Tersedia secara daring di:
l lmuAlg(:; n:r?fl:)t'::; atika https://jurnal.ipb.ac.id/index.php/jika

Jurnal

Volume 12 Nomor 2 halaman 142-154
eISSN: 2654-9735, pISSN: 2089-6026

Pengembangan Model LMS Berbasis Serverless untuk Mengatasi
Masalah Kinerja di Lingkungan Padat Pengguna

Designing LMS Model Based on Serverless to Solve Performance
Issue on High Concurrency Workload

MUHAMMAD JAKA UTAMA*, SHELVIE NIDYA NEYMAN, KARLISA PRIANDANA

Abstrak

Moodle adalah salah satu aplikasi Learning Management System (LMS) yang berperan penting dalam
pembelajaran secara daring. Salah satu faktor penting yang perlu diperhatikan dari LMS Moodle adalah kinerja di
lingkungan padat pengguna. Padat pengguna mengacu pada situasi di mana jumlah pengguna atau peserta dalam
sistem melebihi kapasitas yang dapat ditangani oleh sistem tersebut. Penelitian ini bertujuan untuk menghasilkan
suatu pilihan model arsitektur LMS Moodle agar dapat menangani masalah kinerja dalam lingkungan padat
pengguna. Pendekatan yang digunakan adalah arsitektur hybrid yang menggabungkan teknologi serverless pada
komponen database, penyimpanan data, dan session handler, serta container di atas virtual machine (VM) dengan
layanan laaS pada core system dengan dukungan load balancing dan auto scaling. Penelitian dilakukan melalui
empat tahap, yaitu identifikasi masalah, perancangan, implementasi, dan analisis model LMS. Hasil evaluasi
menunjukkan bahwa model LMS yang dikembangkan mampu menangani hingga 1500 pengguna bersamaan tanpa
penurunan kinerja signifikan, dengan response time di bawah 2500 ms dan failure request di bawah 1%. Pengujian
lanjutan dengan konfigurasi batas minimum resource memungkinkan sistem melayani hingga 10.000 pengguna
secara simultan. Skor benchmark plugin Moodle menunjukkan performa optimal pada seluruh aspek. Model ini
terbukti dapat meningkatkan kehandalan dan skalabilitas LMS di lingkungan padat pengguna.

Kata Kunci: Kinerja serverless, learning management system, Moodle, padat pengguna.

Abstract

Moodle is one of the Learning Management Systems (LMS) that play a critical role in supporting online
education. One of the important factors in Moodle LMS is its performance in high concurrency workload
environments. High concurrency workload refers to situations where the number of users exceeds the system's
capacity. This study aims to propose an architectural model for Moodle LMS that can address performance issues
under such heavy-load conditions. The proposed approach adopts a hybrid architecture that integrates serverless
technologies for database, file storage, and session handler components, along with containerization on virtual
machines (VM) using laaS for the core system, supported by load balancing and autoscaling mechanisms. The
research follows four stages: problem identification, system design, implementation, and LMS model analysis.
Evaluation results show that the developed LMS model can handle up to 1500 concurrent users without significant
performance degradation, maintaining a response time below 2500 ms and a failure request rate below 1%.
Further testing with minimum resource configuration allows the system to support up to 10.000 concurrent users.
Benchmark scores using the Moodle plugin indicate optimal performance across all aspects. This model has
proven to enhance the reliability and scalability of LMS platforms in high-concurrency workload environments.

Keywords: High concurrency workload, learning management system, Moodle, serverless.

PENDAHULUAN

Learning Management System (LMS) adalah perangkat lunak yang dirancang untuk
mengelola proses pembelajaran secara online. LMS sudah digunakan sejak lama khususnya
perguruan tinggi untuk menyediakan lingkungan belajar virtual yang terintegrasi. LMS

Program Studi Ilmu Komputer, Sekolah Sains Data, Matematika, dan Informatika, Institut Pertanian Bogor, Bogor 16680;
*Penulis Korespondensi: Tel/Faks: 081330304032; Surel: mjakautama@apps.ipb.ac.id

Vol 12 2025 143

memainkan peran penting dalam mendukung pendidikan dan pelatihan jarak jauh,
pembelajaran berbasis online (Ahmed et al. 2021), dan mengelola konten serta interaksi
pembelajaran secara efisien dalam lingkungan digital (Setiawan 2021). Contoh LMS yang
populer adalah Moodle, Blackboard, Canvas, dan Google Classroom. Dalam
perkembangannya, LMS dengan menggunakan Moodle paling umum digunakan di bidang
pendidikan (Jingga dan Sunindyo 2020).

Salah satu faktor penting yang perlu diperhatikan dari LMS Moodle adalah kinerja di
lingkungan padat pengguna (Sadikin et al. 2019; Mihai et al. 2023). Padat pengguna mengacu
pada situasi di mana jumlah pengguna atau peserta dalam sistem melebihi kapasitas yang dapat
ditangani oleh sistem tersebut. Dalam kondisi padat pengguna, beban kerja dan permintaan
yang tinggi dapat mempengaruhi kinerja aplikasi, seperti waktu respons yang lambat,
penurunan kecepatan akses, atau bahkan kegagalan sistem. Pada umumnya masalah padat
pengguna merupakan suatu masalah /load balancing agar beban tidak terpusat pada satu server
(Mihaescu et al. 2011; Sadikin et al. 2019; Alier et al. 2020; Kacapor dan Veselinovic 2021;
Zaini et al. 2021; Mihai et al. 2023). Penerapan load balancing dapat mengatasi masalah
kinerja. Namun, karena tingginya jumlah pengguna, diperlukan daya komputasi yang semakin
besar. Oleh karena itu, penggunaan load balancing saja tidak lagi memadai, sehingga
diperlukan suatu pemilihan deploy LMS yang tepat untuk mengatasinya (Yang ef al. 2017).

Moodle dapat di-deploy self-hosted (on-prem) atau di-deploy pada lingkungan cloud
(serverless) (Mihai et al. 2023). Saat ini, penelitian terkait deploy suatu aplikasi menggunakan
arsitektur serverless menjadi semakin populer. Serverless mengacu pada komputasi awan di
mana teknisi tidak perlu memikirkan mengurus server dari provision, maintenance, scaling,dan
patching karena semua dilakukan oleh penyedia cloud (Kumar 2024). Contoh penyedia cloud
yang populer adalah Amazon Web Service (AWS), Microsoft Azure, dan Google Cloud. Hal
ini terlihat dari hasil penelitian yang menggunakan arsitektur serverless, diantaranya kinerja
(Zhang dan Zhu 2017), biaya (Abdulmohson et al. 2022), fleksibilitas dan skalabilitas (Al-
Dhuraibi et al. 2017). Begitu pula untuk menangani fluktuatif pengguna LMS, penggunaan
serverless dapat mengoptimalkan resource dalam penerapannya (Nday et al. 2023).

Sebagai langkah awal, kajian dilakukan pada LMS IPB University. 1PB University
merupakan salah satu universitas di Bogor yang didirikan sejak tahun 1963 dan menggunakan
Moodle sebagai LMS. IPB University memiliki banyak program studi yang tersebar di berbagai
fakultas dan memiliki sekitar kurang lebih 28.000 mahasiswa aktif setiap tahunnya. Hampir
semua kegiatan akademis dilakukan di LMS, mulai dari penyebaran materi perkuliahan, quiz,
ujian tengah semester (UTS), ujian akhir semester (UAS), hingga pengumpulan tugas dan
projek mahasiswa. Infrastruktur dan aplikast LMS IPB University dikelola oleh Lembaga
Manajemen Informasi dan Transformasi Digital (LMITD) di on-prem IPB University.
Meskipun sumber daya server dan teknis tersedia, serta telah digunakan selama bertahun-tahun
di IPB University, transisi ke aktivitas on/ine menyebabkan berbagai masalah yang harus diatasi
salah satunya kinerja pada lingkungan padat pengguna. Pada lingkungan padat pengguna, LMS
harus dapat menangani sejumlah besar sesi secara bersamaan pada jam-jam perkuliahan antara
jam 08.00 sampai 17.00 dari Senin hingga Jumat. Selain itu, pada akhir pekan, jam istirahat,
dan di luar jam kantor, LMS harus dapat menangani semua permintaan karena mahasiswa pada
jam tersebut melakukan pengumpulan tugas dan dosen banyak memperbarui materi
perkuliahan. LMS IPB University ini penting dalam menunjang perkuliahan. Kinerja LMS yang
buruk, kecepatan akses yang lambat, dan ketidakstabilan sistem dapat mengganggu pengalaman
belajar online (Jiwo dan Kusuma 2021), menghambat interaksi antara pengguna (Widiyono
2021), dan mempengaruhi efektivitas pembelajaran (Risyah 2022).

Penelitian ini bertujuan untuk menghasilkan suatu pilihan model arsitektur LM'S Moodle
agar dapat menangani masalah kinerja dalam lingkungan padat pengguna. Pengembangan
model LMS Moodle pada penelitian ini menggunakan arsitektur hybrid berbasis serverless
dengan menggabungkan teknik load balancing. Serverless untuk database, storage dan session
handler menggunakan layanan PaaS. Aplikasi utama menggunakan layanan laaS dengan

144 Utama, Neyman, dan Priandana JIKA

container Docker yang dijalankan diatas virtual machine. Layanan serverless menggunakan
AWS karena pada penelitian (Wiechork dan Chardao 2020) AWS memberikan kinerja yang
lebih baik.

METODE

Penelitian ini dilakukan dalam empat tahapan, yaitu identifikasi masalah, perancangan
model LMS, implementasi model LMS, dan analisis model LMS. Alur tahapan penelitian ini
ditunjukkan pada Gambar 1.

Perancangan Model Implementasi Model
LMS LMS

m Perancangan Implementasi Pembangunan
tom session lingkungan dan
core sys handler skenario uji

Pengumpulan ‘L ¢ ¢

Identifikasi Masalah Analisis Model LMS

data Perancangan Implementasi Uiji Rekomendasi
Moodle data Moodle data implementasi model LMS
‘L —> —> —>
Studi literatur
Perancangan Implementasi Uji scoring Evaluasi model
database database model LMS LMS
v v v i
Perance}ngan Implementasi Uji kinerja
session tem model LMS
handler core sys

Gambar 1 Tahapan-tahapan yang dilakukan pada penelitian

Identifikasi Masalah

Pada tahap ini dilakukan studi literatur untuk memperoleh informasi tambahan terkait
faktor-faktor yang memengaruhi padat pengguna di LMS, yang akan memperkuat argumen
pada tahap perancangan. Studi literatur dilakukan dengan pendekatan sistematis, menggunakan
referensi publikasi seperti conference, journal, dan buku yang berfokus pada penelitian tentang
LMS Moodle, serverless, dan teknik load balancing dalam beberapa tahun terakhir.

Pengambilan data juga dilakukan menggunakan data yang diambil pada pertengahan
perkuliahan semester genap (Mei-Juli) 2023 dari laporan di grup LMS dan help center terkait
error aplikasi. Data analytics IPB University diambil untuk melihat pengunjung ke aplikasi.
Selain itu juga dilakukan survei terkait tempat hosting LMS. Tujuan pengambilan data untuk
mengetahui contoh real keadaan padat pengguna dan menambah argumen dalam perancangan
model LMS selain dari hasil studi literatur.

Perancangan Model LMS

Pada tahap ini, dilakukan perancangan arsitektur berdasarkan hasil identifikasi masalah,
yaitu merancang model arsitektur serverless, termasuk menentukan layanan-layanan apa saja
yang akan digunakan dalam serverless. Hasil dari perancangan ini adalah model LMS berbasis
serverless yang dilanjutkan ke tahap implementasi.

Dalam perancangan LMS, karena kompleksitas aplikasinya, terdapat teknik-teknik
khusus yang perlu diperhatikan. Dalam penelitian (Zaini et al. 2021) beberapa komponen
penting yang harus diperhatikan dalam perancangan LMS menggunakan Moodle adalah:

a. Core system digunakan untuk menjalankan aplikasi Moodle. Di dalamnya terdiri dari
code-code aplikasi Moodle, theme, dan plugin. Bagian ini secara langsung akan diakses
oleh pengguna dan semua fungsi Moodle berada di sini.

b. Moodle data berisi file-file hasil unggahan pengguna dan file hasil proses core system,
seperti file pdf, presentasi, image, video, file backup. Bagian ini harus berada di lokasi

Vol 12 2025 145

terpisah dengan core system untuk menghindari unggahan file malware oleh pengguna
tetapi harus tetap dapat diakses oleh web server.
c. Database berisi semua database berkaitan dengan Moodle system data.

Implementasi Model LMS

Pada tahap ini, model LMS hasil perancangan pada tahapan sebelumnya diimplementasi
dalam cloud. Tahapan ini mencakup instalasi Moodle, penyesuaian (tuning) aplikasi, serta
implementasi teknologi yang ada di cloud. Hasil dari tahap ini adalah LMS yang siap digunakan,
yang dilanjutkan ke tahap analisis dan evaluasi.

Analisis Model LMS

Analisis dilakukan dalam tiga fase. Fase pertama analisis hasil implementasi model LMS.
Fase kedua analisis hasil scoring model LMS. Fase ketiga analisis hasil pengujian kinerja model
LMS. Analisis hasil implementasi model LMS bertujuan untuk melihat bagaimana model LMS
saat digunakan secara langsung. Analisis ini dilakukan berdasarkan hasil data yang diambil
pada semester ganjil (Agustus-Desember) 2023. Data diambil dari laporan di grup LMS dan
help center terkait error aplikasi untuk melihat improvement dari model LMS. Data analytics
IPB University diambil untuk melihat frend pengunjung ke aplikasi selama menggunakan
model LMS yang dihasilkan.

Model LMS yang dibuat harus dilakukan penilaian dasar untuk mengetahui kualitas
modelnya. Salah satu alat yang direkomendasikan Moodle untuk melakukan scoring model
LMS adalah Moodle benchmark plugin (Jingga 2020). Plugin ini digunakan sebagai penilaian
dasar kecepatan dan kualitas model LMS menilai dari semua aspek critical LMS yaitu
kecepatan server, kecepatan prosesor, kecepatan storage, kecepatan database, dan kecepatan
membuka suatu halaman. Hasilnya adalah score dari waktu total pada setiap aspek yang
diperiksa dengan tiap-tiap aspek memiliki acceptable limit dan critical limit. Semakin kecil
nilai yang didapatkan, maka kinerja model LMS semakin baik. Aspek yang diukur dan
penjelasannya dapat dilihat pada Tabel 1.

Tabel 1 Parameter pengujian

Description Acceptable Critical
limit limit

1 Moodle loading time 0.5 0.8
Load the “config.php” configuration file

2 Processor processing speed 0.5 0.8
Call a PHP function with a loop to check the processor speed

3 Reading file performance 0.5 0.8
Read a file multiple times to check the reading speed of the Moodle temporary
folder

4 Writing file performance 1 1.25
Write a file multiple times to check the writing speed of the Moodle temporary
folder

5 Reading course performance 0.75 1
Read a course multiple times to check the reading speed of the database

6 Writing course performance 1 1.25
Write a course multiple times to check the writing speed of the database

7 Database performance (#1) 0.5 0.7
Run a complex SQL query to check the speed of the database

8 Database performance (#2) 0.3 0.5
Run a complex SQL query to check the speed of the database

9 Login time of administration notification page 0.3 0.8
Load the administration interface notification page a few times to check web
server speed

Analisis hasil pengujian kinerja model LMS dilakukan dengan simulasi menggunakan
bot. Sejumlah bot dibangkitkan untuk melakukan tugas login, melihat kursus, dan mencoba kuis
secara bersamaan. Jumlah bot yang digunakan adalah 100, 500, 1500, 2500, 5000, 7500, dan
10.000, dengan waktu peningkatan bertahap (ramp-up period) selama 5 menit. Angka ini
diambil dengan mempertimbangkan bottleneck dari sistem, sehingga digunakanlah pola

146 Utama, Neyman, dan Priandana JIKA

tersebut (Draheim et al. 2006). Pada tahap ini, kesimpulan diambil berdasarkan temuan
penelitian, sekaligus menjawab pertanyaan penelitian yang diajukan. Tahap ini juga
menghasilkan rekomendasi mengenai jumlah sumber daya optimal yang diperlukan, sesuai
dengan target jumlah pengguna, untuk meningkatkan kinerja dan skalabilitas Moodle dalam
lingkungan padat pengguna. Pengujian ini menggunakan c/one LMS pada implementasi model
LMS dengan mempertimbangkan concurrent users terhadap response time (ms) dan failure
request (%) serta melihat pemakaian resource seperti CPU (core), memory (GB), database
(ACU), dan bandwidth (MBps). Parameter yang digunakan pada pengujian ini termasuk tools
yang digunakan untuk mengambil data dapat dilihat pada Tabel 2.

Tabel 2 Parameter pengujian

Komponen Nilai Tools
CPU ec2 core AWS CloudWatch
Memory ec2 GB AWS CloudWatch
Database ACU AWS CloudWatch
Bandwidth MBps AWS CloudWatch
Failure request % Locust
Response time ms Locust
HASIL DAN PEMBAHASAN
Identifikasi Masalah

Faktor penting yang harus dipertimbangkan untuk membuat model LMS padat pengguna
adalah kemampuan sistem untuk dapat melayani beban tinggi dan fluktuatif (Nday ef al. 2023).
Hal ini dapat terlihat pada Gambar 2 yang menunjukkan jumlah pengunjung mengakses LMS
IPB University pada pertengahan perkuliahan semester genap (Mei-Juli) 2023. Data diambil
berdasarkan visitor dari aplikasi analytics 1IPB University. Terlihat jumlah pengunjung
fluktuatif dan bisa mencapai lebih dari 16.000 dalam sehari.

Visitor LMS IPB Mei-Juli 2023

18000
16000 ®

14000
®

12000
10000 e

¥
8000 . ;

p L] e 1 .\.
6000 5. R a y | . /\ /\ / AV
d e =

w00 —_pb | /'-.\.'./\ ./.I\.\;s...j.l.'“.'. .l""\..'/'. H \‘\.,.4.%‘ /_\ /- \.
g

2000

B B T I i B I I N T T B B R e B T T e = I L I N P I]
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Gambar 2 Jumlah pengunjung LMS IPB University setiap hari

Laporan LMS Bermasalah IPB University Mei-Juli 2023

1 o * e

~ o~

Gambar 3 Jumlah pengunjung dan laporan error LMS IPB University

Pada Gambar 3 menunjukkan laporan mengenai terjadinya gangguan (down) pada
aplikasi LMS. Data ini diambil dari laporan di grup LMS dan kelp center. Berdasarkan laporan
error dan jumlah pengunjung yang mengakses, terlihat terjadi gangguan pada sistem ketika
jumlah pengunjung lebih dari 9500 pengunjung per hari. Dari segi teknis, infrastruktur, dan
aplikasi LMS IPB saat ini berjalan di server on-prem milik IPB dan memiliki keterbatasan
sumber daya.

Berdasarkan hal tersebut, penelitian ini membuat model solusi LMS untuk lingkungan
padat pengguna berbasis serverless. Pengembangan model LMS Moodle pada penelitian ini
menggunakan arsitektur hybrid berbasis serverless dengan menggabungkan teknik /oad

Vol 12 2025 147

balancing. Serverless untuk database, storage, dan session handler menggunakan layanan
PaaS. Aplikasi utama menggunakan layanan laaS dengan container Docker yang dijalankan di
atas virtual machine.

Perancangan Model LMS

Dalam penelitian (Zaini et al. 2021) tedapat tiga komponen penting yang harus
diperhatikan pada perancangan yaitu core system, Moodle data, dan database. Pada kasus padat
pengguna ada satu komponen lagi yang harus diperhatikan yaitu session handler (Biichner
2022). Session handler digunakan untuk mengatur session pengguna.

| Model LMS Padat Pengguna |

Core System |

1 Elastic Load Balancing

I
| [
| |
i [
\ |
| [
| |
| [
i Auto Scaling group :
I

| |
| |
\ |
| [

Moodle Core

A Moodle C A Moode C
N oodle Core ... N oode Core

|
|
I

' Amazon
I Aurora Master
|
|

Gambar 4 Model LMS

Perancangan Arsitektur LMS dimulai dari pemilihan tempat berjalannya core system.
Core system digunakan untuk aplikasi Moodle berjalan, di dalamnya terdiri dari kode-kode
aplikasi Moodle. Pada perancangan core system terdapat load balancing menggunakan ELB
bertugas untuk mendistribusikan #raffic ke beberapa container Moodle core yang berjalan di
EC2. Cara load balancing ELB adalah membagi beban secara merata untuk meningkatkan
availability dan scalability. ASG mengelola jumlah instance EC2 pada penelitian ini jika
pemakaian CPU di atas 80% maka akan secara otomatis menambah instance EC2.

Moodle data digunakan untuk menyimpan file unggahan Moodle. Pada bagian ini
diterapkan menggunakan teknologi EFS, yang akan di-attach pada core system. Moodle data
dibuat terpisah karena memiliki behaviour dinamis, yang isinya berubah terus menerus.
Berbeda dengan core system yang static serta hampir tidak ada perubahan.

Perancangan berikutnya adalah pada bagian database LMS. Pada perancangan database
dibuat dalam cluster untuk pembagian beban kerja. Komponen database pada penelitian ini
terdiri dari satu sebagai master yang difungsikan untuk melakukan semua proses write dari
LMS dan slave yang bertindak untuk menangani semua permintaan read only dari LMS. Pada
slave dibuat pengaturan, apabila pemakaian ACU di atas 80% maka akan menambahkan satu
mesin s/lave lagi. Pembagian baca dan tulis pada bagian database bertujuan untuk meningkatkan
kinerja model LMS.

148 Utama, Neyman, dan Priandana JIKA

Terakhir bagian session handler, bagian ini digunakan untuk menyimpan session peserta.
Pada bagian ini diterapkan dengan elasticache berbasis Redis. Hal ini dipilih karena behavior
session Moodle yang cepat dan harus persistence. Gambar 4 mengilustrasikan model LMS pada
penelitian ini.

Implementasi Model LMS

Implementasi model LMS padat pengguna berbasis serverless ini diterapkan di AWS
region Southeast Asia negara Singapura karena service yang tersedia lebih lengkap
dibandingkan di negara Indonesia. Walaupun server di Singapura tetapi tidak mempengaruhi
layanan karena berada satu region dengan Indonesia. Pada tahap implementasi dibagi ke dalam
empat tahapan seperti pada Gambar 5.

Session Moodle Database Core
Handler data System

Gambar 5 Urutan implementasi model LMS pada penelitian

1. Session Handler

Pada bagian session handler diterapkan dengan Amazon elasticache serverless, sehingga
resource menyesuaikan dengan pemakaian. Resource yang disesuaikan yaitu data yang
disimpan dan Elasticache Processing Units (ECPUs). Data yang disimpan dihitung dalam GB,
untuk satu ECPUs setara dengan satu kali proses baca dan tulis dari setiap kilobyte (KB) data
yang dikirim. Secara default, batas rendah scaling elasticache 1 GB sampai batas tertinggi 5000
GB storage dan 1000 ECPUs sampai batas tertinggi 15.000.000 ECPUs request. Pada
penelitian ini batas yang diterapkan menggunakan default elasticache karena dengan default
saja sudah cukup.
2. Moodle data

Pada bagian Moodle data diterapkan dengan EFS. Penggunaan ini karena fungsi Moodle
data yang harus selalu sama isinya karena berkaitan dengan data aplikasi. EFS ini berbasis
serverless mengikuti ukuran storage yang digunakan dan dapat mengembang hingga exabytes
data. Sehingga pada penelitian ini tidak diatur ukuran storage dan otomatis mengikuti ukuran
data.
3. Database

Pada implementasi database cluster dibuat menggunakan service Aurora serverless
berbasis MySql. Mesin database ini dibuat dalam c/uster dengan satu bertindak sebagai master
dan satu lagi bertindak sebagai slave. Database yang digunakan menggunakan MySql. Scaling
yang digunakan apabila rata-rata CPU sudah mencapai 80% maka akan membuat instance slave
database baru. Satuan resource yang digunakan pada database ini adalah Aurora Capacity Unit
(ACU). Setiap ACU setara dengan 1 core CPU dan 2 GB memory. Maksimum 1 instance
Aurora bisa diatur minimum 0.5 ACU sampai 128 ACU. Pada penelitian ini digunakan
minimum 0.5 ACU sampai 128 ACU.
4. Core System

Bagian ini dibuat terakhir karena bagian inti yang memerlukan ketiga requirement
terpenuhi. Pertama dibuat template image EC2 untuk dimasukkan ke dalam autoscale. Dalam
image EC2 1ni diinstal Moodle dan dibuat kontainer dengan basis image bitnami/moodle:4.1
yang dikostumisasi agar bisa berjalan di environment serverless. Image EC2 dilakukan
konfigurasi seperti pengaturan ulimit dan fstab untuk mounting efs setiap core system scaling.
Setelah diinstal dan dikonfigurasi lalu dibuat template image EC2. Image EC2 Moodle tersebut
kemudian dimasukkan ke dalam policy auto scaling. Mesin yang digunakan c5a.xlarge karena
memerlukan komputasi dan bandwidth yang besar dengan spesifikasi 4 core dan 8§ GB memory.
Batas autoscaling dibuat minimum 1 mesin dan akan bertambah mesin baru jika sudah
menyentuh 80% penggunaan CPU. Nilai 80% ini digunakan karena ketika penambahan mesin
dibutuhkan waktu untuk mesin barunya dapat digunakan. Dengan diberikan 80% mesin yang

Vol 12 2025 149

available sekarang tidak penuh dahulu hingga mesin baru dapat digunakan. Setelah autoscaling
policy jadi, lalu dimasukkan ke dalam elastic load balancing untuk membagi beban.

Analisis Model LMS
1. Hasil implementasi model LMS

Model LMS sudah diterapkan dan dipakai sehari-hari pada semester ganjil (Agustus-
Desember) 2023. Pada Gambar 6 menunjukkan terjadi peningkatan data pengunjung yang
mengakses dengan model arsitektur LMS. Data tersebut diambil dari laporan di grup LMS dan
help center terkait error aplikasi untuk melihat improvement dari model LMS serta data
analytics 1PB University untuk melihat frend pengunjung ke aplikasi selama menggunakan
model LMS yang dihasilkan. Selama implementasi model arsitektur LMS tidak terjadi aplikasi
LMS down ataupun keluhan dari pengguna. Jumlah pengunjung LMS terjadi peningkatan
setelah implementasi terjadi kenaikan hingga lebih dari 30.000 ketika peak dalam sehari. Model
LMS pada penelitian ini mampu menangani peningkatan jumlah pengunjung.

Visitor LMS IPB Agustus-Desember 2023

mmm

dogddodagaaoaaddo oo oo oo oo oo oo oo oo oo oo oo oo oo oa

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

goadoadoadoadodoagogaoago oo ogogdasaodadadoaa oo oo ooado g
mown
P . s I R}

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Gambar 6 Jumlah pengunjung dengan laporan LMS hasil implementasi

2. Hasil scoring model LMS

Pada tahap ini dilakukan penilaian kinerja dasar model LMS, dengan menggunakan
Moodle benchmark plugin. Plugin ini mengecek semua aspek critical LMS yaitu kecepatan
server, kecepatan prosesor, kecepatan storage, kecepatan database, dan kecepatan membuka
suatu halaman, yang mana jika salah satu aspek mendapatkan score jelek akan mempengaruhi
sistem LMS keseluruhan. Semakin kecil score yang dihasilkan dan semua score berwarna hijau
mengindikasikan bahwa situs LMS tersebut baik. Hasil scoring model LMS dapat dilihat pada
Tabel 3.

Hasil Moodle loading time untuk mengetahui seberapa cepat model LMS dapat membaca
file konfigurasi didapatkan nilai 0.003 detik, menunjukkan nilai yang baik karena berada jauh
di bawah batas yang dapat diterima yaitu 0.5 detik dan batas kritis 0.8 detik. Hasil processor
processing speed untuk mengetahui suatu model LMS memproses fungsi aplikasi berulang
tanpa hambatan didapatkan nilai 0.06 detik, menunjukkan kinerja prosesor baik karena berada
jauh di bawah batas yang dapat diterima yaitu 0.5 detik dan batas kritis 0.8 detik. Hasil reading
file performance untuk mengetahui kecepatan membaca file di direktori model LMS didapatkan
nilai 0.016 detik, menunjukkan kecepatan membaca optimal karena jauh di bawah batas yang
dapat diterima yaitu 0.5 detik dan batas kritis 0.8 detik. Hasil writing file performance untuk
mengetahui kecepatan menulis file di direktori model LMS didapatkan nilai 0.077 detik,
menunjukkan kecepatan menulis baik karena hanya 7.7% dari batas maksimal yang dapat
diterima yaitu 1 detik. Hasil reading course performance untuk mengetahui kinerja membaca

150 Utama, Neyman, dan Priandana JIKA

course pada database model LMS didapatkan nilai 0.078 detik, menunjukkan kinerja membaca
baik karena jauh di bawah batas yang dapat diterima yaitu 0.75 detik. Hasil writing course
performance untuk mengetahui kinerja menulis course pada database model LMS didapatkan
nilai 0.026 detik, menunjukkan kinerja menulis yang baik karena jauh di bawah batas yang
dapat diterima yaitu 1 detik. Hasil database performance (#1) untuk melihat kinerja database
dalam menjalankan query SQL kompleks didapatkan nilai 0.058 detik, menunjukkan kinerja
database baik karena jauh di bawah batas yang dapat diterima yaitu 0.5 detik. Hasil database
performance (#2) untuk melihat kinerja menjalankan SQL selain guery kompleks didapatkan
nilai 0.081 detik, menunjukkan kinerja database baik karena jauh di bawah batas yang dapat
diterima yaitu 0.5 detik. Hasil loading time of administration notification page untuk melihat
waktu loading halaman admin didapatkan nilai 0.063 detik, menunjukkan waktu loading cepat
karena jauh di bawah batas yang dapat diterima yaitu 0.8 detik.

Total waktu keseluruhan 0.462 atau 47 points menunjukkan model LMS berada dalam
kategori optimal. Semua pengujian berada jauh di bawah batas yang dapat diterima maupun
kritis. Berdasarkan hasil tersebut model LMS ini tidak perlu peningkatan atau revisi pada
elemen-elemen yang diuji.

Tabel 3 Hasil scoring model LMS

Description Time (seconds)
1 Moodle loading time 0.003
2 Processor processing speed 0.060
3 Reading file performance 0.016
4 Writing file performance 0.077
5 Reading course performance 0.078
6 Writing course performance 0.026
7 Database performance (#1) 0.058
8 Database performance (#2) 0.81
9 Login time of administration notification page 0.063
Total time 0.462
Score 47 points

3. Hasil pengujian kinerja model LMS

Pengujian simulasi dengan bot ini menggunakan /ocust dengan membangkitkan sejumlah
bot untuk melakukan task login, view course, attempt quiz, menjawab soal, dan submit quiz
secara bersamaan dengan jumlah concurrent user 100, 500, 1500, 2500, 5000, 7500 dan 10,000.
Output hasil pengujian model arsitektur LMS menggunakan /ocust ini adalah response time
serta jumlah failure request. Response time adalah waktu yang dibutuhkan dari pengguna
meminta request hingga kembali lagi ke pengguna. Failure request adalah jumlah pengguna
yang tidak dapat dilayani. Keadaan resource juga dipantau selama pengujian menggunakan
locust. Resource yang dipantau adalah CPU, memory, ACU, dan bandwidth. Data resource
selama pengujian didapatkan dengan menggunakan AWS CloudWatch. Pada pengujian
simulasi pertama, konfigurasi autoscale batas minimum mesin EC2 dan database tidak diatur.
Hasil pengujian dapat dilihat pada Gambar 7.

Pada CPU EC2, penggunaan CPU meningkat secara signifikan ketika jumlah concurrent
user bertambah. Kenaikan terlihat eksponensial, terutama mulai dari 2500 hingga 10.000
concurrent user. Hal ini menunjukkan bahwa kebutuhan CPU meningkat tajam terhadap jumlah
concurrent user. Pada memory EC2, penggunaan memory juga meningkat seiring
bertambahnya jumlah concurrent user. Pola kenaikan serupa dengan CPU, dengan lonjakan
besar mulai dari 2500 concurrent user, menunjukkan bahwa pemakaian memory memiliki
ketergantungan langsung terhadap jumlah pengguna. Pada database aktivitas diukur dalam
ACU, penggunaan ACU meningkat linier hingga concurrent user 10.000. Hal ini menunjukkan
bahwa beban pada database semakin besar dengan bertambahnya concurrent user. Pada
bandwidth, penggunaan bandwidth meningkat dengan jumlah concurrent user. Kenaikan mulai
signifikan dari 2500 pengguna, dengan puncak pada 10.000 pengguna yang memerlukan
bandwidth lebih dari 2500 MBps.

Vol 12 2025 151

A B
32 70
28 60
24 50
o 20
i 5 e
O 12
: 10
; []
0 — | . 0
\ Q Q Q Q) N\ O O & O & & &
Q Q Q Q Q Q Q QO L O L O
SR R R IR AR R R R
Concurrent User Concurrent User
c D
80 2500
70
60 2000
50 0
3 10 & 1500
< 30 S 1000
%8 I I 500 I
0 - 0 = W
O & & ©® & & © Q O & & &©® & ©
QO L O L O O QX L X L L O
VO R A VO P 0§
Concurrent User Concurrent User
E F
60 25000
50 20000
40
15000
X 30 g
20 10000
10 5000
0 0 —— -
N Q Q)) Q Q & Q Q
Q Q Q Q S S Q PP ST PSS
VO S A S RN M SR
Concurrent User Concurrent User

Gambar 7 Hasil pengujian simulasi pertama. (a) CPU EC2; (b) Memori EC2; (c) Database;
(d) Bandwidth; (e) Failure Request; (f) Response Time

Pada failure request terjadi pola kenaikan ketika jumlah concurrent user 100 hingga 2500
tidak terjadi failure request. Pada 5000 concurrent user mulai terjadi 1%, 7500 terjadi 35%,
10.000 terjadi 54%. Hal ini menunjukkan dengan model LMS serverless tanpa diatur batas
minimum persentase failure request mulai muncul pada 5000 concurrent user dan meningkat
tajam pada 7500 concurrent user.

Pada response time, waktu respons meningkat drastis ketika jumlah concurrent user 2500
hingga 10.000. Pada jumlah concurrent user 7500 dan 10.000 waktu respons lebih rendah
daripada 5000 dikarenakan persentase failure request lebih banyak.

Pada hasil pengujian simulai pertama pada Gambar 7 dapat dikatakan bahwa model LMS
ini dapat dihandalkan hingga 5000 concurrent user berdasarkan failure request dan hingga 1500
concurrent user berdasarkan response time. Nilai maksimum response time harus di bawah
2500 ms untuk dikatakan baik (Al-Nuaimi et al. 2022) dan failure request harus di bawah 1%
(Burgess 2016), sehingga dilakukan percobaan kedua. Pada percobaan kedua dilakukan
pengoptimalan autoscale, perubahan batas minimum jumlah mesin EC2 pada load balancing,
dan ACU database. Nilai batas minimum diambil berdasarkan hasil pengujian simulasi pertama.

152 Utama, Neyman, dan Priandana JIKA

Pada simulasi pertama jumlah CPU, memory, database, dan bandwidth pola pemakaiannya
terlihat linear terhadap jumlah concurrent user sehingga dapat digunakan pendekatan regresi
linear sederhana. Persamaan 1 merupakan persamaan yang mengilustrasikan penentuan nilai
batas minimum jumlah CPU, memory, database, dan bandwidth untuk pengujian kedua dengan
persamaan linear.

y=a-x+b (1)

dengan y nilai resource seperti CPU, memory, database, dan bandwidth yang akan dicari. x
pada penelitian ini adalah jumlah concurrent user. a adalah koefisien kemiringan (slope). Pada
penelitian ini a menunjukkan tingkat kenaikan kebutuhan sumber daya (CPU, memory,
database, bandwidth) bersamaan dengan concurrent user. b adalah intercept (titik potong).
Pada penelitian ini b menunjukkan kebutuhan resource minimum yang diperlukan bahkan jika
tidak ada concurrent user. Rumus penentuan nilai batas minimum CPU, memory, database, dan
bandwidth pada model LMS penelitian ini dapat dihitung dengan Persamaan 2, 3, 4 dan 5.

CPU = 0,003 X Concurrent Users + 1,4 2)
Memory = 0,0064 X Concurrent Users + 2 3)
Database = 0,008 X Concurrent Users + 3 4)
Bandwidth = 0,24 X Concurrent Users + 100 %)

Dari persamaan tersebut kemudian dilakukan perhitungan nilai batas minimum. Nilai
batas minimum resource dijadikan dasar untuk dilakukan pada pengujian kedua yang dapat
dilihat pada Tabel 4. Nilai untuk CPU dan memory dibulatkan ke atas dikarenakan tidak ada
bentuk koma untuk CPU dan memory. Bagian bandwidth pada penelitian ini tidak bisa ditambah
lagi karena /imit pada akun AWS yang digunakan maksimal hanya 2500 MBps.

Tabel 4 Nilai minimum setiap komponen terhadap jumlah concurrent user

Core System

Conégg:em CPU ec2 Memory ec2 D&t‘éb{;)s ¢ B((ll\]j[cg;j)th
(Core) (GB)

100 2 3 3,8 124

500 3 6 7 220

1.500 6 12 15 460

2.500 9 18 23 700

5.000 17 34 43 1300

7.500 24 50 63 1900

10.000 32 66 83 2500

Pengujian simulasi kedua sama seperti yang pertama tetapi hanya menampilkan bagian
failure request dan response time dikarenakan fokusnya untuk melihat perbaikan dari kedua
hasil tersebut. Pada Gambar 8 didapatkan nilai yang baik dikarenakan semua nilai respons time
berada di bawah 2.5 s. Akan tetapi pada jumlah concurrent 10.000 masih ada yang error
dikarenakan limitasi jumlah bandwidth maksimal 2500 MBps pada akun AWS yang digunakan
sehingga ada beberapa user yang tidak mampu dilayani secara bersamaan. Tetapi pada response
time, model LMS ini masih baik sehingga dapat dibuktikan bahwa model LMS pada penelitian
ini mampu mengatasi masalah padat pengguna.

Vol 12 2025 153

B

15
X 10
300
5 - I
0 I
N N l

Q Q Q Q Q
S M S N s <
100 500 1500 2500 5000 7500 10000

Concurrent User Concurrent User

Gambar 8 Hasil pengujian simulasi kedua. (a) Failure Request; (b) Response Time

SIMPULAN

Penelitian ini berhasil menghasilkan model LMS Moodle berbasis serverless yang
mampu mengatasi masalah kinerja pada lingkungan padat pengguna. Model yang
dikembangkan memanfaatkan layanan cloud AWS, menggabungkan pendekatan load-
balancing, autoscale, dan teknologi container. Komponen-komponen penting seperti core
system, database, session handler, dan file storage dirancang agar dapat diskalakan secara
otomatis menyesuaikan beban pengguna. Hasil evaluasi menunjukkan bahwa model LMS dapat
menangani hingga 1500 concurrent users tanpa mengalami penurunan kinerja signifikan,
dengan failure request kurang dari 1% dan response time kurang dari 2500 ms tanpa ditentukan
batas minimal resource. Jika target concurrent user lebih dari 1500, perlu ditentukan batas
minimal resource dengan perhitungan untuk core system dan database. Skor benchmark plugin
Moodle menunjukkan seluruh aspek berada di bawah acceptable limit, menandakan kinerja
model LMS optimal. Pada evaluasi implementasi di IPB University, tidak ditemukan keluhan
dan terjadi peningkatan jumlah pengunjung harian hingga lebih dari 30.000. Model LMS ini
terbukti meningkatkan kinerja dan keandalan sistem dalam menghadapi lonjakan pengguna,
menjadikan model LMS ini solusi untuk institusi pendidikan dengan beban pengguna tinggi.

DAFTAR PUSTAKA

Abdulmohson A, Kadhim, MF, Anssari OMH, Al-Jobouri AA. 2022. Cost analysis of on-
premise versus cloud-based implementation. Indonesian Journal of Electrical
Engineering and Computer Science. 25(3):1787-1794.
doi:10.11591/ijeecs.v25.13.pp1787-1794.

Ahmed W, Parveen Q, Dahar MA. 2021. Role of Learning Management System in Distance
Education: A Case Study of Virtual. Sir Syed Journal of Education & Social Research.
4(1):119-125. doi1:10.36902/sjesr-vol4-iss1-2021.

Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P. 2017. Elasticity in Cloud Computing: State of
the Art and Research Challenges. IEEE Transactions on Services Computing. 11(2):430-
447. doi:10.1109/TSC.2017.2711009.

Alier M, Casany MJ, Llorens A, Alcober J, Prat JD. 2020. Atenea Exams, an IMS LTI
Application to Solve Scalability Problems: A Study Case. Applied Sciences. 11(1):80.
doi:10.3390/app11010080.

Al-Nuaimi MN, Sawafi OSA, Malik SI, Al-Emran M, Selim YF. 2022. Evaluating the Actual
Use of Learning Management Systems During the Covid-19 Pandemic: an Integrated
Theoretical Model. Interactive Learning Environments. 31(10):6905-6930.
doi:10.1080/10494820.2022.2055577.

Biichner A. 2022. Moodle 4 Administration: an Administrator's Guide to Configuring,
Securing, Customizing, and Extending Moodle, Fourth Edition. Packt Publishing.

Burgess M. 2016. Google SRE - Site Reliability Engineering. Oslo: O'Reilly Media, Inc.

154 Utama, Neyman, dan Priandana JIKA

Draheim D, Grundy J, Hosking J, Lutteroth, C, Weber G. 2006. Realistic load testing of web
applications. Conference on Software Maintenance and Reengineering (CSMR'06). Bari:
IEEE. doi:10.1109/CSMR.2006.43.

Jingga K. 2020. Pembangunan Berbasis Komponen Menggunakan Moodle Sebagai Alternatif
Pengembangan Perangkat Lunak E-Learning Studi Kasus: Sistem Manajemen
Pengetahuan Andalalin [tesis]. Bandung[ID]: Institut Teknologi Bandung.

Jingga K, Sunindyo WD. 2020. Component-based development using moodle as alternative for
e-learning software development. [2th International Conference on Information
Technology and Electrical Engineering (ICITEE). Yogyakarta: IEEE. hlm 125-130.
doi:10.1109/ICITEE49829.2020.9271670.

Jiwo DS, Kusuma WA. 2021. Penggunaan Moodle LMS UMM dalam Pembelajaran Jarak Jauh
di Masa Pandemi. Jurnal Syntax Admiration. 2(9):1653:1662. doi:
10.46799/jsa.v219.310.

Kacapor K, Veselinovic T. 2021. Designing an adaptable high-availability E-learning
framework using free and opensource technology. [5th International Technology,
Education and Development Conference 2021; 2021 Mar 8-9. IATED. hlm 8223-8232.
doi:10.21125/inted.2021.1671.

Kumar S. 2024. Optimizing Resources in Serverless Architectures: A Comprehensive Review
A. TechRxiv. doi:10.36227/techrxiv.172504025.57438488/v1.

Mihaescu MC, Burdescu DD, Mocanu M, Ionascu CM. 2011. Load balancing procedure for
building distributed e-learning systems. The Third International Conference on Mobile,
Hybrid, and On-line Learning. Guadeloupe: IARIA. hlm 82-87.

Mihai D, Mihailescu ME, Carabas M, Tapus N. 2023. Integrated High-Workload Services for
E-Learning. I[EEE Access. 11:8441-8454. doi:10.1109/ACCESS.2023.3238967.

Nday BA, Kusuma GP, Fredyan R. 2023. Serverless Utilization in Microservice E-Learning
Platform. Procedia Computer Science. 216:204-212. doi:10.1016/j.procs.2022.12.128.

Risyah MM. 2022. Faktor-Faktor Keberhasilan Penggunaan Learning Management System
(LMS) "BeSmart Elearning" Universitas Negeri Yogyakarta [tesis]. Yogyakarta:
Universitas Gadjah Mada.

Sadikin M, Yusuf R, Rifai A. 2019. Load Balancing Clustering on Moodle LMS to Overcome
Performance Issue of e-learning System. Telkomnika. 17(1):131-138.
doi:10.12928/telkomnika.v1711.10284.

Setiawan A. 2021. Implementasi Pembelajaran Jarak Jauh Menggunakan LMS. Jurnal Bestari.
2(1):1-22.

Widiyono A. 2021. Pengaruh Penggunaan LMS dan Aplikasi Telegram terhadap Aktivitas
Belajar. Jurnal Penelitian llmu Pendidikan. 14(1):91-101.

Wiechork K, Chardo AS. 2020. Investigating the performance of moodle database queries in
cloud environments. ICEIS 2020 - 22nd International Conference on Enterprise
Information Systems. SciTePress. hlm 269-275.

Yang CT, Yeh WT, Shih WC. 2017. Implementation and Evaluation of an e-Learning
Architecture on Cloud Environments. [International Journal of Information and
Education Technology. 7(8).

Zaini A, Santoso H, Sulistyanto MT. 2021. Fault Tolerance Strategy to Increase Moodle Service
Reliability. Journal of Physics: Conference Series. 1869(1):012095.

Zhang W, Zhu Y. 2017. A New E-learning Model Based on Elastic Cloud Computing for
Distance Education. Journal of Mathematics, Science and Technology Education. 13(12):
8393-8403. doi:10.12973/ejmste/80800.

