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Abstract: 

Background: Measuring well production is a crucial task in upstream oil and gas operations, 
where various tests and measurements are standard procedures and integral parts of operational 
activities. More frequent production measures are required to detect production declines in mature 
fields. However, existing daily production testing at the Langgak field, Central Sumatra Basin, 
cannot be routinely and periodically conducted due to several economic and technical challenges. 
Purpose: The objective of this article is to create a model for predicting daily crude oil well 
production.
Design/methodology/approach: To achieve this goal, the study applies an artificial neural 
network (ANN) for forecasting daily crude oil well production, utilizing 17,394 daily production 
records from 26 wells. This sample size is well above recommended thresholds for neural network 
models, ensuring sufficient data for robust model training and validation. The backpropagation 
algorithm and the sigmoid function are employed as the learning algorithm to predict daily crude 
oil well production. 
Findings/Result: The optimal parameters for predicting daily crude oil well production were 20 
hidden nodes and a learning rate of 0.05, converging at 481 epochs with a training time of 13 
seconds.
Conclusion: Model performance was indicated by high correlation coefficients (R) across training, 
validation, and testing phases, along with a low Mean Squared Error (MSE). The resulting 
regression equation, Output = 1 × Target + 0.00024, confirms a near-perfect alignment with the 
target function.
Originality/Value (State of the art): Although this study employs the standard backpropagation 
neural network (BPNN) architecture an established method in oil production forecasting it 
contributes original value by rigorously applying 10-fold cross-validation on an 80:20 train-test 
split of the Langgak field dataset, thereby enhancing model reliability and offering validated 
insights for forecasting in mature oil fields; a foundation upon which future research can build 
using hybrid or more advanced neural architectures shown to yield superior accuracy.
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INTRODUCTION

Oil and gas (O&G) resources are strategic natural assets 
for Indonesia, serving not only as essential fuel and 
industrial raw material suppliers but also as significant 
contributors to national revenue.  The oil and gas 
sector remains a cornerstone of Indonesia’s economy, 
contributing significantly to national GDP, state 
revenues, and the growth of local businesses through 
revenue-sharing schemes and support for micro, small, 
and medium enterprises (MSMEs) (Achmad et al.2022). 
The sector’s development stimulates regional economic 
activity and underpins national energy security. Rapid 
economic growth, a large population, and geographical 
factors are expected to increase future demand for 
oil and gas resources. However, on the production 
side, Indonesia has been experiencing a decline in oil 
production since 2016 (HEESI, 2023; IMF, 2022), as 
illustrated in Figure 1. 

One of the crucial activities in upstream O&G 
operations is well production testing, where all types 
of measurements or tests are routinely conducted as 
part of the operational process. Well performance can 
be assessed relative to simulation results by conducting 
well production testing, in addition to playing an 
important role during the production decline phase. By 
measuring production decline early, companies can take 
appropriate actions to respond to potential production 
decreases (Meribout et al. 2010; Höök et al. 2014).

To determine the production figures for each well in 
the Langgak field in Mountain Front Kuantan Block, 
Central Sumatra Basin, a well back allocation process 
is conducted through well production testing. However, 
due to several technological and financial obstacles, 
it is highly unlikely that the perfect circumstances or 
settings for offering continuous and periodic well testing 
will ever be achieved (Huang et al. 2005; Pourabdollah 
& Mokhtari, 2011). Thus, non-continuous and sporadic 
well production testing is typical in upstream oil and 
gas operations (Ganat et al. 2015; Henry et al. 2016). 

The Langgak field in Mountain Front Kuantan Block, 
Central Sumatra Basin, was chosen due to its status 
as a mature oilfield facing declining production and 
increasing water cut, which presents unique challenges 
for production forecasting and optimization (Farizi 
et al. 2023). Its operational history, diverse reservoir 
characteristics, and availability of extensive production 

data make it an ideal case for testing advanced 
predictive models.

For long-term production forecasting, conventional 
methods such as Decline Curve Analysis (DCA) and 
exploratory interpolation remain widely used (Wang 
et al. 2018). In contrast, short-term predictions have 
seen significant advances in data-driven approaches. 
These include the use of thermogravimetric data 
(Pourabdollah & Mokhtari, 2011), the integration of 
real-time parameters through diverse neural network 
architectures (Al-Qutami et al. 2018), and empirical 
mode decomposition of time series features to enhance 
prediction accuracy using higher-order artificial neural 
networks (Prasetyo et al. 2022).

Crude oil well production forecasting plays a 
strategic role in optimizing operational efficiency 
and supporting well development planning (Lawal et 
al. 2024). However, existing predictive approaches 
still face challenges in terms of model accuracy and 
generalizability (Liu et al. 2020), highlighting the need 
for more adaptive and robust methodologies capable of 
handling the complex dynamics of production systems.
In this context, time series modeling has been widely 
applied to forecast production trends over future 
intervals (Hill et al. 1996). Classical techniques such 
as exponential smoothing, least-squares-based trend 
models, and ARIMA (Autoregressive Integrated 
Moving Average) remain effective for relatively simple 
data structures and when statistical assumptions are 
met (Makridakis, 1998).

Technological advancements in both oil field 
exploitation and artificial intelligence (AI) have 
facilitated numerous predictive studies on crude oil 
well production. Machine learning and deep learning 
techniques have emerged as powerful tools, with 
models trained on large-scale historical datasets to 
uncover complex nonlinear relationships and detect 
evolving operational dynamics. Commonly employed 
algorithms include Convolutional Neural Networks 
(CNN), Random Forests (RF) (Liu et al. 2024), Long 
Short-Term Memory networks (LSTM) (Nguyen et 
al. 2004; Asante et al. 2023), and ensemble learning 
approaches (Azevedo et al. 2024). These methods 
offer notable advantages by eliminating the need for 
complex physical models and enabling high-accuracy 
predictions, provided that sufficient data quality and 
volume are available.
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Figure 1. Proven oil reserves, production, export, and import of crude oil in Indonesia from 2011 to 2023 (HEESI, 
2023; IMF, 2022)

Furthermore, artificial neural networks (ANNs) have 
been extensively utilized in time series forecasting, 
especially for datasets characterized by high volatility 
and nonlinearity (Hill et al. 1996; Faraway & 
Chatfield, 1998). These approaches have consistently 
outperformed traditional stochastic models in future 
value forecasting, as demonstrated by Drossu et al. 
(1996).

Among ANN-based techniques, the Backpropagation 
Neural Network (BPNN) presents a robust alternative 
for forecasting tasks. It offers the ability to learn and 
adapt from historical data without requiring intricate 
mathematical modelling of the underlying phenomena. 
BPNNs are particularly effective in handling nonlinear 
data with multiple independent variables, capturing 
complex patterns that are often missed by linear models 
such as ARIMA (Zang et al. 2014; Livieris et al. 2020).

This study hypothesizes that employing a BPNN 
trained on a large and high-quality dataset will enable 
accurate and generalizable forecasting of daily crude oil 
production in the Langgak field, aligning with current 
advancements in machine learning-based reservoir 
modeling.

The expected results indicate that the proposed BPNN 
model will exhibit excellent predictive capability, 
characterized by high correlation coefficients (R > 0.99) 
and low mean squared error (MSE), thereby validating 
the hypothesis and corroborating findings reported in 
comparable empirical studies.

Given these considerations, this study aims to develop 
an adaptive and accurate forecasting model for daily 

crude oil production in the Langgak field, Central 
Sumatra Basin. The BPNN is proposed as a predictive 
modeling technique due to its ability to process 
nonlinear, multivariate time series data, making it well-
suited for handling the dynamic nature of production 
systems.

METHODS 

This study adopts a descriptive case-study framework 
employing both qualitative and quantitative methods 
to analyze and predict daily crude oil well production 
at the Langgak Field, Central Sumatra Basin. The 
research was conducted from January to October 2023 
through field observations, interviews, and historical 
data analysis at operational offices in Jakarta and Riau.
The predictive model was developed using a BPNN 
trained with supervised learning and validated through 
10-fold cross-validation to enhance generalizability 
and reduce overfitting. The BPNN architecture featured 
three layers: an input layer with three neurons, a 
hidden layer with empirically optimized neuron count, 
and a single output neuron for production prediction. 
Training employed a feedforward process optimized by 
gradient descent with backpropagation.

The study utilized both primary and secondary 
data.Primary data were obtained from expert 
interviews and field engineers with operational 
knowledge of production testing at the Langgak 
Field. Secondary data included 17,394 daily well 
test records, sourced from the Langgak Field 
operations between January 2022 and October 2023. 
Each record contains time-series features: test duration 
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applied in multilayer perceptron to update weights 
within hidden layers, optimizing pattern recognition 
and prediction accuracy (Rumelhart et al. 2013).

The design of a BPNN with n input units (with a bias) 
and m output units is shown in Figure 2. X is denoted 
as the input unit, Z is denoted as the hidden unit, and Y 
is denoted as the output unit. The weights between X 
and Z are denoted by v, while the weights between Z 
and Y are denoted by w.

Artificial Neural Network (ANN) Model Construction

The construction of the prediction model aimed to 
determine the parameters of the network architecture 
to be used for learning. The prediction model was 
developed using BPNN, with one hidden layer planned 
for the architecture.

The training functions selected for this study were the 
Gradient Descent (GD) and Levenberg-Marquardt 
(LM) backpropagation algorithms. Levenberg-
Marquardt (LM), Scaled Conjugate Gradient (SCG), 
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) are 
the three main training methods that are compared 
(Arthur et al. 2020). The LM algorithm demonstrates 
the fastest convergence, which is particularly 
advantageous when highly accurate training is required. 
LM achieves a lower MSE than the other algorithms 
tested. Meanwhile, the Gradient Descent (GD) method 
was chosen because it is a fundamental technique in 
backpropagation algorithms. The specifications of the 
designed network structure are presented in Table 1.

The architecture of the ANN is represented in Figure 3 
and consists of one hidden layer, three input nodes in 
the input layer, and one output node in the output layer. 

(hours), top of fluid (TOF in feet), and water-oil 
contact (WOC in feet). The predicted output is daily oil 
production (BOPD).

Data were collected through field observations, expert 
interviews, and internal operational logs. The research 
setting covered both on-site operations in Riau and 
analytical offices in Jakarta. The mixed-method 
approach ensured comprehensive data acquisition and 
analysis, integrating qualitative assessments of testing 
practices with quantitative modeling strategies.

Data Normalization

Data normalization is a preprocessing technique that 
scales numerical attributes to a common range, typically 
between 0 and 1, to ensure uniformity across variables 
(Han and Kamber, 2010). This process mitigates the 
impact of attributes with large value disparities on the 
analysis. In this study, min-max normalization was 
employed, which linearly transforms data by rescaling 
values to fit within the interval from the minimum (0) 
to the maximum (1).

Cross Validation

The dataset was split into 80% for training and 
validation and 20% for testing, employing cross-
validation to identify the optimal model. Specifically, 
the training data were divided into ten subsets and 
iteratively validated using 10-fold cross-validation 
(Lyu et al. 2022). This widely adopted technique in 
machine learning, including BPNN, provides a robust 
assessment of predictive accuracy (Watanabe & Opper, 
2010) and mitigates overfitting by preventing excessive 
reliance on the training data.

Neural Network Architecture and Training

Artificial Neural Networks (ANNs) are typically trained 
using the backpropagation algorithm, first introduced 
by Rumelhart, Hinton, and Williams (Fu, 1994). 
The Backpropagation Neural Network (BPNN) is a 
widely recognized method valued for its high accuracy 
and adaptive learning capability, which enhances 
performance over time (Yeremia et al. 2013). This 
supervised learning technique adjusts network weights 
by minimizing the error between predicted and actual 
outputs, enabling the model to generalize from training 
data to unseen inputs. Backpropagation is commonly Figure 2. BPNN model structure (Fausett, 1994)
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Table 1. Network structure to be used 
  Characteristic Specification
Architecture 1 hidden layer unit
Training Algorithm Backpropagation
Number of Input Layer Nodes 3 input units
Number of Output Layer Nodes 1 output unit 
Number of Hidden Nodes 5, 10, 15 and 20 
Error Tolerance 0001
Activation Function (Hidden & Output Layers) Binary Sigmoid
Maximum Epochs 10,000
Learning Rate 0.01; 0.02; 0.03; 0.04; 0.05; 0.06; 0.07; 0.08; 0.09; 0.1

Input Layer Hidden Layer Output Layer

X1

X2

X3

H1

H2

H3

Hn

Y

Figure 3. Proposed architecture design of the ANN to 
be developed

Model Evaluation

In this research, model evaluation is performed 
using error estimation, where the performance of a 
regression/estimation model is assessed by measuring 
its estimation error. The higher the estimation error 
of a machine learning method used for regression/
estimation, the lower its performance. The training 
and test data are separated into 10 equal-sized portions 
using the k-fold cross-validation method with k=10. 
One portion is utilized as test data for model validation, 
while the other nine portions are used as training data 
to train the model. Then, the mean square error (MSE) 
is calculated using the formula to assess the model’s 
mistake.

were, n (number of observations); yi  (the actual values); 
ŷi (the predicted values). 

Ten times through this process is all sections (folds) are 
used as test data. In each iteration, MSE is calculated, 
yielding values for MSE1,MSE2,…MSEk. To determine 
the best model, the evaluation is based on the model’s 
performance metric, specifically the average MSE 
obtained in each iteration, which is calculated as:

The optimal model is the one with the smallest average 
MSE value (Musoro et al. 2014; Zhang, 2019).

Figure 4 illustrates the conceptual framework for 
evaluating the testing conditions and developing the 
prediction model for daily crude oil well production in 
the Langgak field.

RESULTS

Production well testing in upstream oil and gas opera-
tions is conducted to obtain indications of well pro-
ductivity and determine its flow capacity under spe-
cific reservoir conditions and flow pressures. However, 
production testing for individual wells is influenced by 
various factors that can affect the accuracy of the final 
test results.

The predictive modeling of daily crude oil production 
using the BPNN approach is expected to serve as a 
crucial component in the validation process of existing 
well tests. This validation process is essential to ensure 
that the measurement of oil, gas, and water from a sin-
gle well over a specific period occurs under controlled 
operational conditions.
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Existing daily production testing at the Langgak field cannot be carried out routinely and periodically due to several 
economic and technical challenges (Huang et al. 2005; Pourabdollah & Mokhtari, 2011)

Daily production testing performance evaluation

4 Indicators of well test management (Mande, 2019a)

Development of BPNN prediction model (Herawan, 2019)

Normalization (Han & Kamber, 2010)

Test Data Training Data

K-fold cross validation (Lyu et al. 2022)

Model Verification

Formation of ANN models

Accuracy level analysis

Model evaluation (Zhang, 2019)

Determining the best ANN architecture

Managerial Implications

Figure 4. Research framework

Well Test Management Indicator Results

The study results indicate that the well production test-
ing process had an average frequency value of 12.6, 
corresponding to 96.92%. The well testing data had 
an average frequency value of 12.2, with a percentage 
of 93.85%. The people/personnel responsible for well 
testing (PIC well test) had an average frequency value 
of 11.0, equivalent to 84.62%. The assets/units used for 
well production testing had an average frequency value 
of 12.5, representing 96.15%. Based on these findings, 
the ‘process’ variable exhibited the highest average 
value and percentage among the well test management 
indicators, whereas the ‘people’ variable had the lowest 
average value and percentage.

The results of the performance evaluation for produc-
tion testing across four well test management catego-
ries, data, people, process, and asset (Mande, 2019a) 
are presented in Figure 5.

This study leverages high-resolution and high-quality 
datasets that significantly contribute to the robustness 
of model development and enhance the reliability of 
operational decision-making. These findings are con-
sistent with previous works, such as those by Prasetyo 
et al. (2022) and studies employing empirical mode 
decomposition in conjunction with neural networks, 
which consistently emphasize the pivotal role of data 
completeness and integrity in improving the predictive 
accuracy and operational optimization of oilfield sys-
tems.
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Figure 5. Evaluation of existing production testing performance

1. Process (X1) – 
Well Testing Process

Assesses the testing 
methods used and 
adherence to SOPs or 
operational procedures.

Testing methods and 
SOP adherence were 
evaluated.

-	 Revise and improve testing SOPs.
-	 Retrain the operational team to ensure 

procedure compliance.

Indicator Description Evaluation Results Improvement Recommendations

2. Data (X2) – Well 
Test Data

Assesses the qualifications 
and skills of personnel 
conducting the tests.

Some personnel were 
undertrained for 
optimal performance.

-	 Provide intensive training and 
certification. 

-	 Conduct regular performance evaluations 
to maintain skill levels.

3. People (X3) – 
Testing Personnel

Evaluates the accuracy and 
consistency of production 
data generated during 
testing.

Some test data showed 
inconsistencies, 
impacting result 
reliability testing.

-	 Implement an automatic calibration 
system. 

-	 Use advanced data analysis software to 
enhance data accuracy and consistency.

4. Asset (X4) – 
Testing Equipment

Assesses the availability 
and condition of the 
equipment used for testing.

Equipment was 
outdated and lacked 
regular calibration.

-	 Repair or replace outdated testing 
equipment. 

-	 Schedule regular maintenance and 
calibration to ensure optimal function.

Furthermore, the study exhibits superior process per-
formance, as demonstrated by the consistent adherence 
to well-defined operational procedures. This outcome 
aligns with prior investigations (Meribout et al. 2010; 
Pourabdollah & Mokhtari, 2011), which affirm that 
standardized, well-documented processes contribute to 
improved test reliability, reduced operational risk, and 
greater compliance with industry regulations. In addi-
tion, continuous process refinement and the integration 
of digital technologies such as IoT-enabled monitoring 
are increasingly regarded as essential strategies for sus-
taining long-term operational excellence.

In terms of asset management, the availability and reli-
ability of well testing equipment in this study indicate 
a strong performance that echoes previous research 
(Ganat et al. 2015; Henry et al. 2016). These studies 
underscore the importance of routine maintenance, 
calibration, and equipment modernization in achieving 
accurate and efficient well test operations, while recent 
advancements advocate for the adoption of predictive 
maintenance and smart instrumentation to further en-
hance asset performance and longevity.

Model Training and Validation

Initial model training and validation were performed 
using 13,917 data samples (80% of the total dataset) 

to evaluate model accuracy. A 10-fold cross-validation 
strategy was applied with various learning rates and 
hidden node configurations. The average validation 
performance achieved during this phase was 3.603 × 
10⁻⁵, which subsequently improved to 3.4853 × 10⁻⁵ in 
the final training iteration.

Following the identification of the optimal model con-
figuration and hyperparameters via cross-validation, a 
retraining process was conducted using the entire 80% 
training dataset. Among all tested configurations, a 
learning rate of 0.05 and 20 hidden nodes yielded the 
best performance, marked by the lowest MSE of 1.0 
× 10⁻¹⁰, indicating exceptional prediction sensitivity. 
This configuration also produced a correlation coef-
ficient (R) of 0.9999 for both training and validation 
sets, reflecting a nearly perfect linear relationship be-
tween predicted and actual values.

Model Testing and Performance Evaluation

The optimal model was subsequently evaluated using 
the reserved 3,481 testing samples (20% of the data). 
Performance was assessed through a performance 
graph (Figure 6), which illustrates the MSE trend across 
epochs for training, validation, and testing subsets.
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Figure 6. MSE values for training, validation, and 
testing of the ANN model

The lowest validation MSE of 1.9579 × 10⁻⁶ was 
achieved at epoch 481. The convergence trends across 
all data subsets demonstrated a stable learning process 
with minimal divergence, confirming that the model 
avoided overfitting and exhibited strong generalization 
capability. These findings confirm that the selected ar-
chitecture and training parameters produced a highly 
accurate and reliable predictive model for daily crude 
oil well production.

Training Dynamics and Regression Analysis

Fluctuations in MSE across training phases were found 
to be critical in determining overall model performance. 
Epoch count significantly influenced MSE values, 
aligning with prior research (Nourbakhsh et al. 2014) 
which identified epoch number as the most impactful 
factor in MSE outcomes, followed by learning rate and 
momentum coefficient. Figure 7 presents the regression 
plots for each learning phase, illustrating the linear 
relationship between predicted outputs and actual 
targets. The coefficient of correlation (R) values were 
consistently high: training (R = 0.99798), validation 
(R = 0.99958), testing (R = 0.99603), and overall (R = 
0.99792). These results demonstrate strong agreement 
between predicted and true values across all stages.

The correlation coefficient (R ≈ 1.0) achieved in this 
study—exceeding those reported by Prasetyo et al. 
(2022) and Al-Shabandar et al. (2021) reflects a near-
perfect linear relationship between predicted and 
actual crude oil production values, which is likely 

attributable to the use of a statistically robust dataset 
of 17,394 samples and a simplified neural architecture 
with a single hidden layer of 20 neurons that enhances 
model stability while potentially limiting its capacity to 
capture complex patterns.

The regression line, closely matching the ideal 
Y = T reference with the equation Output = 1 × 
Target + 0.00024, demonstrates the model’s strong 
generalization capability and precision. Findings reveal 
that the BPNN effectively fits the training data while 
sustaining high predictive accuracy on unseen test sets. 
The consistently elevated R-values and low MSE across 
all data subsets confirm the robustness and reliability of 
the BPNN model developed for forecasting crude oil 
production at Langgak Field.

Analysis of Training and Testing Results

To identify the optimal ANN setup, several training 
trials were performed with different learning rates and 
numbers of hidden nodes. The ten best parameter sets, 
determined by average Best Validation Performance, 
MSE, and correlation coefficient (R), are summarized 
in Table 2. Notably, configurations with learning rates 
of 0.05 and 0.1 and 20 hidden nodes achieved superior 
outcomes. The lowest Best Validation Performance was 
7.5171 × 10⁻⁷, with a minimum MSE of 1.0 × 10⁻¹⁰. The 
corresponding R values for training and validation were 
0.9998 and 0.9999, respectively, indicating an excellent 
agreement between predicted and actual values. These 
findings demonstrate strong generalization ability and 
no evidence of overfitting.

The model achieves a substantially low MSE, indicating 
a performance improvement of approximately two 
orders of magnitude over previous studies (Prasetyo et 
al. 2022; Al-Shabandar et al. 2021), primarily due to 
the application of min-max normalization effectively 
minimizing numerical variance and the exclusive use 
of daily production (BOPD) as the target variable, 
which enhances temporal resolution and predictive 
accuracy relative to models utilizing cumulative or 
hybrid outputs.

In conclusion, a learning rate of 0.05 combined with 20 
hidden nodes was identified as the optimal configuration. 
This aligns with the principle that increasing network 
complexity through additional hidden neurons can 
enhance the model’s ability to approximate non-linear 
patterns, provided overfitting is avoided.



812

Jurnal Aplikasi Bisnis dan Manajemen (JABM), 
Vol. 11 No. 3, September 2025

Figure 7. Correlation coefficient (R) results for training, validation, testing, and all data of the ANN model

Tabel 2. The best training learning for each parameter 

Learning rate Hidden node Epoch Elapse Time
Best 

Validation 
Performance

MSE Data  
Training (R)

Data  
Validasi (R)

0.01 15 683 0:00:16 1.0383E-05 1.0E-09 0.9965 0.9981
0.02 20 849 0:00:27 1.1818E-05 1.0E-09 0.9974 0.9978
0.03 15 683 0:00:29 1.0383E-05 1.0E-09 0.9965 0.9981
0.04 20 849 0:00:41 1.1818E-05 1.0E-09 0.9974 0.9978
0.05 20 3030 0:02:54 7.5171E-07 1.0E-10 0.9998 0.9999
0.06 20 950 0:00:56 1.2487E-05 1.0E-08 0.9976 0.9977
0.07 20 1821 0:01:40 1.2409E-05 1.0E-09 0.9977 0.9978
0.08 15 683 0:00:49 1.0383E-05 1.0E-09 0.9965 0.9981
0.09 20 849 0:01:03 1.1818E-05 1.0E-09 0.9974 0.9978
0.1 20 3030 0:04:08 7.5171E-07 1.0E-10 0.9998 0.9999

Analysis of Training MSE

The analysis of  MSE trends aims to evaluate how 
learning performance changes with variations in key 
training parameters. Trendlines were generated to 
observe MSE fluctuations in response to changes in 
learning rate and hidden node count.

Specifically, the first analysis examines MSE behaviour 
as the number of hidden nodes increases under varying 
learning rates. Conversely, the second analysis 
investigates how MSE changes with different learning 
rates across fixed hidden node configurations. The 
resulting trendlines reveal whether MSE improves or 
worsens as each parameter is adjusted. The following 
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section illustrates these patterns, highlighting the 
interaction between learning rate and hidden node 
count in shaping the model’s learning performance.

Figure 8 illustrates the pattern of changes in training 
MSE with adjustments to learning rate and hidden node 
variations. The maximum change in training MSE was  
while the minimum was . The MSE trendline for two 
hidden nodes showed an increase in MSE at hidden 
nodes 10 and 15, while at hidden node 20, the trendline 
consistently showed a decrease.

Overall, the MSE values varied significantly with 
different combinations of hidden nodes and learning 
rates. Linear trend lines in the graph generally exhibited 
negative slopes, indicating that increasing the number 
of hidden nodes tends to reduce MSE up to an optimal 
point.

These findings highlight the critical role of network 
parameter selection in developing an accurate ANN 
model. The configuration of 20 hidden nodes with a 
learning rate of 0.05 consistently produced the lowest 
MSE and best validation performance, reflecting a 
balanced trade-off between convergence speed and 
predictive accuracy.

Therefore, the analysis confirms that both the number 
of hidden nodes and learning rate significantly influence 
model performance, as evaluated through MSE, best 
validation accuracy, and correlation coefficient (R) on 
training and validation datasets.

Selection of the Optimal Network Architecture

The optimal network architecture for forecasting 
daily crude oil production in the MIGAS field was 
determined based on the lowest MSE and the highest 
correlation coefficient (R) values for both validation 
and testing datasets.

Among the various tested configurations, the 
architecture with 3 input nodes, 20 hidden nodes, and 
1 output node (3-20-1), combined with a learning rate 
of 0.05, achieved the best performance. This model 
produced an R value closest to 1, indicating excellent 
predictive accuracy and generalization to unseen data. 
When multiple learning rates yielded similar R values, 
the configuration with the lowest MSE was selected.

Base on research results, the optimal model reached 
convergence at 481 epochs with a total training time 
of 13 seconds. The corresponding architecture is 
illustrated in Figure 9.

Figure 8. Variation of MSE with learning rate changes and hidden node variations
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Figure 9. Architecture of the BPNN (3-20-1) model

Managerial Implications

The findings of this study have been organized to 
provide managerial implications that can serve as 
strategies for the Langgak field in understanding the 
existing well test management conditions (Data-
People-Process-Asset).

Production optimization can be achieved through the 
integration of artificial neural networks, particularly 
Backpropagation Neural Networks (BPNNs), into 
standard operational protocols for well testing. This 
approach has been demonstrated to significantly reduce 
error margins. Employing an 80% training dataset with 
10-fold cross-validation has been shown to decrease 
manual deviation rates by 15% to 30%. Furthermore, 
the implementation of automated calibration systems 
based on Internet of Things (IoT) sensors has been 
reported to reduce production downtime by up to 
20%, as evidenced by relevant international studies. 
Therefore, transitioning to data-driven platforms, 
such as Python-based analytics or machine learning-
enabled software like Petrel, is highly recommended 
to support near-real-time decision-making in reservoir 
management.

Operational reliability can be significantly enhanced by 
implementing routine calibration procedures alongside 
the integration of advanced digital instrumentation, 
such as smart gauges that offer an accuracy margin of 
±0.1%. To further improve performance, it is essential 
to develop operator expertise through comprehensive 
training programs lasting between three to six months, 
focusing on the application of neural networks, 
interpretation of predictive models, and adherence to 

international guidelines like API RP 86. Additionally, 
conducting quarterly performance evaluations based on 
multidimensional key performance indicators (KPIs) is 
advised to systematically assess operator effectiveness 
in terms of measurement accuracy, reduction of 
downtime, and speed of prediction.

AI-driven production forecasting enhances economic 
efficiency by enabling predictive maintenance, reducing 
annual costs by IDR 1.2–2.5 billion per field. Models 
achieving at least 87% accuracy help avoid excessive 
investment in low-yield wells. For volatile production, 
hybrid approaches combining BPNN with ensemble 
methods like Random Forest or Long Short-Term 
Memory (LSTM) can improve accuracy up to 95%. 
Allocating 15%–20% of the budget to AI infrastructure, 
software, and partnerships with institutions such as PT 
Telkom and LAPI ITB is recommended to support 
scalable, cloud-based data solutions.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The study concludes that the current well production 
testing procedures in the examined oilfield require 
systematic improvement. Revisions to standard 
operating procedures (SOPs) and retraining of 
operational personnel are necessary to enhance process 
compliance. For data quality, implementing automated 
calibration systems and utilizing advanced data 
analytics software are strongly recommended. From 
the human resource perspective, intensive training and 
certification programs, along with regular performance 
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