

Volume 12 Nomor 2 halaman 142–154

eISSN: 2654-9735, pISSN: 2089-6026

Pengembangan Model LMS Berbasis Serverless untuk Mengatasi

Masalah Kinerja di Lingkungan Padat Pengguna

Designing LMS Model Based on Serverless to Solve Performance

Issue on High Concurrency Workload

MUHAMMAD JAKA UTAMA*, SHELVIE NIDYA NEYMAN,1KARLISA PRIANDANA

Abstrak

Moodle adalah salah satu aplikasi Learning Management System (LMS) yang berperan penting dalam

pembelajaran secara daring. Salah satu faktor penting yang perlu diperhatikan dari LMS Moodle adalah kinerja di

lingkungan padat pengguna. Padat pengguna mengacu pada situasi di mana jumlah pengguna atau peserta dalam

sistem melebihi kapasitas yang dapat ditangani oleh sistem tersebut. Penelitian ini bertujuan untuk menghasilkan

suatu pilihan model arsitektur LMS Moodle agar dapat menangani masalah kinerja dalam lingkungan padat

pengguna. Pendekatan yang digunakan adalah arsitektur hybrid yang menggabungkan teknologi serverless pada

komponen database, penyimpanan data, dan session handler, serta container di atas virtual machine (VM) dengan

layanan IaaS pada core system dengan dukungan load balancing dan auto scaling. Penelitian dilakukan melalui

empat tahap, yaitu identifikasi masalah, perancangan, implementasi, dan analisis model LMS. Hasil evaluasi

menunjukkan bahwa model LMS yang dikembangkan mampu menangani hingga 1500 pengguna bersamaan tanpa

penurunan kinerja signifikan, dengan response time di bawah 2500 ms dan failure request di bawah 1%. Pengujian

lanjutan dengan konfigurasi batas minimum resource memungkinkan sistem melayani hingga 10.000 pengguna

secara simultan. Skor benchmark plugin Moodle menunjukkan performa optimal pada seluruh aspek. Model ini

terbukti dapat meningkatkan kehandalan dan skalabilitas LMS di lingkungan padat pengguna.

Kata Kunci: Kinerja serverless, learning management system, Moodle, padat pengguna.

Abstract

Moodle is one of the Learning Management Systems (LMS) that play a critical role in supporting online

education. One of the important factors in Moodle LMS is its performance in high concurrency workload

environments. High concurrency workload refers to situations where the number of users exceeds the system's

capacity. This study aims to propose an architectural model for Moodle LMS that can address performance issues

under such heavy-load conditions. The proposed approach adopts a hybrid architecture that integrates serverless

technologies for database, file storage, and session handler components, along with containerization on virtual

machines (VM) using IaaS for the core system, supported by load balancing and autoscaling mechanisms. The

research follows four stages: problem identification, system design, implementation, and LMS model analysis.

Evaluation results show that the developed LMS model can handle up to 1500 concurrent users without significant

performance degradation, maintaining a response time below 2500 ms and a failure request rate below 1%.

Further testing with minimum resource configuration allows the system to support up to 10.000 concurrent users.

Benchmark scores using the Moodle plugin indicate optimal performance across all aspects. This model has

proven to enhance the reliability and scalability of LMS platforms in high-concurrency workload environments.

Keywords: High concurrency workload, learning management system, Moodle, serverless.

PENDAHULUAN
Learning Management System (LMS) adalah perangkat lunak yang dirancang untuk

mengelola proses pembelajaran secara online. LMS sudah digunakan sejak lama khususnya

perguruan tinggi untuk menyediakan lingkungan belajar virtual yang terintegrasi. LMS

1Program Studi Ilmu Komputer, Sekolah Sains Data, Matematika, dan Informatika, Institut Pertanian Bogor, Bogor 16680;

*Penulis Korespondensi: Tel/Faks: 081330304032; Surel: mjakautama@apps.ipb.ac.id

Tersedia secara daring di:

https://jurnal.ipb.ac.id/index.php/jika

143

Vol 12 2025

memainkan peran penting dalam mendukung pendidikan dan pelatihan jarak jauh,

pembelajaran berbasis online (Ahmed et al. 2021), dan mengelola konten serta interaksi

pembelajaran secara efisien dalam lingkungan digital (Setiawan 2021). Contoh LMS yang

populer adalah Moodle, Blackboard, Canvas, dan Google Classroom. Dalam

perkembangannya, LMS dengan menggunakan Moodle paling umum digunakan di bidang

pendidikan (Jingga dan Sunindyo 2020).

Salah satu faktor penting yang perlu diperhatikan dari LMS Moodle adalah kinerja di

lingkungan padat pengguna (Sadikin et al. 2019; Mihai et al. 2023). Padat pengguna mengacu

pada situasi di mana jumlah pengguna atau peserta dalam sistem melebihi kapasitas yang dapat

ditangani oleh sistem tersebut. Dalam kondisi padat pengguna, beban kerja dan permintaan

yang tinggi dapat mempengaruhi kinerja aplikasi, seperti waktu respons yang lambat,

penurunan kecepatan akses, atau bahkan kegagalan sistem. Pada umumnya masalah padat

pengguna merupakan suatu masalah load balancing agar beban tidak terpusat pada satu server

(Mihăescu et al. 2011; Sadikin et al. 2019; Alier et al. 2020; Kacapor dan Veselinovic 2021;

Zaini et al. 2021; Mihai et al. 2023). Penerapan load balancing dapat mengatasi masalah

kinerja. Namun, karena tingginya jumlah pengguna, diperlukan daya komputasi yang semakin

besar. Oleh karena itu, penggunaan load balancing saja tidak lagi memadai, sehingga

diperlukan suatu pemilihan deploy LMS yang tepat untuk mengatasinya (Yang et al. 2017).

Moodle dapat di-deploy self-hosted (on-prem) atau di-deploy pada lingkungan cloud

(serverless) (Mihai et al. 2023). Saat ini, penelitian terkait deploy suatu aplikasi menggunakan

arsitektur serverless menjadi semakin populer. Serverless mengacu pada komputasi awan di

mana teknisi tidak perlu memikirkan mengurus server dari provision, maintenance, scaling,dan

patching karena semua dilakukan oleh penyedia cloud (Kumar 2024). Contoh penyedia cloud

yang populer adalah Amazon Web Service (AWS), Microsoft Azure, dan Google Cloud. Hal

ini terlihat dari hasil penelitian yang menggunakan arsitektur serverless, diantaranya kinerja

(Zhang dan Zhu 2017), biaya (Abdulmohson et al. 2022), fleksibilitas dan skalabilitas (Al-

Dhuraibi et al. 2017). Begitu pula untuk menangani fluktuatif pengguna LMS, penggunaan

serverless dapat mengoptimalkan resource dalam penerapannya (Nday et al. 2023).

Sebagai langkah awal, kajian dilakukan pada LMS IPB University. IPB University

merupakan salah satu universitas di Bogor yang didirikan sejak tahun 1963 dan menggunakan

Moodle sebagai LMS. IPB University memiliki banyak program studi yang tersebar di berbagai

fakultas dan memiliki sekitar kurang lebih 28.000 mahasiswa aktif setiap tahunnya. Hampir

semua kegiatan akademis dilakukan di LMS, mulai dari penyebaran materi perkuliahan, quiz,

ujian tengah semester (UTS), ujian akhir semester (UAS), hingga pengumpulan tugas dan

projek mahasiswa. Infrastruktur dan aplikasi LMS IPB University dikelola oleh Lembaga

Manajemen Informasi dan Transformasi Digital (LMITD) di on-prem IPB University.

Meskipun sumber daya server dan teknis tersedia, serta telah digunakan selama bertahun-tahun

di IPB University, transisi ke aktivitas online menyebabkan berbagai masalah yang harus diatasi

salah satunya kinerja pada lingkungan padat pengguna. Pada lingkungan padat pengguna, LMS

harus dapat menangani sejumlah besar sesi secara bersamaan pada jam-jam perkuliahan antara

jam 08.00 sampai 17.00 dari Senin hingga Jumat. Selain itu, pada akhir pekan, jam istirahat,

dan di luar jam kantor, LMS harus dapat menangani semua permintaan karena mahasiswa pada

jam tersebut melakukan pengumpulan tugas dan dosen banyak memperbarui materi

perkuliahan. LMS IPB University ini penting dalam menunjang perkuliahan. Kinerja LMS yang

buruk, kecepatan akses yang lambat, dan ketidakstabilan sistem dapat mengganggu pengalaman

belajar online (Jiwo dan Kusuma 2021), menghambat interaksi antara pengguna (Widiyono

2021), dan mempengaruhi efektivitas pembelajaran (Risyah 2022).

Penelitian ini bertujuan untuk menghasilkan suatu pilihan model arsitektur LMS Moodle

agar dapat menangani masalah kinerja dalam lingkungan padat pengguna. Pengembangan

model LMS Moodle pada penelitian ini menggunakan arsitektur hybrid berbasis serverless

dengan menggabungkan teknik load balancing. Serverless untuk database, storage dan session

handler menggunakan layanan PaaS. Aplikasi utama menggunakan layanan IaaS dengan

144 Utama, Neyman, dan Priandana JIKA

container Docker yang dijalankan diatas virtual machine. Layanan serverless menggunakan

AWS karena pada penelitian (Wiechork dan Charão 2020) AWS memberikan kinerja yang

lebih baik.

METODE
Penelitian ini dilakukan dalam empat tahapan, yaitu identifikasi masalah, perancangan

model LMS, implementasi model LMS, dan analisis model LMS. Alur tahapan penelitian ini

ditunjukkan pada Gambar 1.

Gambar 1 Tahapan-tahapan yang dilakukan pada penelitian

Identifikasi Masalah

Pada tahap ini dilakukan studi literatur untuk memperoleh informasi tambahan terkait

faktor-faktor yang memengaruhi padat pengguna di LMS, yang akan memperkuat argumen

pada tahap perancangan. Studi literatur dilakukan dengan pendekatan sistematis, menggunakan

referensi publikasi seperti conference, journal, dan buku yang berfokus pada penelitian tentang

LMS Moodle, serverless, dan teknik load balancing dalam beberapa tahun terakhir.

Pengambilan data juga dilakukan menggunakan data yang diambil pada pertengahan

perkuliahan semester genap (Mei-Juli) 2023 dari laporan di grup LMS dan help center terkait

error aplikasi. Data analytics IPB University diambil untuk melihat pengunjung ke aplikasi.

Selain itu juga dilakukan survei terkait tempat hosting LMS. Tujuan pengambilan data untuk

mengetahui contoh real keadaan padat pengguna dan menambah argumen dalam perancangan

model LMS selain dari hasil studi literatur.

Perancangan Model LMS

Pada tahap ini, dilakukan perancangan arsitektur berdasarkan hasil identifikasi masalah,

yaitu merancang model arsitektur serverless, termasuk menentukan layanan-layanan apa saja

yang akan digunakan dalam serverless. Hasil dari perancangan ini adalah model LMS berbasis

serverless yang dilanjutkan ke tahap implementasi.

Dalam perancangan LMS, karena kompleksitas aplikasinya, terdapat teknik-teknik

khusus yang perlu diperhatikan. Dalam penelitian (Zaini et al. 2021) beberapa komponen

penting yang harus diperhatikan dalam perancangan LMS menggunakan Moodle adalah:

a. Core system digunakan untuk menjalankan aplikasi Moodle. Di dalamnya terdiri dari

code-code aplikasi Moodle, theme, dan plugin. Bagian ini secara langsung akan diakses

oleh pengguna dan semua fungsi Moodle berada di sini.

b. Moodle data berisi file-file hasil unggahan pengguna dan file hasil proses core system,

seperti file pdf, presentasi, image, video, file backup. Bagian ini harus berada di lokasi

145

Vol 12 2025

terpisah dengan core system untuk menghindari unggahan file malware oleh pengguna

tetapi harus tetap dapat diakses oleh web server.

c. Database berisi semua database berkaitan dengan Moodle system data.

Implementasi Model LMS

Pada tahap ini, model LMS hasil perancangan pada tahapan sebelumnya diimplementasi

dalam cloud. Tahapan ini mencakup instalasi Moodle, penyesuaian (tuning) aplikasi, serta

implementasi teknologi yang ada di cloud. Hasil dari tahap ini adalah LMS yang siap digunakan,

yang dilanjutkan ke tahap analisis dan evaluasi.

Analisis Model LMS

Analisis dilakukan dalam tiga fase. Fase pertama analisis hasil implementasi model LMS.

Fase kedua analisis hasil scoring model LMS. Fase ketiga analisis hasil pengujian kinerja model

LMS. Analisis hasil implementasi model LMS bertujuan untuk melihat bagaimana model LMS

saat digunakan secara langsung. Analisis ini dilakukan berdasarkan hasil data yang diambil

pada semester ganjil (Agustus-Desember) 2023. Data diambil dari laporan di grup LMS dan

help center terkait error aplikasi untuk melihat improvement dari model LMS. Data analytics

IPB University diambil untuk melihat trend pengunjung ke aplikasi selama menggunakan

model LMS yang dihasilkan.

Model LMS yang dibuat harus dilakukan penilaian dasar untuk mengetahui kualitas

modelnya. Salah satu alat yang direkomendasikan Moodle untuk melakukan scoring model

LMS adalah Moodle benchmark plugin (Jingga 2020). Plugin ini digunakan sebagai penilaian

dasar kecepatan dan kualitas model LMS menilai dari semua aspek critical LMS yaitu

kecepatan server, kecepatan prosesor, kecepatan storage, kecepatan database, dan kecepatan

membuka suatu halaman. Hasilnya adalah score dari waktu total pada setiap aspek yang

diperiksa dengan tiap-tiap aspek memiliki acceptable limit dan critical limit. Semakin kecil

nilai yang didapatkan, maka kinerja model LMS semakin baik. Aspek yang diukur dan

penjelasannya dapat dilihat pada Tabel 1.

Tabel 1 Parameter pengujian

Description Acceptable

limit

Critical

limit

1 Moodle loading time

Load the “config.php” configuration file

0.5 0.8

2 Processor processing speed

Call a PHP function with a loop to check the processor speed

0.5 0.8

3 Reading file performance

Read a file multiple times to check the reading speed of the Moodle temporary

folder

0.5 0.8

4 Writing file performance

Write a file multiple times to check the writing speed of the Moodle temporary

folder

1 1.25

5 Reading course performance

Read a course multiple times to check the reading speed of the database

0.75 1

6 Writing course performance

Write a course multiple times to check the writing speed of the database

1 1.25

7 Database performance (#1)

Run a complex SQL query to check the speed of the database

0.5 0.7

8 Database performance (#2)

Run a complex SQL query to check the speed of the database

0.3 0.5

9 Login time of administration notification page

Load the administration interface notification page a few times to check web

server speed

0.3 0.8

Analisis hasil pengujian kinerja model LMS dilakukan dengan simulasi menggunakan

bot. Sejumlah bot dibangkitkan untuk melakukan tugas login, melihat kursus, dan mencoba kuis

secara bersamaan. Jumlah bot yang digunakan adalah 100, 500, 1500, 2500, 5000, 7500, dan

10.000, dengan waktu peningkatan bertahap (ramp-up period) selama 5 menit. Angka ini

diambil dengan mempertimbangkan bottleneck dari sistem, sehingga digunakanlah pola

146 Utama, Neyman, dan Priandana JIKA

tersebut (Draheim et al. 2006). Pada tahap ini, kesimpulan diambil berdasarkan temuan

penelitian, sekaligus menjawab pertanyaan penelitian yang diajukan. Tahap ini juga

menghasilkan rekomendasi mengenai jumlah sumber daya optimal yang diperlukan, sesuai

dengan target jumlah pengguna, untuk meningkatkan kinerja dan skalabilitas Moodle dalam

lingkungan padat pengguna. Pengujian ini menggunakan clone LMS pada implementasi model

LMS dengan mempertimbangkan concurrent users terhadap response time (ms) dan failure

request (%) serta melihat pemakaian resource seperti CPU (core), memory (GB), database

(ACU), dan bandwidth (MBps). Parameter yang digunakan pada pengujian ini termasuk tools

yang digunakan untuk mengambil data dapat dilihat pada Tabel 2.

Tabel 2 Parameter pengujian

Komponen Nilai Tools

CPU ec2 core AWS CloudWatch

Memory ec2 GB AWS CloudWatch

Database ACU AWS CloudWatch

Bandwidth MBps AWS CloudWatch

Failure request % Locust

Response time ms Locust

HASIL DAN PEMBAHASAN
Identifikasi Masalah

Faktor penting yang harus dipertimbangkan untuk membuat model LMS padat pengguna

adalah kemampuan sistem untuk dapat melayani beban tinggi dan fluktuatif (Nday et al. 2023).

Hal ini dapat terlihat pada Gambar 2 yang menunjukkan jumlah pengunjung mengakses LMS

IPB University pada pertengahan perkuliahan semester genap (Mei-Juli) 2023. Data diambil

berdasarkan visitor dari aplikasi analytics IPB University. Terlihat jumlah pengunjung

fluktuatif dan bisa mencapai lebih dari 16.000 dalam sehari.

Gambar 2 Jumlah pengunjung LMS IPB University setiap hari

Gambar 3 Jumlah pengunjung dan laporan error LMS IPB University

Pada Gambar 3 menunjukkan laporan mengenai terjadinya gangguan (down) pada

aplikasi LMS. Data ini diambil dari laporan di grup LMS dan help center. Berdasarkan laporan

error dan jumlah pengunjung yang mengakses, terlihat terjadi gangguan pada sistem ketika

jumlah pengunjung lebih dari 9500 pengunjung per hari. Dari segi teknis, infrastruktur, dan

aplikasi LMS IPB saat ini berjalan di server on-prem milik IPB dan memiliki keterbatasan

sumber daya.

Berdasarkan hal tersebut, penelitian ini membuat model solusi LMS untuk lingkungan

padat pengguna berbasis serverless. Pengembangan model LMS Moodle pada penelitian ini

menggunakan arsitektur hybrid berbasis serverless dengan menggabungkan teknik load

147

Vol 12 2025

balancing. Serverless untuk database, storage, dan session handler menggunakan layanan

PaaS. Aplikasi utama menggunakan layanan IaaS dengan container Docker yang dijalankan di

atas virtual machine.

Perancangan Model LMS

Dalam penelitian (Zaini et al. 2021) tedapat tiga komponen penting yang harus

diperhatikan pada perancangan yaitu core system, Moodle data, dan database. Pada kasus padat

pengguna ada satu komponen lagi yang harus diperhatikan yaitu session handler (Büchner

2022). Session handler digunakan untuk mengatur session pengguna.

Gambar 4 Model LMS

Perancangan Arsitektur LMS dimulai dari pemilihan tempat berjalannya core system.

Core system digunakan untuk aplikasi Moodle berjalan, di dalamnya terdiri dari kode-kode

aplikasi Moodle. Pada perancangan core system terdapat load balancing menggunakan ELB

bertugas untuk mendistribusikan traffic ke beberapa container Moodle core yang berjalan di

EC2. Cara load balancing ELB adalah membagi beban secara merata untuk meningkatkan

availability dan scalability. ASG mengelola jumlah instance EC2 pada penelitian ini jika

pemakaian CPU di atas 80% maka akan secara otomatis menambah instance EC2.

Moodle data digunakan untuk menyimpan file unggahan Moodle. Pada bagian ini

diterapkan menggunakan teknologi EFS, yang akan di-attach pada core system. Moodle data

dibuat terpisah karena memiliki behaviour dinamis, yang isinya berubah terus menerus.

Berbeda dengan core system yang static serta hampir tidak ada perubahan.

Perancangan berikutnya adalah pada bagian database LMS. Pada perancangan database

dibuat dalam cluster untuk pembagian beban kerja. Komponen database pada penelitian ini

terdiri dari satu sebagai master yang difungsikan untuk melakukan semua proses write dari

LMS dan slave yang bertindak untuk menangani semua permintaan read only dari LMS. Pada

slave dibuat pengaturan, apabila pemakaian ACU di atas 80% maka akan menambahkan satu

mesin slave lagi. Pembagian baca dan tulis pada bagian database bertujuan untuk meningkatkan

kinerja model LMS.

148 Utama, Neyman, dan Priandana JIKA

Terakhir bagian session handler, bagian ini digunakan untuk menyimpan session peserta.

Pada bagian ini diterapkan dengan elasticache berbasis Redis. Hal ini dipilih karena behavior

session Moodle yang cepat dan harus persistence. Gambar 4 mengilustrasikan model LMS pada

penelitian ini.

Implementasi Model LMS

Implementasi model LMS padat pengguna berbasis serverless ini diterapkan di AWS

region Southeast Asia negara Singapura karena service yang tersedia lebih lengkap

dibandingkan di negara Indonesia. Walaupun server di Singapura tetapi tidak mempengaruhi

layanan karena berada satu region dengan Indonesia. Pada tahap implementasi dibagi ke dalam

empat tahapan seperti pada Gambar 5.

Gambar 5 Urutan implementasi model LMS pada penelitian

1. Session Handler

Pada bagian session handler diterapkan dengan Amazon elasticache serverless, sehingga

resource menyesuaikan dengan pemakaian. Resource yang disesuaikan yaitu data yang

disimpan dan Elasticache Processing Units (ECPUs). Data yang disimpan dihitung dalam GB,

untuk satu ECPUs setara dengan satu kali proses baca dan tulis dari setiap kilobyte (KB) data

yang dikirim. Secara default, batas rendah scaling elasticache 1 GB sampai batas tertinggi 5000

GB storage dan 1000 ECPUs sampai batas tertinggi 15.000.000 ECPUs request. Pada

penelitian ini batas yang diterapkan menggunakan default elasticache karena dengan default

saja sudah cukup.

 2. Moodle data

Pada bagian Moodle data diterapkan dengan EFS. Penggunaan ini karena fungsi Moodle

data yang harus selalu sama isinya karena berkaitan dengan data aplikasi. EFS ini berbasis

serverless mengikuti ukuran storage yang digunakan dan dapat mengembang hingga exabytes

data. Sehingga pada penelitian ini tidak diatur ukuran storage dan otomatis mengikuti ukuran

data.

3. Database

Pada implementasi database cluster dibuat menggunakan service Aurora serverless

berbasis MySql. Mesin database ini dibuat dalam cluster dengan satu bertindak sebagai master

dan satu lagi bertindak sebagai slave. Database yang digunakan menggunakan MySql. Scaling

yang digunakan apabila rata-rata CPU sudah mencapai 80% maka akan membuat instance slave

database baru. Satuan resource yang digunakan pada database ini adalah Aurora Capacity Unit

(ACU). Setiap ACU setara dengan 1 core CPU dan 2 GB memory. Maksimum 1 instance

Aurora bisa diatur minimum 0.5 ACU sampai 128 ACU. Pada penelitian ini digunakan

minimum 0.5 ACU sampai 128 ACU.

4. Core System

Bagian ini dibuat terakhir karena bagian inti yang memerlukan ketiga requirement

terpenuhi. Pertama dibuat template image EC2 untuk dimasukkan ke dalam autoscale. Dalam

image EC2 ini diinstal Moodle dan dibuat kontainer dengan basis image bitnami/moodle:4.1

yang dikostumisasi agar bisa berjalan di environment serverless. Image EC2 dilakukan

konfigurasi seperti pengaturan ulimit dan fstab untuk mounting efs setiap core system scaling.

Setelah diinstal dan dikonfigurasi lalu dibuat template image EC2. Image EC2 Moodle tersebut

kemudian dimasukkan ke dalam policy auto scaling. Mesin yang digunakan c5a.xlarge karena

memerlukan komputasi dan bandwidth yang besar dengan spesifikasi 4 core dan 8 GB memory.

Batas autoscaling dibuat minimum 1 mesin dan akan bertambah mesin baru jika sudah

menyentuh 80% penggunaan CPU. Nilai 80% ini digunakan karena ketika penambahan mesin

dibutuhkan waktu untuk mesin barunya dapat digunakan. Dengan diberikan 80% mesin yang

149

Vol 12 2025

available sekarang tidak penuh dahulu hingga mesin baru dapat digunakan. Setelah autoscaling

policy jadi, lalu dimasukkan ke dalam elastic load balancing untuk membagi beban.

Analisis Model LMS

1. Hasil implementasi model LMS

Model LMS sudah diterapkan dan dipakai sehari-hari pada semester ganjil (Agustus-

Desember) 2023. Pada Gambar 6 menunjukkan terjadi peningkatan data pengunjung yang

mengakses dengan model arsitektur LMS. Data tersebut diambil dari laporan di grup LMS dan

help center terkait error aplikasi untuk melihat improvement dari model LMS serta data

analytics IPB University untuk melihat trend pengunjung ke aplikasi selama menggunakan

model LMS yang dihasilkan. Selama implementasi model arsitektur LMS tidak terjadi aplikasi

LMS down ataupun keluhan dari pengguna. Jumlah pengunjung LMS terjadi peningkatan

setelah implementasi terjadi kenaikan hingga lebih dari 30.000 ketika peak dalam sehari. Model

LMS pada penelitian ini mampu menangani peningkatan jumlah pengunjung.

Gambar 6 Jumlah pengunjung dengan laporan LMS hasil implementasi

2. Hasil scoring model LMS

Pada tahap ini dilakukan penilaian kinerja dasar model LMS, dengan menggunakan

Moodle benchmark plugin. Plugin ini mengecek semua aspek critical LMS yaitu kecepatan

server, kecepatan prosesor, kecepatan storage, kecepatan database, dan kecepatan membuka

suatu halaman, yang mana jika salah satu aspek mendapatkan score jelek akan mempengaruhi

sistem LMS keseluruhan. Semakin kecil score yang dihasilkan dan semua score berwarna hijau

mengindikasikan bahwa situs LMS tersebut baik. Hasil scoring model LMS dapat dilihat pada

Tabel 3.

Hasil Moodle loading time untuk mengetahui seberapa cepat model LMS dapat membaca

file konfigurasi didapatkan nilai 0.003 detik, menunjukkan nilai yang baik karena berada jauh

di bawah batas yang dapat diterima yaitu 0.5 detik dan batas kritis 0.8 detik. Hasil processor

processing speed untuk mengetahui suatu model LMS memproses fungsi aplikasi berulang

tanpa hambatan didapatkan nilai 0.06 detik, menunjukkan kinerja prosesor baik karena berada

jauh di bawah batas yang dapat diterima yaitu 0.5 detik dan batas kritis 0.8 detik. Hasil reading

file performance untuk mengetahui kecepatan membaca file di direktori model LMS didapatkan

nilai 0.016 detik, menunjukkan kecepatan membaca optimal karena jauh di bawah batas yang

dapat diterima yaitu 0.5 detik dan batas kritis 0.8 detik. Hasil writing file performance untuk

mengetahui kecepatan menulis file di direktori model LMS didapatkan nilai 0.077 detik,

menunjukkan kecepatan menulis baik karena hanya 7.7% dari batas maksimal yang dapat

diterima yaitu 1 detik. Hasil reading course performance untuk mengetahui kinerja membaca

150 Utama, Neyman, dan Priandana JIKA

course pada database model LMS didapatkan nilai 0.078 detik, menunjukkan kinerja membaca

baik karena jauh di bawah batas yang dapat diterima yaitu 0.75 detik. Hasil writing course

performance untuk mengetahui kinerja menulis course pada database model LMS didapatkan

nilai 0.026 detik, menunjukkan kinerja menulis yang baik karena jauh di bawah batas yang

dapat diterima yaitu 1 detik. Hasil database performance (#1) untuk melihat kinerja database

dalam menjalankan query SQL kompleks didapatkan nilai 0.058 detik, menunjukkan kinerja

database baik karena jauh di bawah batas yang dapat diterima yaitu 0.5 detik. Hasil database

performance (#2) untuk melihat kinerja menjalankan SQL selain query kompleks didapatkan

nilai 0.081 detik, menunjukkan kinerja database baik karena jauh di bawah batas yang dapat

diterima yaitu 0.5 detik. Hasil loading time of administration notification page untuk melihat

waktu loading halaman admin didapatkan nilai 0.063 detik, menunjukkan waktu loading cepat

karena jauh di bawah batas yang dapat diterima yaitu 0.8 detik.

Total waktu keseluruhan 0.462 atau 47 points menunjukkan model LMS berada dalam

kategori optimal. Semua pengujian berada jauh di bawah batas yang dapat diterima maupun

kritis. Berdasarkan hasil tersebut model LMS ini tidak perlu peningkatan atau revisi pada

elemen-elemen yang diuji.

Tabel 3 Hasil scoring model LMS

Description Time (seconds)

1 Moodle loading time 0.003

2 Processor processing speed 0.060

3 Reading file performance 0.016

4 Writing file performance 0.077

5 Reading course performance 0.078

6 Writing course performance 0.026

7 Database performance (#1) 0.058

8 Database performance (#2) 0.81

9 Login time of administration notification page 0.063

Total time 0.462

Score 47 points

3. Hasil pengujian kinerja model LMS

Pengujian simulasi dengan bot ini menggunakan locust dengan membangkitkan sejumlah

bot untuk melakukan task login, view course, attempt quiz, menjawab soal, dan submit quiz

secara bersamaan dengan jumlah concurrent user 100, 500, 1500, 2500, 5000, 7500 dan 10,000.

Output hasil pengujian model arsitektur LMS menggunakan locust ini adalah response time

serta jumlah failure request. Response time adalah waktu yang dibutuhkan dari pengguna

meminta request hingga kembali lagi ke pengguna. Failure request adalah jumlah pengguna

yang tidak dapat dilayani. Keadaan resource juga dipantau selama pengujian menggunakan

locust. Resource yang dipantau adalah CPU, memory, ACU, dan bandwidth. Data resource

selama pengujian didapatkan dengan menggunakan AWS CloudWatch. Pada pengujian

simulasi pertama, konfigurasi autoscale batas minimum mesin EC2 dan database tidak diatur.

Hasil pengujian dapat dilihat pada Gambar 7.

Pada CPU EC2, penggunaan CPU meningkat secara signifikan ketika jumlah concurrent

user bertambah. Kenaikan terlihat eksponensial, terutama mulai dari 2500 hingga 10.000

concurrent user. Hal ini menunjukkan bahwa kebutuhan CPU meningkat tajam terhadap jumlah

concurrent user. Pada memory EC2, penggunaan memory juga meningkat seiring

bertambahnya jumlah concurrent user. Pola kenaikan serupa dengan CPU, dengan lonjakan

besar mulai dari 2500 concurrent user, menunjukkan bahwa pemakaian memory memiliki

ketergantungan langsung terhadap jumlah pengguna. Pada database aktivitas diukur dalam

ACU, penggunaan ACU meningkat linier hingga concurrent user 10.000. Hal ini menunjukkan

bahwa beban pada database semakin besar dengan bertambahnya concurrent user. Pada

bandwidth, penggunaan bandwidth meningkat dengan jumlah concurrent user. Kenaikan mulai

signifikan dari 2500 pengguna, dengan puncak pada 10.000 pengguna yang memerlukan

bandwidth lebih dari 2500 MBps.

151

Vol 12 2025

Gambar 7 Hasil pengujian simulasi pertama. (a) CPU EC2; (b) Memori EC2; (c) Database;

 (d) Bandwidth; (e) Failure Request; (f) Response Time

Pada failure request terjadi pola kenaikan ketika jumlah concurrent user 100 hingga 2500

tidak terjadi failure request. Pada 5000 concurrent user mulai terjadi 1%, 7500 terjadi 35%,

10.000 terjadi 54%. Hal ini menunjukkan dengan model LMS serverless tanpa diatur batas

minimum persentase failure request mulai muncul pada 5000 concurrent user dan meningkat

tajam pada 7500 concurrent user.

Pada response time, waktu respons meningkat drastis ketika jumlah concurrent user 2500

hingga 10.000. Pada jumlah concurrent user 7500 dan 10.000 waktu respons lebih rendah

daripada 5000 dikarenakan persentase failure request lebih banyak.

Pada hasil pengujian simulai pertama pada Gambar 7 dapat dikatakan bahwa model LMS

ini dapat dihandalkan hingga 5000 concurrent user berdasarkan failure request dan hingga 1500

concurrent user berdasarkan response time. Nilai maksimum response time harus di bawah

2500 ms untuk dikatakan baik (Al-Nuaimi et al. 2022) dan failure request harus di bawah 1%

(Burgess 2016), sehingga dilakukan percobaan kedua. Pada percobaan kedua dilakukan

pengoptimalan autoscale, perubahan batas minimum jumlah mesin EC2 pada load balancing,

dan ACU database. Nilai batas minimum diambil berdasarkan hasil pengujian simulasi pertama.

0
4
8

12
16
20
24
28
32

C
o

re

Concurrent User

A

0
10
20
30
40
50
60
70

G
B

Concurrent User

B

0
10
20
30
40
50
60
70
80

A
C

U

Concurrent User

C

0

500

1000

1500

2000

2500

M
B

p
s

Concurrent User

D

0
10
20
30
40
50
60

%

Concurrent User

E

0

5000

10000

15000

20000

25000

m
s

Concurrent User

F

152 Utama, Neyman, dan Priandana JIKA

Pada simulasi pertama jumlah CPU, memory, database, dan bandwidth pola pemakaiannya

terlihat linear terhadap jumlah concurrent user sehingga dapat digunakan pendekatan regresi

linear sederhana. Persamaan 1 merupakan persamaan yang mengilustrasikan penentuan nilai

batas minimum jumlah CPU, memory, database, dan bandwidth untuk pengujian kedua dengan

persamaan linear.

𝑦 = 𝑎 ⋅ 𝑥 + 𝑏 (1)

dengan 𝑦 nilai resource seperti CPU, memory, database, dan bandwidth yang akan dicari. 𝑥

pada penelitian ini adalah jumlah concurrent user. 𝑎 adalah koefisien kemiringan (slope). Pada

penelitian ini 𝑎 menunjukkan tingkat kenaikan kebutuhan sumber daya (CPU, memory,

database, bandwidth) bersamaan dengan concurrent user. 𝑏 adalah intercept (titik potong).

Pada penelitian ini 𝑏 menunjukkan kebutuhan resource minimum yang diperlukan bahkan jika

tidak ada concurrent user. Rumus penentuan nilai batas minimum CPU, memory, database, dan

bandwidth pada model LMS penelitian ini dapat dihitung dengan Persamaan 2, 3, 4 dan 5.

𝐶𝑃𝑈 = 0,003 × 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝑠𝑒𝑟𝑠 + 1,4 (2)

𝑀𝑒𝑚𝑜𝑟𝑦 = 0,0064 × 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝑠𝑒𝑟𝑠 + 2 (3)

𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 = 0,008 × 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝑠𝑒𝑟𝑠 + 3 (4)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 0,24 × 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝑠𝑒𝑟𝑠 + 100 (5)

Dari persamaan tersebut kemudian dilakukan perhitungan nilai batas minimum. Nilai

batas minimum resource dijadikan dasar untuk dilakukan pada pengujian kedua yang dapat

dilihat pada Tabel 4. Nilai untuk CPU dan memory dibulatkan ke atas dikarenakan tidak ada

bentuk koma untuk CPU dan memory. Bagian bandwidth pada penelitian ini tidak bisa ditambah

lagi karena limit pada akun AWS yang digunakan maksimal hanya 2500 MBps.

Tabel 4 Nilai minimum setiap komponen terhadap jumlah concurrent user

Concurrent

User

Core System
Database

(ACU)

Bandwidth

(MBps)
CPU ec2

(Core)

Memory ec2

(GB)

100 2 3 3,8 124

500 3 6 7 220

1.500 6 12 15 460

2.500 9 18 23 700

5.000 17 34 43 1300

7.500 24 50 63 1900

10.000 32 66 83 2500

 Pengujian simulasi kedua sama seperti yang pertama tetapi hanya menampilkan bagian

failure request dan response time dikarenakan fokusnya untuk melihat perbaikan dari kedua

hasil tersebut. Pada Gambar 8 didapatkan nilai yang baik dikarenakan semua nilai respons time

berada di bawah 2.5 s. Akan tetapi pada jumlah concurrent 10.000 masih ada yang error

dikarenakan limitasi jumlah bandwidth maksimal 2500 MBps pada akun AWS yang digunakan

sehingga ada beberapa user yang tidak mampu dilayani secara bersamaan. Tetapi pada response

time, model LMS ini masih baik sehingga dapat dibuktikan bahwa model LMS pada penelitian

ini mampu mengatasi masalah padat pengguna.

153

Vol 12 2025

Gambar 8 Hasil pengujian simulasi kedua. (a) Failure Request; (b) Response Time

SIMPULAN
Penelitian ini berhasil menghasilkan model LMS Moodle berbasis serverless yang

mampu mengatasi masalah kinerja pada lingkungan padat pengguna. Model yang

dikembangkan memanfaatkan layanan cloud AWS, menggabungkan pendekatan load-

balancing, autoscale, dan teknologi container. Komponen-komponen penting seperti core

system, database, session handler, dan file storage dirancang agar dapat diskalakan secara

otomatis menyesuaikan beban pengguna. Hasil evaluasi menunjukkan bahwa model LMS dapat

menangani hingga 1500 concurrent users tanpa mengalami penurunan kinerja signifikan,

dengan failure request kurang dari 1% dan response time kurang dari 2500 ms tanpa ditentukan

batas minimal resource. Jika target concurrent user lebih dari 1500, perlu ditentukan batas

minimal resource dengan perhitungan untuk core system dan database. Skor benchmark plugin

Moodle menunjukkan seluruh aspek berada di bawah acceptable limit, menandakan kinerja

model LMS optimal. Pada evaluasi implementasi di IPB University, tidak ditemukan keluhan

dan terjadi peningkatan jumlah pengunjung harian hingga lebih dari 30.000. Model LMS ini

terbukti meningkatkan kinerja dan keandalan sistem dalam menghadapi lonjakan pengguna,

menjadikan model LMS ini solusi untuk institusi pendidikan dengan beban pengguna tinggi.

DAFTAR PUSTAKA
Abdulmohson A, Kadhim, MF, Anssari OMH, Al-Jobouri AA. 2022. Cost analysis of on-

premise versus cloud-based implementation. Indonesian Journal of Electrical

Engineering and Computer Science. 25(3):1787-1794.

doi:10.11591/ijeecs.v25.i3.pp1787-1794.

Ahmed W, Parveen Q, Dahar MA. 2021. Role of Learning Management System in Distance

Education: A Case Study of Virtual. Sir Syed Journal of Education & Social Research.

4(1):119-125. doi:10.36902/sjesr-vol4-iss1-2021.

Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P. 2017. Elasticity in Cloud Computing: State of

the Art and Research Challenges. IEEE Transactions on Services Computing. 11(2):430-

447. doi:10.1109/TSC.2017.2711009.

Alier M, Casany MJ, Llorens A, Alcober J, Prat JD. 2020. Atenea Exams, an IMS LTI

Application to Solve Scalability Problems: A Study Case. Applied Sciences. 11(1):80.

doi:10.3390/app11010080.

Al-Nuaimi MN, Sawafi OSA, Malik SI, Al-Emran M, Selim YF. 2022. Evaluating the Actual

Use of Learning Management Systems During the Covid-19 Pandemic: an Integrated

Theoretical Model. Interactive Learning Environments. 31(10):6905-6930.

doi:10.1080/10494820.2022.2055577.

Büchner A. 2022. Moodle 4 Administration: an Administrator's Guide to Configuring,

Securing, Customizing, and Extending Moodle, Fourth Edition. Packt Publishing.

Burgess M. 2016. Google SRE - Site Reliability Engineering. Oslo: O'Reilly Media, Inc.

0

5

10

15

20

%

Concurrent User

A

0

100

200

300

400

500

600

100 500 1500 2500 5000 7500 10000

m
s

Concurrent User

B

154 Utama, Neyman, dan Priandana JIKA

Draheim D, Grundy J, Hosking J, Lutteroth, C, Weber G. 2006. Realistic load testing of web

applications. Conference on Software Maintenance and Reengineering (CSMR'06). Bari:

IEEE. doi:10.1109/CSMR.2006.43.

Jingga K. 2020. Pembangunan Berbasis Komponen Menggunakan Moodle Sebagai Alternatif

Pengembangan Perangkat Lunak E-Learning Studi Kasus: Sistem Manajemen

Pengetahuan Andalalin [tesis]. Bandung[ID]: Institut Teknologi Bandung.

Jingga K, Sunindyo WD. 2020. Component-based development using moodle as alternative for

e-learning software development. 12th International Conference on Information

Technology and Electrical Engineering (ICITEE). Yogyakarta: IEEE. hlm 125-130.

doi:10.1109/ICITEE49829.2020.9271670.

Jiwo DS, Kusuma WA. 2021. Penggunaan Moodle LMS UMM dalam Pembelajaran Jarak Jauh

di Masa Pandemi. Jurnal Syntax Admiration. 2(9):1653:1662. doi:

10.46799/jsa.v2i9.310.

Kacapor K, Veselinovic T. 2021. Designing an adaptable high-availability E-learning

framework using free and opensource technology. 15th International Technology,

Education and Development Conference 2021; 2021 Mar 8-9. IATED. hlm 8223-8232.

doi:10.21125/inted.2021.1671.

Kumar S. 2024. Optimizing Resources in Serverless Architectures: A Comprehensive Review

A. TechRxiv. doi:10.36227/techrxiv.172504025.57438488/v1.

Mihăescu MC, Burdescu DD, Mocanu M, Ionascu CM. 2011. Load balancing procedure for

building distributed e-learning systems. The Third International Conference on Mobile,

Hybrid, and On-line Learning. Guadeloupe: IARIA. hlm 82-87.

Mihai D, Mihailescu ME, Carabas M, Tapus N. 2023. Integrated High-Workload Services for

E-Learning. IEEE Access. 11:8441-8454. doi:10.1109/ACCESS.2023.3238967.

Nday BA, Kusuma GP, Fredyan R. 2023. Serverless Utilization in Microservice E-Learning

Platform. Procedia Computer Science. 216:204-212. doi:10.1016/j.procs.2022.12.128.

Risyah MM. 2022. Faktor-Faktor Keberhasilan Penggunaan Learning Management System

(LMS) "BeSmart Elearning" Universitas Negeri Yogyakarta [tesis]. Yogyakarta:

Universitas Gadjah Mada.

Sadikin M, Yusuf R, Rifai A. 2019. Load Balancing Clustering on Moodle LMS to Overcome

Performance Issue of e-learning System. Telkomnika. 17(1):131-138.

doi:10.12928/telkomnika.v17i1.10284.

Setiawan A. 2021. Implementasi Pembelajaran Jarak Jauh Menggunakan LMS. Jurnal Bestari.

2(1):1-22.

Widiyono A. 2021. Pengaruh Penggunaan LMS dan Aplikasi Telegram terhadap Aktivitas

Belajar. Jurnal Penelitian Ilmu Pendidikan. 14(1):91-101.

Wiechork K, Charão AS. 2020. Investigating the performance of moodle database queries in

cloud environments. ICEIS 2020 - 22nd International Conference on Enterprise

Information Systems. SciTePress. hlm 269-275.

Yang CT, Yeh WT, Shih WC. 2017. Implementation and Evaluation of an e-Learning

Architecture on Cloud Environments. International Journal of Information and

Education Technology. 7(8).

Zaini A, Santoso H, Sulistyanto MT. 2021. Fault Tolerance Strategy to Increase Moodle Service

Reliability. Journal of Physics: Conference Series. 1869(1):012095.

Zhang W, Zhu Y. 2017. A New E-learning Model Based on Elastic Cloud Computing for

Distance Education. Journal of Mathematics, Science and Technology Education. 13(12):

8393-8403. doi:10.12973/ejmste/80800.

