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Abstrak

Kebakaran hutan dan lahan (karhutla) di Indonesia berkontribusi signifikan terhadap penurunan kualitas
udara melalui peningkatan konsentrasi PM2.5. Penelitian ini menganalisis pola spasial-temporal sebaran titik
panas dan estimasi konsentrasi PM2.5 di Provinsi Riau, Jambi, dan Sumatera Selatan selama Agustus—Oktober
2023. Data titik panas MODIS dianalisis menggunakan algoritma ST-DBSCAN dengan pengaturan parameter
jarak spasial, jarak temporal, dan jumlah minimum titik untuk mengidentifikasi klaster kebakaran. Estimasi PM2.5
diperoleh dari konversi Aerosol Optical Depth (AOD) MODIS menggunakan model empiris. Hasil menunjukkan
bahwa ST-DBSCAN efektif dalam mengidentifikasi klaster titik panas, dengan kepadatan klaster tertinggi teramati
di Provinsi Sumatera Selatan. Rata-rata estimasi PM2.5 tercatat sebesar 50,51 pg/m?* di Provinsi Riau, 48,16 pg/m?
di Provinsi Jambi, dan 41,59 pg/m? di Provinsi Sumatera Selatan. Konsentrasi PM2.5 tertinggi terjadi di Provinsi
Riau pada bulan Oktober dan melampaui ambang batas pedoman kualitas udara WHO. Temuan ini menegaskan
adanya keterkaitan kuat antara dinamika spasial-temporal karhutla dan peningkatan polusi udara, serta
menunjukkan potensi pendekatan ini dalam mendukung analisis risiko lingkungan dan kesehatan.

Kata Kunci: karhutla, PM2.5, spasial-temporal, ST-DBSCAN, titik panas.

Abstract

Forest and land fires in Indonesia significantly degrade air quality by increasing PM2.5 concentrations.
This study examines the spatiotemporal patterns of fire hotspot distribution and estimated PM2.5 concentrations
in Riau, Jambi, and South Sumatra Provinces during August—October 2023. MODIS fire hotspot data were
analyzed using the ST-DBSCAN algorithm with defined spatial distance, temporal distance, and minimum point
parameters to identify fire clusters. PM2.5 concentrations were estimated by converting MODIS Aerosol Optical
Depth (AOD) using an empirical model. The results demonstrate that ST-DBSCAN effectively identifies fire
hotspot clusters, with the highest cluster density observed in South Sumatra Province. The average estimated
PM2.5 concentrations were 50.51 ug/m? in Riau, 48.16 ug/m’ in Jambi, and 41.59 ug/m? in South Sumatra. The
highest PM2.5 levels occurred in Riau Province in October, exceeding the World Health Organization air quality
guideline. These findings reveal a strong spatiotemporal association between fire activity and elevated particulate
pollution and highlight the potential of this approach to support environmental and health risk assessments related
to wildfire events.

Keywords: hotspot, forest and land fire, PM?2.5, spatiotemporal, ST-DBSCAN.

PENDAHULUAN

Kebakaran hutan dan lahan (karhutla) merupakan salah satu bencana ekologis yang paling
sering terjadi di kawasan tropis, khususnya Indonesia. Dalam beberapa dekade terakhir,
intensitas dan frekuensi kejadian karhutla meningkat seiring dengan perubahan iklim global,
tekanan terhadap ekosistem hutan, serta praktik pembukaan lahan dengan cara pembakaran
(Field et al. 2009). Penelitian oleh Vasquez et al. (2021) menunjukkan bahwa kebakaran di
lahan gambut Indonesia melepaskan emisi gas rumah kaca dalam jumlah besar. Karhutla tidak
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hanya menimbulkan kerusakan pada lingkungan dan ekosistem, tetapi juga mengancam
kesehatan masyarakat secara signifikan akibat tingginya paparan polusi udara, terutama partikel
halus seperti PM2.5 (particulate matter dengan ukuran < 2.5 mikrometer). Partikel ini mampu
masuk hingga ke paru-paru bagian terdalam dan menyebabkan berbagai gangguan pernapasan,
kardiovaskular, bahkan kematian dini (WHO 2021). Paparan PM2.5 dalam jangka pendek
maupun panjang telah dikaitkan dengan peningkatan risiko penyakit jantung iskemik, strok,
hingga komplikasi kehamilan seperti kelahiran prematur dan keguguran (Chen et al. 2025; Wei
et al. 2024; Liu et al. 2018).

Tiga provinsi di Pulau Sumatera, yaitu Riau, Jambi, dan Sumatera Selatan, dikenal
sebagai wilayah dengan risiko karhutla tinggi di Indonesia. Hal ini disebabkan oleh kombinasi
faktor seperti luasnya ekosistem lahan gambut yang mudah terbakar saat mengering, tekanan
ekonomi terhadap konversi lahan menjadi perkebunan, serta minimnya pengawasan di wilayah
terpencil (Miettinen ef al. 2017). Menurut Kementerian Lingkungan Hidup dan Kehutanan
(Kepmen LHK 2017), ketiga provinsi tersebut menyumbang sebagian besar luas area gambut
di Sumatera, dengan Riau mencapai lebih dari 5 juta hektare. Kondisi ini menjadikan kawasan
tersebut sangat rentan terhadap kebakaran skala besar, terutama pada musim kemarau.
Sumatera Selatan sendiri mencatat lebih dari 33.000 titik panas pada tahun 2015, sekitar 72%
di antaranya berada di lahan gambut (Nurhayati ez al. 2021; Hawam dan Aulady 2024; Rahmat
dan Sitanggang 2020).

Data dari World Health Organization (WHO) menunjukkan bahwa batas aman harian
PM2.5 adalah 15 pg/m3. Namun, di wilayah terdampak karhutla, nilai ini dapat meningkat
drastis jauh di atas ambang tersebut. Karhutla di kawasan gambut menghasilkan asap yang lebih
pekat dan persisten karena sifatnya yang membakar hingga ke dalam tanah. Kebanyakan
kebakaran ini dipicu oleh aktivitas manusia, khususnya untuk pembukaan lahan pertanian dan
perkebunan, terutama di area gambut yang mudah terbakar dan menghasilkan emisi PM2.5
dalam jumlah besar (Sze dan Lee 2019; Hawam dan Aulady 2024; Nurhayati et al. 2021).

Beberapa penelitian menunjukkan bahwa pengukuran langsung PM2.5 di wilayah ini
masih sangat terbatas karena keterbatasan stasiun pemantauan kualitas udara (Rendana et al.
2022). Oleh karena itu, pendekatan berbasis penginderaan jauh menjadi alternatif penting dalam
mengestimasi kualitas udara dan mendeteksi potensi kebakaran (Gupta et al. 2006). Data citra
satelit seperti MODIS (Moderate Resolution Imaging Spectroradiometer) menyediakan
informasi harian mengenai titik panas (hotspot) dan ketebalan aerosol di atmosfer (4erosol
Optical Depth/AOD). Titik panas merupakan indikator awal keberadaan api aktif, sedangkan
AOD mencerminkan konsentrasi partikel aerosol di kolom atmosfer. Integrasi keduanya
memberikan gambaran menyeluruh mengenai lokasi, waktu, dan potensi dampak karhutla
terhadap kualitas udara.

Namun, sebagian besar studi sebelumnya cenderung menganalisis titik panas atau AOD
secara terpisah tanpa integrasi spasial-temporal yang memadai, sehingga berpotensi kehilangan
konteks penting dalam memahami proses propagasi asap dan hubungan dinamis antara sumber
emisi dan konsentrasi partikulat di atmosfer (Sofyan et al. 2022; Levy ef al. 2023). Pendekatan
terpisah ini membuat interpretasi hubungan antara intensitas kebakaran, distribusi spasial asap,
dan peningkatan konsentrasi PM2.5 menjadi kurang akurat, terutama pada wilayah dengan
dinamika meteorologi yang kompleks seperti Sumatera. Oleh karena itu, diperlukan pendekatan
analisis yang mampu mengintegrasikan dimensi spasial dan temporal secara simultan, sehingga
pola kejadian karhutla dan dampaknya terhadap kualitas udara dapat diidentifikasi secara lebih
komprehensif.

Algoritma Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise
(ST-DBSCAN) digunakan dalam penelitian ini untuk mengidentifikasi klaster titik panas
berdasarkan kedekatan spasial dan temporal (Birant dan Kut 2007). ST-DBSCAN telah
diterapkan dalam berbagai studi sebelumnya untuk menganalisis distribusi titik panas di
wilayah seperti Riau, Sulawesi, dan Sumatera Selatan. Hasil studi tersebut menunjukkan bahwa
metode ini mampu mengelompokkan kejadian kebakaran ke dalam berbagai pola, termasuk
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stasioner, reappearing, acak, sesekali, dan berpindah (track clusters), yang berkaitan dengan
dinamika intensitas dan waktu kejadian kebakaran (Faraouk et al. 2023; Vatresia et al. 2020;
Trisminingsih dan Shaztika 2016). Pendekatan klasterisasi dengan ST-DBSCAN di Pulau
Sumatra telah terbukti efektif dalam mengidentifikasi pola kejadian kebakaran hutan. Sujiono
(2023) melaporkan bahwa selama periode 2014-2019, sekitar 46,74% dari total titik panas di
Sumatra membentuk klaster, yang menunjukkan potensi tinggi sebagai indikator kebakaran
aktif.

Meskipun demikian, studi-studi tersebut umumnya terbatas pada klasterisasi titik panas
tanpa mengintegrasikan estimasi PM2.5 sebagai indikator dampak kualitas udara. Selain itu,
penerapan algoritma ST-DBSCAN dan model empiris NASA ARSET memiliki tantangan
tersendiri, seperti sensitivitas terhadap variasi parameter spasial dan temporal yang dapat
memengaruhi hasil klasterisasi dan estimasi. Penelitian ini bertujuan untuk mengisi celah
tersebut dengan menggabungkan analisis spasial-temporal titik panas menggunakan ST-
DBSCAN dan estimasi konsentrasi PM2.5 dari data AOD MODIS berdasarkan model empiris
NASA ARSET (2018). Karena studi serupa masih sangat terbatas pada konteks wilayah
Sumatera, penelitian ini diharapkan dapat menjadi studi awal yang memberikan dasar bagi
pengembangan metode integratif serupa di masa mendatang.

METODE

Penelitian ini dilakukan di Provinsi Riau, Jambi, dan Sumatera Selatan dengan cakupan
waktu Agustus hingga Oktober 2023. Metode penelitian mencakup: (1) akuisisi dan pra-
pemrosesan data titik panas dan data Aerosol Optical Depth (AOD) dari citra satelit MODIS;
(2) analisis klaster titik panas menggunakan algoritma ST-DBSCAN (Birant dan Kut 2007);
serta (3) estimasi konsentrasi PM2.5 berdasarkan nilai AOD melalui model konversi empiris
dari NASA ARSET. Analisis spasial-temporal dilakukan untuk mengevaluasi hubungan antara
klaster kebakaran dan peningkatan PM2.5 di wilayah terdampak menggunakan hybrid matching
(pencocokan spasial-temporal) (Zhang et al. 2019).

Tahapan Penelitian

Penelitian ini terdiri dari beberapa tahapan, dimulai dari identifikasi masalah,
pengumpulan dan praproses data, analisis spasial-temporal menggunakan algoritma ST-
DBSCAN, hingga estimasi konsentrasi PM2.5 berdasarkan klaster kebakaran yang terbentuk
sebagaimana dapat dilihat pada Gambar 1.

Identifikasi Masalah, Akuisisi Data, dan Praproses Data Klasterisasi dan Estimasi PM2.5 Analisis, Visualisasi dan Kesimpulan

Analisis Pola

J ST-DBSCAN
/ -~ “‘\
4‘( "‘
Identifikasi Masalah

Parameter 4

Optimal?

Visualisasi Hasil

—
Studi Literatur
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3. Bobot Brightness Matching
Spasial-Temporal

Gambar 1 Tahapan penelitian
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Data dan Sumber Data

Data utama terdiri dari dua jenis: data titik panas dan data aerosol optik atau Aerosol
Optical Depth (AOD). Data titik panas diperoleh dari produk MODIS (Moderate Resolution
Imaging Spectroradiometer) Collection 6.1 Active Fire (MOD14/MYDI14) yang diakses
melalui FIRMS (Fire Information For Resource Management System) NASA (National
Aeronautics and Space Administration) dalam format CSV. MODIS merupakan sensor pada
satelit Terra dan Aqua yang secara luas digunakan untuk pemantauan titik panas. Sensor ini
memiliki kemampuan mendeteksi anomali termal secara harian dengan resolusi spasial 1 km
untuk kanal termal dan cakupan global. Data titik panas ini mencakup informasi lokasi (latitude
dan longitude), waktu kejadian, tingkat kepercayaan (confidence), dan kecerahan (brightness)
(NASA Earthdata 2023).

Tabel 1 Data titik panas MODIS

Latitude Longitude Iigglrjil;:;n Tanggal kep?rg:}i/aan kep];re(:;}aan
-0.9 101.7 310 2023-01-01 21 Low
-1.3 101.8 318.6 2023-01-01 66 Nominal
1.7 101.5 311.6 2023-01-05 35 Nominal
-0.5 101.7 3134 2023-01-06 62 Nominal
-0.9 103.1 316.1 2023-01-06 40 Nominal

* Brightness temperature pada tabel ini dinyatakan dalam satuan Kelvin (K), sesuai dengan keluaran standar produk
MODIS, dan digunakan langsung dalam analisis tanpa konversi ke derajat Celsius

Data AOD berasal dari produk MODIS Level 2 (MOD04 L2 dan MYD04 L2) dalam
format HDF, yang mencakup nilai AOD per piksel dengan resolusi spasial 10 km dan resolusi
temporal harian (NASA 2025). Total titik panas yang digunakan berjumlah sekitar 8000 titik
data untuk ketiga provinsi dalam periode studi, sedangkan data AOD terdiri dari 527 file HDF
granula harian yang mencakup wilayah studi. Sumber data ini kompatibel dengan penerapan
algoritma ST-DBSCAN (Faraouk et al. 2023; Trisminingsih dan Shaztika 2016). Contoh data
yang digunakan dalam analisis ditampilkan pada Tabel 1 dan Tabel 2, yang masing-masing
menunjukkan atribut titik panas dan data AOD dari produk MODIS.

Tabel 2 Data AOD MODIS

Latitude Longitude Tanggal AOD
-1.6 100.2 2023-08-25 -9999
-3.5 105.2 2023-08-25 -9999
-4.2 102.2 2023-08-25 -9999
-1.7 102.3 2023-08-25 699
-3.6 103.4 2023-08-25 391

*Nilai AOD didapat dari atribut Deep Blue Aerosol Optical Depth 550 Land pada dataset

Pra-Pemrosesan Data

Pra-pemrosesan mencakup beberapa tahap. Pertama, data titik panas disaring berdasarkan
nilai kepercayaan > 30% untuk menghilangkan titik-titik yang kurang dapat diandalkan.
Penyaringan berdasarkan nilai kepercayaan merupakan praktik umum dalam analisis spasial-
temporal kebakaran hutan, karena nilai ini mencerminkan tingkat keyakinan algoritma MODIS
dalam mendeteksi titik panas.
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Sumatra Spatial Coverage Comparison Temporal Coverage Comparison (August - October 2023)
MODIS AOD MOD04/MYD04 vs MODIS Fire Hotspot

Hotspots

Fira Hotspot  ~e—MODIS ADD Observations

9% 98 100 102 104 106 108 110
Longitude

(a) Spasial

Gambar 2 Irisan data titik panas dan AOD MODIS. (a) AOD seluruh Sumatra, titik panas pada area studi (Riau, Jambi,
Sumatera Selatan); (b) AOD dan titik panas yang difilter khusus untuk area studi

(b) Temporal

Beberapa penelitian sebelumnya juga menggunakan ambang batas kepercayaan > 30%
untuk menjaga cakupan deteksi yang lebih luas dan tetap mempertahankan integritas analisis
spasial, khususnya di wilayah tropis yang rentan terhadap kebakaran (Cahyani et al. 2024;
Kirana et al. 2023; Unik et al. 2025). Selanjutnya, data AOD diubah dari format HDF menjadi
data frame terstruktur menggunakan pustaka Python seperti Pyhdf dan Pandas. Data waktu dari
kedua sumber diubah ke format temporal (tanggal dan waktu) standar untuk memungkinkan
penggabungan spasial-temporal. Visualisasi irisan data secara spasial dan temporal dapat dilihat
pada Gambar 2.

Perhitungan ST-DBSCAN

Setelah data dibersihkan dan dikonversi ke format yang seragam, dilakukan proses
klasterisasi titik panas menggunakan algoritma ST-DBSCAN. Metode ini digunakan untuk
mengelompokkan titik panas berdasarkan kedekatan spasial dan temporal (Birant dan Kut
2007). Pemilihan kombinasi parameter ST-DBSCAN pada penelitian ini didasarkan pada hasil
uji awal dan rujukan dari beberapa studi terdahulu (Tabel 3). Kombinasi parameter yang diuji
meliputi variasi nilai spasial &1 = 0.01°, 0.15°, dan 0.18°, nilai temporal & = 5 hari, serta
min sampel (jumlah minimum sampel) = 3 dan 7. Kombinasi pertama mengacu pada Sujiono
(2023) yang menggunakan & = 0.01° (~1 km) untuk analisis skala sangat halus, tetapi
menghasilkan klaster yang sangat terfragmentasi dan tingkat noise tinggi. Merujuk pada
Sitanggang ef al. (2018) yang menggunakan € = 0.1° (~11 km) di Sumatra dan Syurifah dan
Fahmi (2024) yang menggunakan &: = 0.3° (~33 km) di Indonesia, penelitian ini menguji nilai
&1 yang lebih besar untuk mengurangi fragmentasi klaster. Nilai &1 = 0.15° (~17 km) dipilih
sebagai kompromi, tetapi masih menghasilkan noise cukup tinggi di Provinsi Riau dan Jambi
(40-80%). Oleh karena itu, pada kombinasi ketiga digunakan &: = 0.18° (~20 km) yang terbukti
menghasilkan keseimbangan terbaik antara konsistensi spasial dan jumlah noise rendah.

Pemilihan min sampel = 7 pada awalnya mengacu pada Sitanggang et al. (2018) dan

Sujiono (2023), sedangkan penurunan menjadi tiga mengacu pada Faraouk (2023) yang
menunjukkan bahwa ambang rendah dapat membantu mendeteksi klaster kecil di wilayah
dengan sebaran titik panas jarang tanpa kehilangan pola utama. Kombinasi akhir &1 = 0.18°, &2
= 5 hari, dan min sampel = 3 digunakan sebagai konfigurasi optimal untuk penelitian ini.

Tabel 3 Referensi parameter ST-DBSCAN pada penelitian terdahulu

Studi Lokasi Penelitian &1(derajat / km) &2 (hari) min_sampel
Sujiono (2023) Kalimantan 0.01° (~1 km) 5
Sitanggang et al. (2018) Sumatra 0.1° (~11 km) 5
Syurifah & Fahmi. 2024 Indonesia 0.3° (~33 km) 5 14
Faraouk (2023) Riau 0.7° (~78 km) 2 2
Sujiono (2023) Kalimantan 0.01° (~1 km) 5 7
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Formulasi utama ST-DBSCAN melibatkan tiga komponen kunci. Pertama adalah fungsi
jarak gabungan yang mengukur kedekatan spasial-temporal antara dua titik (Birant dan Kut
2007):

D(pia pj) = \/(X ’ d?pasial + (1 - a) : d?emporal (1)
dengan:
® dspatiq = dihitung menggunakan formula Haversine (Sinnott 1984) untuk jarak
geodesik:
dspatiat = 2R arcsin (\]Sinz (%) + cos(lat;) cos(lat;) sin? (Alzon>> (2)

* diemporal™ |ti -t |(selisih waktu dalam hari, Birant dan Kut (2007)).

e «a = merupakan parameter pembobot (biasanya 0.5 untuk keseimbangan optimal antara
komponen spasial dan temporal) (Kisilevich et al. 2010)

Komponen kedua adalah kriteria kepadatan, yaitu suatu titik p akan dimasukkan ke dalam
sebuah klaster jika terdapat minimal titik tetangga (min sampel) dalam radius & dan rentang
waktu €. Hal ini memungkinkan identifikasi struktur klaster yang padat tetapi fleksibel
terhadap noise, dirumuskan oleh Ester et al. (1996) sebagai berikut:

|{q €D |D(p,q) < & (spasial) A |1:1[7 - tq| < g, (temporal) ]| > min_sampel 3)

dengan:
e ¢l: threshold jarak spasial (pada penelitian ini, satuan yang digunakan: km)

o 2: threshold jarak temporal (pada penelitian ini, satuan yang digunakan: hari)
e min sampel: minimum titik tetangga (Ester et al. 1996)

Komponen ketiga adalah evaluasi kualitas klaster. Setelah proses klasterisasi, hasil
dianalisis melalui statistik deskriptif seperti jumlah klaster, ukuran rata-rata klaster, dan
persentase noise. Selanjutnya, kualitas klaster dinilai menggunakan Silhouette Score
(Rousseeuw 1987):

. b() —a(i) 4
s® = max (a(i), b(@)) @
dengan:
e a(i): Jarak rata-rata titik / ke semua titik dalam klaster yang sama.
e (i): Jarak rata-rata terdekat ke titik di klaster lain.
e Skor akhir adalah rata-rata s(i) untuk semua titik

Perhitungan Estimasi PM2.5

Estimasi konsentrasi PM2.5 dilakukan setelah proses identifikasi klaster titik panas
menggunakan algoritma ST-DBSCAN. Setiap klaster yang terbentuk direpresentasikan dalam
bentuk convex hull (Barber et al. 1996), kemudian diperluas dengan buffer (zona penyangga)
sebesar 0.2° (~22 km) ke segala arah untuk mencakup wilayah penyebaran polutan yang lebih
luas. Zona penyangga 0.2° (~22 km) dipilih berdasarkan studi sebelumnya mengenai estimasi
jarak sebaran asap akibat kecepatan angin. Misalnya, Pandapotan ef al. (2021) menemukan
bahwa angin di Kalimantan dengan kecepatan 10-37 km/h menyebabkan asap tersebar
signifikan ke daerah sekitar titik panas. Selain itu, Storey and Price (2022) menunjukkan bahwa
di New South Wales, Australia, zona penyangga hingga 150 km digunakan untuk
menghubungkan titik. Dengan demikian, zona penyangga sekitar 22 km dianggap sebagai
kompromi yang mencerminkan kecepatan angin rata-rata di wilayah studi serta cakupan spasial
yang realistis. Pendekatan pencocokan spasial-temporal (Zhang et al. 2019) kemudian
diterapkan untuk menghubungkan klaster titik panas dengan data AOD dari citra MODIS.
Pencocokan dilakukan dalam dua aspek: spasial (berdasarkan area zona penyangga dari convex
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hull) dan temporal (dengan memilih data AOD yang memiliki tanggal yang sama dengan
kejadian titik panas).

Sebelum pencocokan dilakukan, data titik panas (resolusi 1 km) dan AOD (resolusi 10
km) dikalibrasi terlebih dahulu untuk menyelaraskan skala spasial antar data. Kalibrasi ini
dilakukan bukan dengan mengubah resolusi asli masing-masing data, tetapi dengan
menyamakan satuan ruang analisis menggunakan grid spasial berukuran 10 km x 10 km, sesuai
dengan resolusi data AOD. Data titik panas yang memiliki resolusi lebih tinggi diagregasi ke
dalam grid tersebut berdasarkan lokasi geografisnya, sehingga setiap grid dapat
direpresentasikan oleh satu nilai AOD dan jumlah titik panas yang terkandung di dalamnya.
Keluaran yang dihasilkan berupa data tabular berbasis grid 10 km. Setelah penyelarasan selesai,
konversi nilai AOD menjadi estimasi konsentrasi PM2.5 dilakukan menggunakan model regresi
linear yang dikembangkan oleh NASA ARSET (2018), yaitu:

PM2.5 =46.7 x AOD + 7.13 (5)

dengan:

e PM2.5: konsentrasi partikulat halus dalam pg/m?

e AQD: nilai kedalaman optik aerosol dari data satelit

e a: koefisien kemiringan, menunjukkan besarnya peningkatan PM2.5 untuk setiap
kenaikan satu satuan AOD.

e b: koefisian intercept, menunjukkan nilai PM2.5 saat AOD = 0, yaitu kontribusi dari
sumber lokal yang tidak tertangkap oleh data AOD. Koefisien a dan b adalah koefisien
hasil regresi berdasarkan data lokal atau regional

Model ini berasal dari hasil regresi antara AOD MODIS dan data pengukuran
permukaan PM2.5 dari berbagai stasiun pemantauan kualitas udara, dengan nilai koefisien
determinasi sekitar R* =~ 0.56. Nilai ini menunjukkan hubungan yang cukup kuat tetapi tidak
sempurna antara variabel AOD dan konsentrasi PM2.5 di permukaan. Artinya, sekitar 56%
variasi konsentrasi PM2.5 dapat dijelaskan oleh perubahan nilai AOD, sementara sisanya
dipengaruhi oleh faktor yang tidak dimasukkan ke dalam model. Meskipun model ini
dikembangkan dalam konteks global, pendekatan ini tetap digunakan dalam studi ini karena
keterbatasan data pengukuran lapangan di wilayah studi. Selain itu, model ini dinilai relevan
karena wilayah studi dipengaruhi oleh sumber emisi utama yang serupa, yaitu transportasi serta
kebakaran hutan dan lahan (Rahman dan Thurston 2022).

Hasil konversi AOD ke PM2.5 dihitung sebagai rata-rata untuk setiap klaster kebakaran,
dengan mempertimbangkan nilai-nilai AOD yang berada dalam area zona penyangga dan pada
waktu yang sesuai. Pendekatan ini memungkinkan evaluasi sebaran spasial dan temporal
konsentrasi PM2.5 secara lebih komprehensif. Studi-studi sebelumnya juga menunjukkan
bahwa model regresi linear berbasis AOD seperti ini mampu mencapai korelasi sedang hingga
tinggi (R? = 0.53-0.81) terhadap pengukuran PM2.5 di permukaan, tergantung wilayah dan
musim (Li e al. 2018; Handschuh et al. 2022; Zhao et al. 2018; Lv et al. 2016). Dengan
demikian, meskipun nilai R*> sebesar 0.56 mengindikasikan masih adanya ketidakpastian,
pendekatan ini tetap digunakan untuk menggambarkan pola distribusi spasial-temporal PM2.5
di wilayah dengan keterbatasan data pengamatan langsung seperti Sumatera.

HASIL DAN PEMBAHASAN

Algoritma ST-DBSCAN mengelompokkan titik panas berdasarkan tiga parameter utama:
threshold spasial (1), threshold temporal (e2), dan min_sampel. Eksperimen dilakukan untuk
dataset di Provinsi Riau, Jambi dan Sumatera Selatan selama Agustus hingga Oktober 2023
dengan tiga kombinasi parameter. Perbandingan hasil jumlah titik yang dikategorikan sebagai
noise dari masing-masing kombinasi dapat dilihat pada Gambar 3. Penyesuaian parameter ini
memengaruhi sensitivitas algoritma dalam membedakan klaster dari titik noise.
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Perbandingan Jumlah Titik Noise Hasil ST-DBESCAN pada Tiga
Kombinasi Parameter
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Gambar 3 Perbandingan jumlah titik noise pada hasil ST-DBSCAN untuk tiga kombinasi parameter €1, &2, dan min_sampel

Tabel 4 mengevaluasi performa algoritma ST-DBSCAN dengan tiga kombinasi
parameter utama. Kombinasi pertama (&1 = 0.01°, &2 = 5 hari, min_sampel = 7), yang mengacu
pada studi Sujiono (2023), belum menunjukkan performa yang baik. Jumlah klaster sangat
sedikit atau tidak ada, noise ekstrem (hingga 100%), dan terjadi fragmentasi tinggi. Meski
Silhouette Score terlihat tinggi, nilai tersebut bias karena hampir semua titik dianggap noise.
Ini menunjukkan bahwa parameter terlalu ketat untuk menangkap dinamika spasial-temporal
kebakaran hutan di wilayah studi.

Kombinasi kedua (&1 = 0.15°, min_sampel = 7) memperbaiki performa secara signifikan.
Klaster lebih banyak terbentuk, noise menurun drastis, terutama di Sumatera Selatan. Namun,
ukuran klaster cenderung terlalu besar, menandakan bahwa nilai &: terlalu longgar jika tidak
diimbangi dengan penyesuaian min_sampel. Hal ini menyebabkan tidak dapat terdeteksinya
klaster-klaster berukuran kecil.

Tabel 4 Performa ST-DBSCAN dengan variasi parameter di wilayah studi

81:().010, 82:5, 81:0.150, 82:5, 81:0‘180, 82:5,
Attribut min_sampels=7 min_sampel=7 min_sampel=3
Agu Sept Okt Agu Sept Okt Agu Sept Okt
Provinsi Riau
Total titik panas 156 216 280 156 216 280 156 216 280
Jumlah klaster 2 0 7 5 7 12 16 27 23
Jumlah noise 133 216 212 110 158 114 65 64 65
Noise (%) 85.26 100 75.71 70.51 73.15 40.71 41.67 29.63 2321
Ukuran klaster 11.50 0.00 9.71 9.20 828  13.83 5.69 5.63 9.38
(mean)
Silhouette score 0.98 NaN 0.86 0.72 0.62 0.69 0.63 0.45 0.73
Provinsi Jambi
Total titik panas 46 210 210 46 210 210 46 210 210
Jumlah klaster 0 0 1 1 9 8 6 22 26
Jumlah noise 46 210 201 39 100 114 19 27 32
Noise (%) 100 100 95.71 84.78 47.62 54.28 41.30 12.86 15.24
Ukuran klaster 0 0 9 7 1222 12 4.50 8.32 6.85
(mean)
Silhouette score NaN NaN NaN NaN 0.46 0.58 0.74 0.48 0.56
Provinsi Sumatera
Selatan
Total titik panas 186 2247 3200 186 2247 3200 186 2247 3200
Jumlah klaster 1 63 103 4 39 38 23 47 54
Jumlah noise 179 1239 1647 148 169 196 55 68 59
Noise (%) 96.24 55.14 51.47 79.57 7.52 6.12 29.57 3.03 1.84
Ukuran klaster 7 16 1507 95 5328  79.05 569 4636 58.16

(mean)
Silhouette score NaN 0.29 0.23 0.88 0.42 0.35 0.47 0.40 0.33
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Kombinasi ketiga (e1 = 0.18°, min_sampel = 3) menunjukkan kinerja paling optimal. Di
seluruh provinsi, terbentuk banyak klaster dengan noise rendah dan ukuran klaster yang
proporsional. Silhouette Score tetap kompetitif dan konsisten menunjukkan pemisahan spasial-
temporal yang baik. Konfigurasi ini berhasil menyeimbangkan sensitivitas terhadap kejadian
lokal tanpa mengorbankan kualitas segmentasi. Dengan demikian, kombinasi ketiga paling
sesuai digunakan dalam konteks analisis spasial-temporal titik panas, karena mampu
menangkap struktur data secara realistis dan operasional tanpa mengabaikan kualitas
klasterisasi.

Hasil visualisasi provinsi Riau (Gambar 4) menunjukkan pada bulan Agustus, sebanyak
15 klaster berhasil teridentifikasi. Klaster-klaster ini umumnya berukuran kecil. Di bulan
September, terjadi peningkatan jumlah klaster menjadi 26, yang menandakan peningkatan
kejadian kebakaran maupun deteksi spasial-temporal yang lebih aktif. Di bulan Oktober, jumlah
klaster sedikit menurun menjadi 22, tetapi tetap menunjukkan konsistensi spasial, terutama
pada area yang sebelumnya juga mengalami kebakaran.

(a) (b) (©)
Gambar 4 Visualisasi 2D hasil klasterisasi menggunakan parameter £:=0.18°, £2=5, min_sampel=3 di Provinsi Riau.
(a)Agustus 2023; (b) September 2023; (c) Oktober 2023
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Gambar 5 Visualisasi evolusi klaster 17 (Riau, 27 Sep—17 Okt 2023)

Gambar 5 menunjukkan evolusi klaster 17 di Riau. Titik-titik panas muncul secara
konsisten dalam beberapa interval waktu dengan pola penyebaran yang tersebar. Berdasarkan
karakteristik ini, klaster 17 dikategorikan sebagai klaster bertipe stasioner, yakni terbatas secara
spasial tetapi muncul terus-menerus sepanjang periode pengamatan (Andrienko et al. 2010).
Secara umum, sebagian besar klaster lain di Provinsi Riau juga menunjukkan pola kemunculan
berulang yang serupa, meskipun beberapa klaster lainnya bersifat reappearing, yaitu klaster
yang muncul berulang di lokasi serupa, tetapi tanpa keteraturan waktu yang spesifik (Andrienko
et al. 2010).

Hasil klasterisasi titik panas menggunakan ST-DBSCAN di Provinsi Jambi dapat dilihat
pada Gambar 6, visualisasi menunjukkan pola spasial-temporal yang terstruktur dan konsisten.
Pada bulan Agustus, algoritma berhasil mengidentifikasi 9 klaster, kemudian meningkat
menjadi 13 klaster pada September, dan mencapai puncaknya dengan 26 klaster pada Oktober.
Distribusi spasial menunjukkan bahwa klaster-klaster dominan muncul di tengah ke selatan
Provinsi Jambi, berbatasan dengan Provinsi Sumatera Selatan.

Sebaran spasial pada klaster di Provinsi Jambi memperlihatkan pemisahan yang cukup
baik antar klaster, tanpa tumpang tindih yang berarti. Banyak klaster memiliki bentuk kompak
menunjukkan bahwa ST-DBSCAN mampu menangkap segmentasi spasial yang sesuai dengan
kondisi geografis wilayah tersebut. Secara khusus, pada bulan Oktober terlihat lonjakan
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klasterisasi dengan klaster-klaster berukuran kecil hingga menengah yang muncul secara
serentak tetapi tersebar merata, mengindikasikan adanya gelombang kebakaran luas tetapi
terlokalisasi secara spasial.
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Gambar 6 Visualisasi 2D hasil klasterisasi menggunakan parameter £1=0.18°, £:=5, min_sampel=3 di Provinsi Jambi.
(a)Agustus 2023; (b) September 2023; (c) Oktober 2023

Gambar 7 memvisualisasikan evolusi spasial-temporal klaster 20 di Provinsi Jambi,
menunjukkan pola kemunculan yang persisten secara temporal dan berulang di area geografis
yang relatif sama, sehingga dapat dikategorikan sebagai klaster bertopologi stasioner. Titik
panas muncul secara konsisten selama empat interval waktu dan tersebar di wilayah barat daya
dan tenggara provinsi. Dari total delapan klaster besar (>20 titik panas) yang dianalisis tren
temporalnya di Provinsi Jambi, sebanyak empat klaster menunjukkan pola stasioner, sementara
empat lainnya memiliki karakteristik reappearing, yaitu muncul kembali pada lokasi serupa
setelah jeda waktu tertentu.

Cluster 20 - JAMBI

1: 2023-09-29 - 2023-10-03 2: 2023-10-04 - 2023-10-08 3. 2023-10-09 - 2023-10-13 4:2023-10-14 - 2023-10-17

Gambar 7 Visualisasi evolusi klaster 20 (Jambi, 29 Sep—17 Okt 2023)

Dapat dilihat pada Gambar 8 Sumatera Selatan menunjukkan hasil klasterisasi paling
mencolok dari ketiga provinsi, baik dari segi jumlah klaster maupun kedalaman spasial-
temporalnya. Hasil ST-DBSCAN mengidentifikasi 50 klaster pada bulan Agustus, meningkat
menjadi 62 klaster pada September, dan mencapai angka tertinggi sebesar 68 klaster pada
Oktober. Peta persebaran spasial memperlihatkan klaster-klaster tersebar sangat luas, terutama
di bagian pantai timur dan tenggara provinsi. Banyaknya klaster yang terbentuk
memperlihatkan kemampuan algoritma dalam menangkap unit-unit kebakaran kecil yang
tersebar secara luas. Ukuran klaster umumnya berada pada kategori sedang, terdiri dari 20
hingga 60 titik per klaster. Sebaran yang luas dan jumlah klaster yang tinggi mencerminkan
karakteristik kebakaran di Sumatera Selatan yang masif tetapi singkat, dengan banyak kejadian
terjadi secara berdekatan tetapi tidak saling terhubung secara temporal.
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Gambar 8 Visualisasi hasil klasterisasi menggunakan parameter £1=0.18°, &2=5, min_sampel=3 di Provinsi Sumatera Selatan.
(a)Agustus 2023; (b) September 2023; (c) Oktober 2023
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Gambar 9 Visualisasi evolus1 klaster 20 (Sumatera Selatan, 29 Sep—17 Okt 2023)

Pada Provinsi Sumatera Selatan, topologi klaster hasil analisis ST-DBSCAN
menunjukkan variasi pola spasial temporal, beberapa klaster seperti klaster 20 (Gambar 9),
menunjukkan pola stasioner, sementara klaster lainnya memiliki karakteristik reappearing.
Selain itu, ditemukan pula klaster dengan topologi tracks, yaitu pergeseran lokasi titik panas
secara bertahap mengikuti arah tertentu dari satu interval waktu ke interval berikutnya
(Andrienko ef al. 2010).

Untuk melengkapi analisis spasial-temporal titik panas dan klasterisasi kebakaran hutan
dan lahan, dilakukan konversi estimasi konsentrasi PM2.5 berdasarkan data MODIS AOD.
Gambar 10 menampilkan hasil pencocokan spasial-temporal antara klaster titik panas dan
estimasi PM2.5 di Provinsi Riau, Jambi, dan Sumatera Selatan selama Agustus—Oktober 2023.
Lingkaran menunjukkan lokasi centroid dari klaster titik api, warna lingkaran
merepresentasikan rata-rata nilai PM2.5 hasil konversi AOD (semakin gelap menunjukkan
konsentrasi yang lebih tinggi), sedangkan diameter lingkaran menggambarkan jumlah titik api
dalam klaster.
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Gambar 10 Visualisasi rata-rata perhitungan PM2.5 selama Agustus hingga Oktober per klaster. (a) Provinsi Riau; (b) Provinsi
Jambi; (c) Provinsi Sumatera Selatan.
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Secara umum, hasil menunjukkan adanya hubungan spasial-temporal yang konsisten
antara distribusi titik panas dan peningkatan konsentrasi PM2.5 di seluruh provinsi. Di Provinsi
Riau, konsentrasi PM2.5 meningkat signifikan dari Agustus (rata-rata 36.3 pg/m?) ke Oktober
(62.2 ng/m?), dengan nilai maksimum mencapai 96.7 pg/m?. Klaster dengan PM2.5 tertinggi
terkonsentrasi di wilayah timur dan tenggara, berdekatan dengan area lahan gambut dan
perkebunan, yang merupakan lokasi utama kejadian kebakaran berulang.

Di Provinsi Jambi, peningkatan serupa terjadi dari 42.1 ug/m?® pada September menjadi
54.8 ng/m* pada Oktober, meskipun jumlah klaster sedikit menurun. Klaster dengan nilai
PM2.5 tertinggi berada di bagian tengah provinsi yang juga menjadi area dengan konsentrasi
titik panas tinggi, menunjukkan kesesuaian spasial antara kejadian kebakaran dan peningkatan
polusi udara.

Sementara itu, Sumatera Selatan mencatat jumlah titik panas dan klaster terbanyak,
dengan rata-rata PM2.5 meningkat dari 26.4 pg/m*® di Agustus menjadi 46.0 ug/m* pada
Oktober. Klaster terbesar dengan nilai PM2.5 tinggi umumnya berada di bagian timur dan
tenggara provinsi, yang didominasi oleh kawasan rawa dan gambut. Hal ini menegaskan bahwa
area dengan kepadatan klaster tinggi cenderung berasosiasi dengan peningkatan signifikan
konsentrasi PM2.5 di atmosfer.

Secara keseluruhan, hasil ini menunjukkan bahwa pola peningkatan PM2.5 di wilayah
studi tidak hanya dipengaruhi oleh jumlah klaster yang terbentuk, tetapi juga oleh distribusi
spasialnya yang berdekatan dengan area lahan gambut dan perkebunan. Integrasi antara klaster
titik panas dan estimasi PM2.5 berbasis AOD terbukti efektif untuk menggambarkan dinamika
spasial dan temporal polusi udara akibat karhutla di Sumatera.

Tabel 5 merangkum lima klaster dengan estimasi konsentrasi PM2.5 tertinggi dari
masing-masing provinsi. Pemilihan klaster ini didasarkan pada rerata konsentrasi PM2.5 hasil
konversi dari nilai AOD yang berada dalam area spasial zona penyangga tiap klaster. Klaster-
klaster di Provinsi Riau mendominasi posisi teratas dengan nilai rata-rata PM2.5 di atas 74
png/m? dan cakupan area yang luas. Salah satu klaster bahkan memiliki durasi hingga 63 hari.
Hal ini menunjukkan adanya kejadian kebakaran yang persisten dan berulang secara spasial.

Tabel 5 Lima Klaster dengan Estimasi Konsentrasi PM2.5 Tertinggi di Setiap Provinsi

Interval titik

Chfster Provinsi Jumlah titik Jumlah AOD Mean PM2.5 Area (km?) panas dalam Tanggal mulai
id panas klaster (hari)

18 Riau 6 49 96.71 24480 21 2023-09-27
14 Riau 14 108 83.91 27811 51 2023-08-27
15 Riau 23 115 76.98 39091 51 2023-08-27
Riau 54 179 75.21 35351 63  2023-08-06

2 Riau 11 16 74.03 13909 63  2023-08-04

16 Jambi 11 157 92.34 30995 20 2023-09-26

6 Jambi 7 1 88.76 9459 36 2023-09-04

3 Jambi 14 33 71.52 22197 58  2023-08-11

5 Jambi 12 56 62.31 22873 48  2023-08-22

18 Jambi 20 123 57.87 19213 20 2023-09-27

1 Sumatera Selatan 77 241 72.26 47978 60  2023-08-04

5 Sumatera Selatan 84 197 71.80 70525 55 2023-08-11
34 Sumatera Selatan 221 137 68.39 55973 26 2023-09-23
51 Sumatera Selatan 11 7 67.05 5388 1 2023-10-31
28 Sumatera Selatan 168 213 65.96 61797 28  2023-09-18

Di Provinsi Riau, klaster dengan konsentrasi PM2.5 tertinggi mencapai nilai rata-rata
96.71 ng/m?, yang terjadi pada akhir September. Klaster ini memiliki area sebaran sekitar 31000
km? dan durasi 20 hari. Sedangkan di Sumatera Selatan, lima klaster utama menunjukkan
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karakteristik PM2.5 tinggi (lebih dari 65 pg/m®) dengan cakupan area sangat luas, termasuk
satu klaster yang menjangkau lebih dari 70000 km?.

Analisis korelasi antara interval hari antar kemunculan titik panas dalam satu klaster
dan estimasi konsentrasi PM2.5 menunjukkan variasi hubungan antarprovinsi. Di Provinsi
Riau, korelasi negatif yang sangat kuat (» = —0.96) menunjukkan bahwa semakin besar jarak
waktu antar kemunculan titik panas dalam suatu klaster, konsentrasi rata-rata PM2.5 justru
cenderung menurun. Hal ini mengindikasikan bahwa akumulasi polutan lebih dipengaruhi oleh
kemunculan titik panas yang terjadi dalam waktu berdekatan. Sebaliknya, di Sumatera Selatan
ditemukan korelasi positif yang kuat (» = 0.85), menandakan bahwa klaster dengan jarak antar
kemunculan titik panas yang lebih panjang justru berkaitan dengan peningkatan rata-rata
PM2.5, kemungkinan akibat area penyebaran klaster yang lebih luas. Adapun di Provinsi Jambi,
korelasi lemah ( = —0.22) menunjukkan hubungan yang tidak signifikan antara interval hari
dan konsentrasi PM2.5. Secara keseluruhan, hasil ini mengindikasikan bahwa frekuensi
kemunculan titik panas dalam suatu periode lebih berpengaruh terhadap konsentrasi PM2.5
dibandingkan jarak temporal antar kejadian, dan bahwa karakteristik spasial-temporal
kebakaran di tiap provinsi memiliki dinamika yang berbeda.

SIMPULAN

Penelitian ini berhasil menerapkan pendekatan spasial-temporal untuk menganalisis
sebaran titik panas dan estimasi konsentrasi PM2.5 di Provinsi Riau, Jambi, dan Sumatera
Selatan selama periode Agustus hingga Oktober 2023. Algoritma ST-DBSCAN terbukti efektif
dalam mengidentifikasi klaster kebakaran dengan tingkat noise yang rendah serta mampu
menangkap dinamika spasial-temporal kebakaran di wilayah studi. Provinsi Sumatera Selatan
menunjukkan jumlah klaster tertinggi dan distribusi spasial yang paling luas, sedangkan
Provinsi Riau mencatat konsentrasi PM2.5 tertinggi mencapai 96.7 pg/m?>.

Hasil estimasi PM2.5 dari data MODIS AOD menunjukkan bahwa sebagian besar
wilayah terdampak memiliki konsentrasi partikulat halus yang melebihi ambang batas harian
WHO (2021) sebesar 15 pg/m?, menandakan tingkat risiko kesehatan yang signifikan selama
periode puncak kebakaran. Integrasi antara klaster titik panas dan estimasi PM..s menghasilkan
gambaran komprehensif mengenai lokasi, waktu, dan intensitas kejadian kebakaran, sehingga
dapat digunakan untuk mengidentifikasi wilayah prioritas pemantauan serta mendukung sistem
peringatan dini berbasis data satelit. Selain itu, hasil estimasi PM2.5 juga berpotensi menjadi
indikator risiko kesehatan masyarakat dan dasar dalam perumusan kebijakan mitigasi polusi
udara akibat karhutla.

Namun, penelitian ini memiliki beberapa keterbatasan yang perlu diakui. Model estimasi
PM2.5 berbasis AOD yang digunakan memiliki koefisien determinasi (R? = 0.56), sehingga
masih terdapat ketidakpastian dalam akurasi estimasi, terutama tanpa validasi langsung
menggunakan data pengukuran lapangan. Selain itu, variabilitas meteorologis dan faktor emisi
lokal tidak sepenuhnya terwakili dalam analisis ini. Oleh karena itu, hasil estimasi PM2.5 dalam
penelitian ini perlu ditafsirkan dengan hati-hati, dan tidak dapat menggantikan pengukuran
langsung. Validasi berbasis data in-situ dari BMKG atau sensor kualitas udara lokal disarankan
sebagai pekerjaan lanjutan, sekaligus mengintegrasikan faktor meteorologi untuk
meningkatkan akurasi dan reliabilitas model.
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