Perhitungan ST-DBSCAN 

Setelah data dibersihkan dan dikonversi ke format yang seragam, dilakukan proses 

klasterisasi titik panas menggunakan algoritma ST-DBSCAN. Metode ini digunakan untuk 

mengelompokkan titik panas berdasarkan kedekatan spasial dan temporal (Birant dan Kut 

2007). Pemilihan kombinasi parameter ST-DBSCAN pada penelitian ini didasarkan pada hasil 

uji awal dan rujukan dari beberapa studi terdahulu (Tabel 3). Kombinasi parameter yang diuji 

meliputi variasi nilai spasial ε₁ = 0.01°, 0.15°, dan 0.18°, nilai temporal ε₂ = 5 hari, serta 

min_sampel (jumlah minimum sampel) = 3 dan 7. Kombinasi pertama mengacu pada Sujiono 

(2023) yang menggunakan ε₁ = 0.01° (~1 km) untuk analisis skala sangat halus, tetapi 

menghasilkan klaster yang sangat terfragmentasi dan tingkat noise tinggi. Merujuk pada 

Sitanggang et al. (2018) yang menggunakan ε₁ = 0.1° (~11 km) di Sumatra dan Syurifah dan 

Fahmi (2024) yang menggunakan ε₁ = 0.3° (~33 km) di Indonesia, penelitian ini menguji nilai 

ε₁ yang lebih besar untuk mengurangi fragmentasi klaster. Nilai ε₁ = 0.15° (~17 km) dipilih 

sebagai kompromi, tetapi masih menghasilkan noise cukup tinggi di Provinsi Riau dan Jambi 

(40–80%). Oleh karena itu, pada kombinasi ketiga digunakan ε₁ = 0.18° (~20 km) yang terbukti 

menghasilkan keseimbangan terbaik antara konsistensi spasial dan jumlah noise rendah. 

Pemilihan min_sampel = 7 pada awalnya mengacu pada Sitanggang et al. (2018) dan 

Sujiono (2023), sedangkan penurunan menjadi tiga mengacu pada Faraouk (2023) yang 

menunjukkan bahwa ambang rendah dapat membantu mendeteksi klaster kecil di wilayah 

dengan sebaran titik panas jarang tanpa kehilangan pola utama. Kombinasi akhir ε₁ = 0.18°, ε₂ 

= 5 hari, dan min_sampel = 3 digunakan sebagai konfigurasi optimal untuk penelitian ini. 

Tabel 3  Referensi parameter ST-DBSCAN pada penelitian terdahulu 

Studi Lokasi Penelitian ε₁(derajat / km) ε₂ (hari) min_sampel 

Sujiono (2023) Kalimantan 0.01° (~1 km) 5 7 

Sitanggang et al. (2018) Sumatra 0.1° (~11 km) 5 7 

Syurifah & Fahmi. 2024 Indonesia 0.3° (~33 km) 5 14 

Faraouk (2023) Riau 0.7° (~78 km) 2 2 

Sujiono (2023) Kalimantan 0.01° (~1 km) 5 7 
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Formulasi utama ST-DBSCAN melibatkan tiga komponen kunci. Pertama adalah fungsi 

jarak gabungan yang mengukur kedekatan spasial-temporal antara dua titik (Birant dan Kut 

2007): 

D(𝑝𝑖, 𝑝𝑗) = √𝛼 ∙ 𝑑𝑠𝑝𝑎𝑠𝑖𝑎𝑙
2 + (1 − 𝛼) ∙ 𝑑𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

2  (1) 

dengan: 

• 𝑑𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = dihitung menggunakan formula Haversine (Sinnott 1984) untuk jarak 

geodesik:  

𝑑𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 2𝑅 𝑎𝑟𝑐𝑠𝑖𝑛 (√𝑠𝑖𝑛2 (
∆𝑙𝑎𝑡

2
) + cos(𝑙𝑎𝑡𝑖) cos(𝑙𝑎𝑡𝑗) 𝑠𝑖𝑛2 (

∆𝑙𝑜𝑛

2
)) (2) 

• 𝑑𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙= |𝑡𝑖 − 𝑡𝑗|(selisih waktu dalam hari, Birant dan Kut (2007)). 

• 𝛼 = merupakan parameter pembobot (biasanya 0.5 untuk keseimbangan optimal antara 

komponen spasial dan temporal) (Kisilevich et al. 2010) 
 

Komponen kedua adalah kriteria kepadatan, yaitu suatu titik p akan dimasukkan ke dalam 

sebuah klaster jika terdapat minimal titik tetangga (min_sampel) dalam radius ε₁ dan rentang 

waktu ε₂. Hal ini memungkinkan identifikasi struktur klaster yang padat tetapi fleksibel 

terhadap noise, dirumuskan oleh Ester et al. (1996) sebagai berikut: 
 

|{𝑞 ∈ 𝐷 | 𝐷(𝑝, 𝑞)  ≤  ε₁ (spasial)  ∧  |𝑡𝑝 − 𝑡𝑞|  ≤ ε₂ (temporal) }|  ≥ min_sampel (3) 

dengan: 

• ϵ1: threshold jarak spasial (pada penelitian ini, satuan yang digunakan: km) 

• ϵ2: threshold jarak temporal (pada penelitian ini, satuan yang digunakan: hari) 

• min_sampel: minimum titik tetangga (Ester et al. 1996) 
 

Komponen ketiga adalah evaluasi kualitas klaster. Setelah proses klasterisasi, hasil 

dianalisis melalui statistik deskriptif seperti jumlah klaster, ukuran rata-rata klaster, dan 

persentase noise. Selanjutnya, kualitas klaster dinilai menggunakan Silhouette Score 

(Rousseeuw 1987): 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
 

 

(4) 

dengan:  

• a(i): Jarak rata-rata titik i ke semua titik dalam klaster yang sama. 

• b(i): Jarak rata-rata terdekat ke titik di klaster lain. 

• Skor akhir adalah rata-rata s(i) untuk semua titik  

 

Perhitungan Estimasi PM2.5 

Estimasi konsentrasi PM2.5 dilakukan setelah proses identifikasi klaster titik panas 

menggunakan algoritma ST-DBSCAN. Setiap klaster yang terbentuk direpresentasikan dalam 

bentuk convex hull (Barber et al. 1996), kemudian diperluas dengan buffer (zona penyangga) 

sebesar 0.2° (~22 km) ke segala arah untuk mencakup wilayah penyebaran polutan yang lebih 

luas. Zona penyangga 0.2° (~22 km) dipilih berdasarkan studi sebelumnya mengenai estimasi 

jarak sebaran asap akibat kecepatan angin. Misalnya, Pandapotan et al. (2021) menemukan 

bahwa angin di Kalimantan dengan kecepatan 10–37 km/h menyebabkan asap tersebar 

signifikan ke daerah sekitar titik panas. Selain itu, Storey and Price (2022) menunjukkan bahwa 

di New South Wales, Australia, zona penyangga hingga 150 km digunakan untuk 

menghubungkan titik. Dengan demikian, zona penyangga sekitar 22 km dianggap sebagai 

kompromi yang mencerminkan kecepatan angin rata-rata di wilayah studi serta cakupan spasial 

yang realistis. Pendekatan pencocokan spasial–temporal (Zhang et al. 2019) kemudian 

diterapkan untuk menghubungkan klaster titik panas dengan data AOD dari citra MODIS. 

Pencocokan dilakukan dalam dua aspek: spasial (berdasarkan area zona penyangga dari convex 
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hull) dan temporal (dengan memilih data AOD yang memiliki tanggal yang sama dengan 

kejadian titik panas). 

Sebelum pencocokan dilakukan, data titik panas (resolusi 1 km) dan AOD (resolusi 10 

km) dikalibrasi terlebih dahulu untuk menyelaraskan skala spasial antar data. Kalibrasi ini 

dilakukan bukan dengan mengubah resolusi asli masing-masing data, tetapi dengan 

menyamakan satuan ruang analisis menggunakan grid spasial berukuran 10 km × 10 km, sesuai 

dengan resolusi data AOD. Data titik panas yang memiliki resolusi lebih tinggi diagregasi ke 

dalam grid tersebut berdasarkan lokasi geografisnya, sehingga setiap grid dapat 

direpresentasikan oleh satu nilai AOD dan jumlah titik panas yang terkandung di dalamnya. 

Keluaran yang dihasilkan berupa data tabular berbasis grid 10 km. Setelah penyelarasan selesai, 

konversi nilai AOD menjadi estimasi konsentrasi PM2.5 dilakukan menggunakan model regresi 

linear yang dikembangkan oleh NASA ARSET (2018), yaitu: 

𝑃𝑀2.5 = 46.7 × 𝐴𝑂𝐷 + 7.13 (5) 

dengan: 

• PM2.5: konsentrasi partikulat halus dalam µg/m³ 

• AOD: nilai kedalaman optik aerosol dari data satelit 

• a: koefisien kemiringan, menunjukkan besarnya peningkatan PM2.5 untuk setiap 

kenaikan satu satuan AOD. 

• b: koefisian intercept, menunjukkan nilai PM2.5 saat AOD = 0, yaitu kontribusi dari 

sumber lokal yang tidak tertangkap oleh data AOD. Koefisien a dan b adalah koefisien 

hasil regresi berdasarkan data lokal atau regional 
 

Model ini berasal dari hasil regresi antara AOD MODIS dan data pengukuran 

permukaan PM2.5 dari berbagai stasiun pemantauan kualitas udara, dengan nilai koefisien 

determinasi sekitar R² ≈ 0.56. Nilai ini menunjukkan hubungan yang cukup kuat tetapi tidak 

sempurna antara variabel AOD dan konsentrasi PM2.5 di permukaan. Artinya, sekitar 56% 

variasi konsentrasi PM2.5 dapat dijelaskan oleh perubahan nilai AOD, sementara sisanya 

dipengaruhi oleh faktor yang tidak dimasukkan ke dalam model. Meskipun model ini 

dikembangkan dalam konteks global, pendekatan ini tetap digunakan dalam studi ini karena 

keterbatasan data pengukuran lapangan di wilayah studi. Selain itu, model ini dinilai relevan 

karena wilayah studi dipengaruhi oleh sumber emisi utama yang serupa, yaitu transportasi serta 

kebakaran hutan dan lahan (Rahman dan Thurston 2022). 

Hasil konversi AOD ke PM2.5 dihitung sebagai rata-rata untuk setiap klaster kebakaran, 

dengan mempertimbangkan nilai-nilai AOD yang berada dalam area zona penyangga dan pada 

waktu yang sesuai. Pendekatan ini memungkinkan evaluasi sebaran spasial dan temporal 

konsentrasi PM2.5 secara lebih komprehensif. Studi-studi sebelumnya juga menunjukkan 

bahwa model regresi linear berbasis AOD seperti ini mampu mencapai korelasi sedang hingga 

tinggi (R² = 0.53–0.81) terhadap pengukuran PM2.5 di permukaan, tergantung wilayah dan 

musim (Li et al. 2018; Handschuh et al. 2022; Zhao et al. 2018; Lv et al. 2016). Dengan 

demikian, meskipun nilai R² sebesar 0.56 mengindikasikan masih adanya ketidakpastian, 

pendekatan ini tetap digunakan  untuk menggambarkan pola distribusi spasial-temporal PM2.5 

di wilayah dengan keterbatasan data pengamatan langsung seperti Sumatera. 
 

HASIL DAN PEMBAHASAN 
Algoritma ST-DBSCAN mengelompokkan titik panas berdasarkan tiga parameter utama: 

threshold spasial (ε₁), threshold temporal (ε₂), dan min_sampel. Eksperimen dilakukan untuk 

dataset di Provinsi Riau, Jambi dan Sumatera Selatan selama Agustus hingga Oktober 2023 

dengan tiga kombinasi parameter. Perbandingan hasil jumlah titik yang dikategorikan sebagai 

noise dari masing-masing kombinasi dapat dilihat pada Gambar 3. Penyesuaian parameter ini 

memengaruhi sensitivitas algoritma dalam membedakan klaster dari titik noise. 
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Gambar 3  Perbandingan jumlah titik noise pada hasil ST-DBSCAN untuk tiga kombinasi parameter ε₁, ε₂, dan min_sampel 

 

Tabel 4 mengevaluasi performa algoritma ST-DBSCAN dengan tiga kombinasi 

parameter utama. Kombinasi pertama (ε₁ = 0.01°, ε₂ = 5 hari, min_sampel = 7), yang mengacu 

pada studi Sujiono (2023), belum menunjukkan performa yang baik. Jumlah klaster sangat 

sedikit atau tidak ada, noise ekstrem (hingga 100%), dan terjadi fragmentasi tinggi. Meski 

Silhouette Score terlihat tinggi, nilai tersebut bias karena hampir semua titik dianggap noise. 

Ini menunjukkan bahwa parameter terlalu ketat untuk menangkap dinamika spasial-temporal 

kebakaran hutan di wilayah studi. 

Kombinasi kedua (ε₁ = 0.15°, min_sampel = 7) memperbaiki performa secara signifikan. 

Klaster lebih banyak terbentuk, noise menurun drastis, terutama di Sumatera Selatan. Namun, 

ukuran klaster cenderung terlalu besar, menandakan bahwa nilai ε₁ terlalu longgar jika tidak 

diimbangi dengan penyesuaian min_sampel. Hal ini menyebabkan tidak dapat terdeteksinya 

klaster-klaster berukuran kecil. 

 
Tabel 4  Performa ST-DBSCAN dengan variasi parameter di wilayah studi  

 

Attribut 

ε₁=0.01°, ε₂=5, 

min_sampels=7 

ε₁=0.15°, ε₂=5,  

min_sampel=7 

ε₁=0.18°, ε₂=5,  

min_sampel=3 

Agu Sept Okt Agu Sept Okt Agu Sept Okt 

Provinsi Riau          

Total titik panas 156 216 280 156 216 280 156 216 280 

Jumlah klaster 2 0 7 5 7 12 16 27 23 

Jumlah noise 133 216 212 110 158 114 65 64 65 

Noise (%) 85.26 100 75.71 70.51 73.15 40.71 41.67 29.63 23.21 

Ukuran klaster 

(mean) 
11.50 0.00 9.71 9.20 8.28 13.83 5.69 5.63 9.38 

Silhouette score 0.98 NaN 0.86 0.72 0.62 0.69 0.63 0.45 0.73 

Provinsi Jambi          

Total titik panas 46 210 210 46 210 210 46 210 210 

Jumlah klaster 0 0 1 1 9 8 6 22 26 

Jumlah noise 46 210 201 39 100 114 19 27 32 

Noise (%) 100 100 95.71 84.78 47.62 54.28 41.30 12.86 15.24 

Ukuran klaster 

(mean) 
0 0 9 7 12.22 12 4.50 8.32 6.85 

Silhouette score NaN NaN NaN NaN 0.46 0.58 0.74 0.48 0.56 

Provinsi Sumatera 

Selatan 
         

Total titik panas 186 2247 3200 186 2247 3200 186 2247 3200 

Jumlah klaster 1 63 103 4 39 38 23 47 54 

Jumlah noise 179 1239 1647 148 169 196 55 68 59 

Noise (%) 96.24 55.14 51.47 79.57 7.52 6.12 29.57 3.03 1.84 

Ukuran klaster 

(mean) 
7 16 15.07 9.5 53.28 79.05 5.69 46.36 58.16 

Silhouette score NaN 0.29 0.23 0.88 0.42 0.35 0.47 0.40 0.33 
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Kombinasi ketiga (ε₁ = 0.18°, min_sampel = 3) menunjukkan kinerja paling optimal. Di 

seluruh provinsi, terbentuk banyak klaster dengan noise rendah dan ukuran klaster yang 

proporsional. Silhouette Score tetap kompetitif dan konsisten menunjukkan pemisahan spasial-

temporal yang baik. Konfigurasi ini berhasil menyeimbangkan sensitivitas terhadap kejadian 

lokal tanpa mengorbankan kualitas segmentasi. Dengan demikian, kombinasi ketiga paling 

sesuai digunakan dalam konteks analisis spasial-temporal titik panas, karena mampu 

menangkap struktur data secara realistis dan operasional tanpa mengabaikan kualitas 

klasterisasi. 

Hasil visualisasi provinsi Riau (Gambar 4)  menunjukkan pada bulan Agustus, sebanyak 

15 klaster berhasil teridentifikasi. Klaster-klaster ini umumnya berukuran kecil. Di bulan 

September, terjadi peningkatan jumlah klaster menjadi 26, yang menandakan peningkatan 

kejadian kebakaran maupun deteksi spasial-temporal yang lebih aktif. Di bulan Oktober, jumlah 

klaster sedikit menurun menjadi 22, tetapi tetap menunjukkan konsistensi spasial, terutama 

pada area yang sebelumnya juga mengalami kebakaran. 
 

 
(a) 

 
(b) 

 
(c) 

 

Gambar 4  Visualisasi 2D hasil klasterisasi menggunakan parameter ε₁=0.18°, ε₂=5, min_sampel=3 di Provinsi Riau.  

                  (a)Agustus 2023; (b) September 2023; (c) Oktober 2023 
 

 
Gambar 5  Visualisasi evolusi klaster 17 (Riau, 27 Sep–17 Okt 2023) 

 

Gambar 5 menunjukkan evolusi klaster 17 di Riau. Titik-titik panas muncul secara 

konsisten dalam beberapa interval waktu dengan pola penyebaran yang tersebar. Berdasarkan 

karakteristik ini, klaster 17 dikategorikan sebagai klaster bertipe stasioner, yakni terbatas secara 

spasial tetapi muncul terus-menerus sepanjang periode pengamatan (Andrienko et al. 2010). 

Secara umum, sebagian besar klaster lain di Provinsi Riau juga menunjukkan pola kemunculan 

berulang yang serupa, meskipun beberapa klaster lainnya bersifat reappearing, yaitu klaster 

yang muncul berulang di lokasi serupa, tetapi tanpa keteraturan waktu yang spesifik (Andrienko 

et al. 2010). 

Hasil klasterisasi titik panas menggunakan ST-DBSCAN di Provinsi Jambi dapat dilihat 

pada Gambar 6, visualisasi menunjukkan pola spasial-temporal yang terstruktur dan konsisten. 

Pada bulan Agustus, algoritma berhasil mengidentifikasi 9 klaster, kemudian meningkat 

menjadi 13 klaster pada September, dan mencapai puncaknya dengan 26 klaster pada Oktober. 

Distribusi spasial menunjukkan bahwa klaster-klaster dominan muncul di tengah ke selatan 

Provinsi Jambi, berbatasan dengan Provinsi Sumatera Selatan. 

Sebaran spasial pada klaster di Provinsi Jambi memperlihatkan pemisahan yang cukup 

baik antar klaster, tanpa tumpang tindih yang berarti. Banyak klaster memiliki bentuk kompak 

menunjukkan bahwa ST-DBSCAN mampu menangkap segmentasi spasial yang sesuai dengan 

kondisi geografis wilayah tersebut. Secara khusus, pada bulan Oktober terlihat lonjakan 
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klasterisasi dengan klaster-klaster berukuran kecil hingga menengah yang muncul secara 

serentak tetapi tersebar merata, mengindikasikan adanya gelombang kebakaran luas tetapi 

terlokalisasi secara spasial. 
 

 
(a) 

 
(b)  

(c) 
 

Gambar 6  Visualisasi 2D hasil klasterisasi menggunakan parameter ε₁=0.18°, ε₂=5, min_sampel=3 di Provinsi Jambi.  

                  (a)Agustus 2023; (b) September 2023; (c) Oktober 2023 
 

Gambar 7 memvisualisasikan evolusi spasial-temporal klaster 20 di Provinsi Jambi, 

menunjukkan pola kemunculan yang persisten secara temporal dan berulang di area geografis 

yang relatif sama, sehingga dapat dikategorikan sebagai klaster bertopologi stasioner. Titik 

panas muncul secara konsisten selama empat interval waktu dan tersebar di wilayah barat daya 

dan tenggara provinsi. Dari total delapan klaster besar (≥20 titik panas) yang dianalisis tren 

temporalnya di Provinsi Jambi, sebanyak empat klaster menunjukkan pola stasioner, sementara 

empat lainnya memiliki karakteristik reappearing, yaitu muncul kembali pada lokasi serupa 

setelah jeda waktu tertentu. 
 

 
Gambar 7  Visualisasi evolusi klaster 20 (Jambi, 29 Sep–17 Okt 2023) 

 

Dapat dilihat pada Gambar 8 Sumatera Selatan menunjukkan hasil klasterisasi paling 

mencolok dari ketiga provinsi, baik dari segi jumlah klaster maupun kedalaman spasial-

temporalnya. Hasil ST-DBSCAN mengidentifikasi 50 klaster pada bulan Agustus, meningkat 

menjadi 62 klaster pada September, dan mencapai angka tertinggi sebesar 68 klaster pada 

Oktober. Peta persebaran spasial memperlihatkan klaster-klaster tersebar sangat luas, terutama 

di bagian pantai timur dan tenggara provinsi. Banyaknya klaster yang terbentuk 

memperlihatkan kemampuan algoritma dalam menangkap unit-unit kebakaran kecil yang 

tersebar secara luas. Ukuran klaster umumnya berada pada kategori sedang, terdiri dari 20 

hingga 60 titik per klaster. Sebaran yang luas dan jumlah klaster yang tinggi mencerminkan 

karakteristik kebakaran di Sumatera Selatan yang masif tetapi singkat, dengan banyak kejadian 

terjadi secara berdekatan tetapi tidak saling terhubung secara temporal. 

 
(a) 

 
(b) 

 
(C) 

 

Gambar 8  Visualisasi hasil klasterisasi menggunakan parameter ε₁=0.18°, ε₂=5, min_sampel=3 di Provinsi Sumatera Selatan.  

                  (a)Agustus 2023; (b) September 2023; (c) Oktober 2023  
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Gambar 9  Visualisasi evolusi klaster 20 (Sumatera Selatan, 29 Sep–17 Okt 2023) 

 

Pada Provinsi Sumatera Selatan, topologi klaster hasil analisis ST-DBSCAN 

menunjukkan variasi pola spasial temporal, beberapa klaster seperti klaster 20 (Gambar 9), 

menunjukkan pola stasioner, sementara klaster lainnya memiliki karakteristik reappearing. 

Selain itu, ditemukan pula klaster dengan topologi tracks, yaitu pergeseran lokasi titik panas 

secara bertahap mengikuti arah tertentu dari satu interval waktu ke interval berikutnya 

(Andrienko et al. 2010). 

Untuk melengkapi analisis spasial-temporal titik panas dan klasterisasi kebakaran hutan 

dan lahan, dilakukan konversi estimasi konsentrasi PM2.5 berdasarkan data MODIS AOD. 

Gambar 10 menampilkan hasil pencocokan spasial-temporal antara klaster titik panas dan 

estimasi PM2.5 di Provinsi Riau, Jambi, dan Sumatera Selatan selama Agustus–Oktober 2023. 

Lingkaran menunjukkan lokasi centroid dari klaster titik api, warna lingkaran 

merepresentasikan rata-rata nilai PM2.5 hasil konversi AOD (semakin gelap menunjukkan 

konsentrasi yang lebih tinggi), sedangkan diameter lingkaran menggambarkan jumlah titik api 

dalam klaster.  
 

 
(a) 

 
(b) 

 
(c) 

 

Gambar 10  Visualisasi rata-rata perhitungan PM2.5 selama Agustus hingga Oktober per klaster. (a) Provinsi Riau; (b) Provinsi  

                    Jambi; (c) Provinsi Sumatera Selatan.  
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Secara umum, hasil menunjukkan adanya hubungan spasial-temporal yang konsisten 

antara distribusi titik panas dan peningkatan konsentrasi PM2.5 di seluruh provinsi. Di Provinsi 

Riau, konsentrasi PM2.5 meningkat signifikan dari Agustus (rata-rata 36.3 µg/m³) ke Oktober 

(62.2 µg/m³), dengan nilai maksimum mencapai 96.7 µg/m³. Klaster dengan PM2.5 tertinggi 

terkonsentrasi di wilayah timur dan tenggara, berdekatan dengan area lahan gambut dan 

perkebunan, yang merupakan lokasi utama kejadian kebakaran berulang. 

Di Provinsi Jambi, peningkatan serupa terjadi dari 42.1 µg/m³ pada September menjadi 

54.8 µg/m³ pada Oktober, meskipun jumlah klaster sedikit menurun. Klaster dengan nilai 

PM2.5 tertinggi berada di bagian tengah provinsi yang juga menjadi area dengan konsentrasi 

titik panas tinggi, menunjukkan kesesuaian spasial antara kejadian kebakaran dan peningkatan 

polusi udara. 

Sementara itu, Sumatera Selatan mencatat jumlah titik panas dan klaster terbanyak, 

dengan rata-rata PM2.5 meningkat dari 26.4 µg/m³ di Agustus menjadi 46.0 µg/m³ pada 

Oktober. Klaster terbesar dengan nilai PM2.5 tinggi umumnya berada di bagian timur dan 

tenggara provinsi, yang didominasi oleh kawasan rawa dan gambut. Hal ini menegaskan bahwa 

area dengan kepadatan klaster tinggi cenderung berasosiasi dengan peningkatan signifikan 

konsentrasi PM2.5 di atmosfer. 

Secara keseluruhan, hasil ini menunjukkan bahwa pola peningkatan PM2.5 di wilayah 

studi tidak hanya dipengaruhi oleh jumlah klaster yang terbentuk, tetapi juga oleh distribusi 

spasialnya yang berdekatan dengan area lahan gambut dan perkebunan. Integrasi antara klaster 

titik panas dan estimasi PM2.5 berbasis AOD terbukti efektif untuk menggambarkan dinamika 

spasial dan temporal polusi udara akibat karhutla di Sumatera. 

Tabel 5 merangkum lima klaster dengan estimasi konsentrasi PM2.5 tertinggi dari 

masing-masing provinsi. Pemilihan klaster ini didasarkan pada rerata konsentrasi PM2.5 hasil 

konversi dari nilai AOD yang berada dalam area spasial zona penyangga tiap klaster. Klaster-

klaster di Provinsi Riau mendominasi posisi teratas dengan nilai rata-rata PM2.5 di atas 74 

µg/m³ dan cakupan area yang luas. Salah satu klaster bahkan memiliki durasi hingga 63 hari. 

Hal ini menunjukkan adanya kejadian kebakaran yang persisten dan berulang secara spasial. 

Tabel 5  Lima Klaster dengan Estimasi Konsentrasi PM2.5 Tertinggi di Setiap Provinsi  

Cluster 

id 
Provinsi 

Jumlah titik 

panas 
Jumlah AOD Mean PM2.5 Area (km2) 

Interval titik 

panas dalam 

klaster  (hari) 

Tanggal mulai 

18 Riau 6 49 96.71 24480 21 2023-09-27 

14 Riau 14 108 83.91 27811 51 2023-08-27 

15 Riau 23 115 76.98 39091 51 2023-08-27 

4 Riau 54 179 75.21 35351 63 2023-08-06 

2 Riau 11 16 74.03 13909 63 2023-08-04 

16 Jambi 11 157 92.34 30995 20 2023-09-26 

6 Jambi 7 1 88.76 9459 36 2023-09-04 

3 Jambi 14 33 71.52 22197 58 2023-08-11 

5 Jambi 12 56 62.31 22873 48 2023-08-22 

18 Jambi 20 123 57.87 19213 20 2023-09-27 

1 Sumatera Selatan 77 241 72.26 47978 60 2023-08-04 

5 Sumatera Selatan 84 197 71.80 70525 55 2023-08-11 

34 Sumatera Selatan 221 137 68.39 55973 26 2023-09-23 

51 Sumatera Selatan 11 7 67.05 5388 1 2023-10-31 

28 Sumatera Selatan 168 213 65.96 61797 28 2023-09-18 

 

Di Provinsi Riau, klaster dengan konsentrasi PM2.5 tertinggi mencapai nilai rata-rata 

96.71 µg/m³, yang terjadi pada akhir September. Klaster ini memiliki area sebaran sekitar 31000 

km² dan durasi 20 hari. Sedangkan di Sumatera Selatan, lima klaster utama menunjukkan 
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karakteristik PM2.5 tinggi (lebih dari 65 µg/m³) dengan cakupan area sangat luas, termasuk 

satu klaster yang menjangkau lebih dari 70000 km².  

Analisis korelasi antara interval hari antar kemunculan titik panas dalam satu klaster 

dan estimasi konsentrasi PM2.5 menunjukkan variasi hubungan antarprovinsi. Di Provinsi 

Riau, korelasi negatif yang sangat kuat (r = –0.96) menunjukkan bahwa semakin besar jarak 

waktu antar kemunculan titik panas dalam suatu klaster, konsentrasi rata-rata PM2.5 justru 

cenderung menurun. Hal ini mengindikasikan bahwa akumulasi polutan lebih dipengaruhi oleh 

kemunculan titik panas yang terjadi dalam waktu berdekatan. Sebaliknya, di Sumatera Selatan 

ditemukan korelasi positif yang kuat (r = 0.85), menandakan bahwa klaster dengan jarak antar 

kemunculan titik panas yang lebih panjang justru berkaitan dengan peningkatan rata-rata 

PM2.5, kemungkinan akibat area penyebaran klaster yang lebih luas. Adapun di Provinsi Jambi, 

korelasi lemah (r = –0.22) menunjukkan hubungan yang tidak signifikan antara interval hari 

dan konsentrasi PM2.5. Secara keseluruhan, hasil ini mengindikasikan bahwa frekuensi 

kemunculan titik panas dalam suatu periode lebih berpengaruh terhadap konsentrasi PM2.5 

dibandingkan jarak temporal antar kejadian, dan bahwa karakteristik spasial-temporal 

kebakaran di tiap provinsi memiliki dinamika yang berbeda. 
 

SIMPULAN 
Penelitian ini berhasil menerapkan pendekatan spasial-temporal untuk menganalisis 

sebaran titik panas dan estimasi konsentrasi PM2.5 di Provinsi Riau, Jambi, dan Sumatera 

Selatan selama periode Agustus hingga Oktober 2023. Algoritma ST-DBSCAN terbukti efektif 

dalam mengidentifikasi klaster kebakaran dengan tingkat noise yang rendah serta mampu 

menangkap dinamika spasial-temporal kebakaran di wilayah studi. Provinsi Sumatera Selatan 

menunjukkan jumlah klaster tertinggi dan distribusi spasial yang paling luas, sedangkan 

Provinsi Riau mencatat konsentrasi PM2.5 tertinggi mencapai 96.7 µg/m³. 

Hasil estimasi PM2.5 dari data MODIS AOD menunjukkan bahwa sebagian besar 

wilayah terdampak memiliki konsentrasi partikulat halus yang melebihi ambang batas harian 

WHO (2021) sebesar 15 µg/m³, menandakan tingkat risiko kesehatan yang signifikan selama 

periode puncak kebakaran. Integrasi antara klaster titik panas dan estimasi PM₂.₅ menghasilkan 

gambaran komprehensif mengenai lokasi, waktu, dan intensitas kejadian kebakaran, sehingga 

dapat digunakan untuk mengidentifikasi wilayah prioritas pemantauan serta mendukung sistem 

peringatan dini berbasis data satelit. Selain itu, hasil estimasi PM2.5 juga berpotensi menjadi 

indikator risiko kesehatan masyarakat dan dasar dalam perumusan kebijakan mitigasi polusi 

udara akibat karhutla. 

Namun, penelitian ini memiliki beberapa keterbatasan yang perlu diakui. Model estimasi 

PM2.5 berbasis AOD yang digunakan memiliki koefisien determinasi (R² ≈ 0.56), sehingga 

masih terdapat ketidakpastian dalam akurasi estimasi, terutama tanpa validasi langsung 

menggunakan data pengukuran lapangan. Selain itu, variabilitas meteorologis dan faktor emisi 

lokal tidak sepenuhnya terwakili dalam analisis ini. Oleh karena itu, hasil estimasi PM2.5 dalam 

penelitian ini perlu ditafsirkan dengan hati-hati, dan tidak dapat menggantikan pengukuran 

langsung. Validasi berbasis data in-situ dari BMKG atau sensor kualitas udara lokal disarankan 

sebagai pekerjaan lanjutan, sekaligus mengintegrasikan faktor meteorologi untuk 

meningkatkan akurasi dan reliabilitas model. 
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