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Abstract:

Background: Measuring well production is a crucial task in upstream oil and gas operations,
where various tests and measurements are standard procedures and integral parts of operational
activities. More frequent production measures are required to detect production declines in mature
fields. However, existing daily production testing at the Langgak field, Central Sumatra Basin,
cannot be routinely and periodically conducted due to several economic and technical challenges.
Purpose: The objective of this article is to create a model for predicting daily crude oil well
production.

Design/methodology/approach: To achieve this goal, the study applies an artificial neural
network (ANN) for forecasting daily crude oil well production, utilizing 17,394 daily production
records from 26 wells. This sample size is well above recommended thresholds for neural network
models, ensuring sufficient data for robust model training and validation. The backpropagation
algorithm and the sigmoid function are employed as the learning algorithm to predict daily crude
oil well production.

Findings/Result: The optimal parameters for predicting daily crude oil well production were 20
hidden nodes and a learning rate of 0.05, converging at 481 epochs with a training time of 13
seconds.

Conclusion: Model performance was indicated by high correlation coefficients (R) across training,
validation, and testing phases, along with a low Mean Squared Error (MSE). The resulting
regression equation, Output = 1 x Target + 0.00024, confirms a near-perfect alignment with the
target function.

Originality/Value (State of the art): Although this study employs the standard backpropagation
neural network (BPNN) architecture an established method in oil production forecasting it
contributes original value by rigorously applying 10-fold cross-validation on an 80:20 train-test
split of the Langgak field dataset, thereby enhancing model reliability and offering validated
insights for forecasting in mature oil fields; a foundation upon which future research can build
using hybrid or more advanced neural architectures shown to yield superior accuracy.

Keywords: artificial neural network, backpropagation, oil production forecasting, machine
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INTRODUCTION

Oil and gas (O&G) resources are strategic natural assets
for Indonesia, serving not only as essential fuel and
industrial raw material suppliers but also as significant
contributors to national revenue. The oil and gas
sector remains a cornerstone of Indonesia’s economy,
contributing significantly to national GDP, state
revenues, and the growth of local businesses through
revenue-sharing schemes and support for micro, small,
and medium enterprises (MSMEs) (Achmad et al.2022).
The sector’s development stimulates regional economic
activity and underpins national energy security. Rapid
economic growth, a large population, and geographical
factors are expected to increase future demand for
oil and gas resources. However, on the production
side, Indonesia has been experiencing a decline in oil
production since 2016 (HEESI, 2023; IMF, 2022), as
illustrated in Figure 1.

One of the crucial activities in upstream O&G
operations is well production testing, where all types
of measurements or tests are routinely conducted as
part of the operational process. Well performance can
be assessed relative to simulation results by conducting
well production testing, in addition to playing an
important role during the production decline phase. By
measuring production decline early, companies can take
appropriate actions to respond to potential production
decreases (Meribout et al. 2010; Hodk et al. 2014).

To determine the production figures for each well in
the Langgak field in Mountain Front Kuantan Block,
Central Sumatra Basin, a well back allocation process
is conducted through well production testing. However,
due to several technological and financial obstacles,
it is highly unlikely that the perfect circumstances or
settings for offering continuous and periodic well testing
will ever be achieved (Huang et al. 2005; Pourabdollah
& Mokhtari, 2011). Thus, non-continuous and sporadic
well production testing is typical in upstream oil and
gas operations (Ganat et al. 2015; Henry et al. 2016).

The Langgak field in Mountain Front Kuantan Block,
Central Sumatra Basin, was chosen due to its status
as a mature oilfield facing declining production and
increasing water cut, which presents unique challenges
for production forecasting and optimization (Farizi
et al. 2023). Its operational history, diverse reservoir
characteristics, and availability of extensive production
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data make it an ideal case for testing advanced
predictive models.

For long-term production forecasting, conventional
methods such as Decline Curve Analysis (DCA) and
exploratory interpolation remain widely used (Wang
et al. 2018). In contrast, short-term predictions have
seen significant advances in data-driven approaches.
These include the use of thermogravimetric data
(Pourabdollah & Mokhtari, 2011), the integration of
real-time parameters through diverse neural network
architectures (Al-Qutami et al. 2018), and empirical
mode decomposition of time series features to enhance
prediction accuracy using higher-order artificial neural
networks (Prasetyo et al. 2022).

Crude oil well production forecasting plays a
strategic role in optimizing operational efficiency
and supporting well development planning (Lawal et
al. 2024). However, existing predictive approaches
still face challenges in terms of model accuracy and
generalizability (Liu et al. 2020), highlighting the need
for more adaptive and robust methodologies capable of
handling the complex dynamics of production systems.
In this context, time series modeling has been widely
applied to forecast production trends over future
intervals (Hill et al. 1996). Classical techniques such
as exponential smoothing, least-squares-based trend
models, and ARIMA (Autoregressive Integrated
Moving Average) remain effective for relatively simple
data structures and when statistical assumptions are
met (Makridakis, 1998).

Technological advancements in both oil field
exploitation and artificial intelligence (AI) have
facilitated numerous predictive studies on crude oil
well production. Machine learning and deep learning
techniques have emerged as powerful tools, with
models trained on large-scale historical datasets to
uncover complex nonlinear relationships and detect
evolving operational dynamics. Commonly employed
algorithms include Convolutional Neural Networks
(CNN), Random Forests (RF) (Liu et al. 2024), Long
Short-Term Memory networks (LSTM) (Nguyen et
al. 2004; Asante et al. 2023), and ensemble learning
approaches (Azevedo et al. 2024). These methods
offer notable advantages by eliminating the need for
complex physical models and enabling high-accuracy
predictions, provided that sufficient data quality and
volume are available.
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Figure 1. Proven oil reserves, production, export, and import of crude oil in Indonesia from 2011 to 2023 (HEES]I,

2023; IMF, 2022)

Furthermore, artificial neural networks (ANNs) have
been extensively utilized in time series forecasting,
especially for datasets characterized by high volatility
and nonlinearity (Hill et al. 1996; Faraway &
Chatfield, 1998). These approaches have consistently
outperformed traditional stochastic models in future
value forecasting, as demonstrated by Drossu et al.
(1996).

Among ANN-based techniques, the Backpropagation
Neural Network (BPNN) presents a robust alternative
for forecasting tasks. It offers the ability to learn and
adapt from historical data without requiring intricate
mathematical modelling of the underlying phenomena.
BPNNSs are particularly effective in handling nonlinear
data with multiple independent variables, capturing
complex patterns that are often missed by linear models
such as ARIMA (Zang et al. 2014; Livieris et al. 2020).

This study hypothesizes that employing a BPNN
trained on a large and high-quality dataset will enable
accurate and generalizable forecasting of daily crude oil
production in the Langgak field, aligning with current
advancements in machine learning-based reservoir
modeling.

The expected results indicate that the proposed BPNN
model will exhibit excellent predictive capability,
characterized by high correlation coefficients (R > 0.99)
and low mean squared error (MSE), thereby validating
the hypothesis and corroborating findings reported in
comparable empirical studies.

Given these considerations, this study aims to develop
an adaptive and accurate forecasting model for daily

crude oil production in the Langgak field, Central
Sumatra Basin. The BPNN is proposed as a predictive
modeling technique due to its ability to process
nonlinear, multivariate time series data, making it well-
suited for handling the dynamic nature of production
systems.

METHODS

This study adopts a descriptive case-study framework
employing both qualitative and quantitative methods
to analyze and predict daily crude oil well production
at the Langgak Field, Central Sumatra Basin. The
research was conducted from January to October 2023
through field observations, interviews, and historical
data analysis at operational offices in Jakarta and Riau.
The predictive model was developed using a BPNN
trained with supervised learning and validated through
10-fold cross-validation to enhance generalizability
and reduce overfitting. The BPNN architecture featured
three layers: an input layer with three neurons, a
hidden layer with empirically optimized neuron count,
and a single output neuron for production prediction.
Training employed a feedforward process optimized by
gradient descent with backpropagation.

The study utilized both primary and secondary
data.Primary data were obtained from expert
interviews and field engineers with operational
knowledge of production testing at the Langgak
Field. Secondary data included 17,394 daily well
test records, sourced from the Langgak Field
operations between January 2022 and October 2023.
Each record contains time-series features: test duration
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(hours), top of fluid (TOF in feet), and water-oil
contact (WOC in feet). The predicted output is daily oil
production (BOPD).

Data were collected through field observations, expert
interviews, and internal operational logs. The research
setting covered both on-site operations in Riau and
analytical offices in Jakarta. The mixed-method
approach ensured comprehensive data acquisition and
analysis, integrating qualitative assessments of testing
practices with quantitative modeling strategies.

Data Normalization

Data normalization is a preprocessing technique that
scales numerical attributes to a common range, typically
between 0 and 1, to ensure uniformity across variables
(Han and Kamber, 2010). This process mitigates the
impact of attributes with large value disparities on the
analysis. In this study, min-max normalization was
employed, which linearly transforms data by rescaling
values to fit within the interval from the minimum (0)
to the maximum (1).

Cross Validation

The dataset was split into 80% for training and
validation and 20% for testing, employing cross-
validation to identify the optimal model. Specifically,
the training data were divided into ten subsets and
iteratively validated using 10-fold cross-validation
(Lyu et al. 2022). This widely adopted technique in
machine learning, including BPNN, provides a robust
assessment of predictive accuracy (Watanabe & Opper,
2010) and mitigates overfitting by preventing excessive
reliance on the training data.

Neural Network Architecture and Training

Artificial Neural Networks (ANNs) are typically trained
using the backpropagation algorithm, first introduced
by Rumelhart, Hinton, and Williams (Fu, 1994).
The Backpropagation Neural Network (BPNN) is a
widely recognized method valued for its high accuracy
and adaptive learning capability, which enhances
performance over time (Yeremia et al. 2013). This
supervised learning technique adjusts network weights
by minimizing the error between predicted and actual
outputs, enabling the model to generalize from training
data to unseen inputs. Backpropagation is commonly
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applied in multilayer perceptron to update weights
within hidden layers, optimizing pattern recognition
and prediction accuracy (Rumelhart et al. 2013).

The design of a BPNN with n input units (with a bias)
and m output units is shown in Figure 2. X is denoted
as the input unit, Z is denoted as the hidden unit, and Y
is denoted as the output unit. The weights between X
and Z are denoted by v, while the weights between Z
and Y are denoted by w.

Artificial Neural Network (ANN) Model Construction

The construction of the prediction model aimed to
determine the parameters of the network architecture
to be used for learning. The prediction model was
developed using BPNN, with one hidden layer planned
for the architecture.

The training functions selected for this study were the
Gradient Descent (GD) and Levenberg-Marquardt
(LM) backpropagation algorithms. Levenberg-
Marquardt (LM), Scaled Conjugate Gradient (SCG),
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) are
the three main training methods that are compared
(Arthur et al. 2020). The LM algorithm demonstrates
the fastest convergence, which is particularly
advantageous when highly accurate training is required.
LM achieves a lower MSE than the other algorithms
tested. Meanwhile, the Gradient Descent (GD) method
was chosen because it is a fundamental technique in
backpropagation algorithms. The specifications of the
designed network structure are presented in Table 1.

The architecture of the ANN is represented in Figure 3
and consists of one hidden layer, three input nodes in
the input layer, and one output node in the output layer.

Figure 2. BPNN model structure (Fausett, 1994)
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Table 1. Network structure to be used
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Characteristic Specification
Architecture 1 hidden layer unit
Training Algorithm Backpropagation

Number of Input Layer Nodes

Number of Output Layer Nodes

Number of Hidden Nodes

Error Tolerance

Activation Function (Hidden & Output Layers)
Maximum Epochs

Learning Rate

3 input units

1 output unit

5,10, 15 and 20

0001

Binary Sigmoid

10,000

0.01; 0.02; 0.03; 0.04; 0.05; 0.06; 0.07; 0.08; 0.09; 0.1

Input Layer

Hidden Layer Output Layer

Figure 3. Proposed architecture design of the ANN to
be developed

Model Evaluation

In this research, model evaluation is performed
using error estimation, where the performance of a
regression/estimation model is assessed by measuring
its estimation error. The higher the estimation error
of a machine learning method used for regression/
estimation, the lower its performance. The training
and test data are separated into 10 equal-sized portions
using the k-fold cross-validation method with k=10.
One portion is utilized as test data for model validation,
while the other nine portions are used as training data
to train the model. Then, the mean square error (MSE)
is calculated using the formula to assess the model’s
mistake.

n
o a2
MSE=§ 3 — i)
4 n
i=1

were, n (number of observations); y, (the actual values);
Vi (the predicted values).

Ten times through this process is all sections (folds) are
used as test data. In each iteration, MSE is calculated,
yielding values for MSE ,MSE.,...MSE, . To determine
the best model, the evaluation is based on the model’s
performance metric, specifically the average MSE
obtained in each iteration, which is calculated as:

k
1
i=i

The optimal model is the one with the smallest average
MSE value (Musoro et al. 2014; Zhang, 2019).

Figure 4 illustrates the conceptual framework for
evaluating the testing conditions and developing the
prediction model for daily crude oil well production in
the Langgak field.

RESULTS

Production well testing in upstream oil and gas opera-
tions is conducted to obtain indications of well pro-
ductivity and determine its flow capacity under spe-
cific reservoir conditions and flow pressures. However,
production testing for individual wells is influenced by
various factors that can affect the accuracy of the final
test results.

The predictive modeling of daily crude oil production
using the BPNN approach is expected to serve as a
crucial component in the validation process of existing
well tests. This validation process is essential to ensure
that the measurement of oil, gas, and water from a sin-
gle well over a specific period occurs under controlled
operational conditions.
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Existing daily production testing at the Langgak field cannot be carried out routinely and periodically due to several
economic and technical challenges (Huang et al. 2005; Pourabdollah & Mokhtari, 2011)

Y

Daily production testing performance evaluation

4 Indicators of well test management (Mande, 2019a)

Development of BPNN prediction model (Herawan, 2019)

Normalization (Han & Kamber, 2010)

Test Data

Training Data

A

Y

'

K-fold cross validation (Lyu et al. 2022)

Model Verification

Formation of ANN models

Accuracy level analysis

Model evaluation (Zhang, 2019)

Determining the best ANN architecture

Managerial Implications

Figure 4. Research framework

Well Test Management Indicator Results

The study results indicate that the well production test-
ing process had an average frequency value of 12.6,
corresponding to 96.92%. The well testing data had
an average frequency value of 12.2, with a percentage
of 93.85%. The people/personnel responsible for well
testing (PIC well test) had an average frequency value
of 11.0, equivalent to 84.62%. The assets/units used for
well production testing had an average frequency value
of 12.5, representing 96.15%. Based on these findings,
the ‘process’ variable exhibited the highest average
value and percentage among the well test management
indicators, whereas the ‘people’ variable had the lowest
average value and percentage.

The results of the performance evaluation for produc-
tion testing across four well test management catego-
ries, data, people, process, and asset (Mande, 2019a)
are presented in Figure 5.

This study leverages high-resolution and high-quality
datasets that significantly contribute to the robustness
of model development and enhance the reliability of
operational decision-making. These findings are con-
sistent with previous works, such as those by Prasetyo
et al. (2022) and studies employing empirical mode
decomposition in conjunction with neural networks,
which consistently emphasize the pivotal role of data
completeness and integrity in improving the predictive
accuracy and operational optimization of oilfield sys-
tems.
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Indicator —

Description —»| Evaluation Results [

Improvement Recommendations

1. Process (X1) —
Well Testing Process

Assesses the testing
methods used and
adherence to SOPs or
operational procedures.

Testing methods and -
SOP adherence were -
evaluated. >

Revise and improve testing SOPs.
Retrain the operational team to ensure
procedure compliance.

2. Data (X2) — Well
Test Data

Assesses the qualifications
and skills of personnel
conducting the tests.

Some personnel were -
undertrained for
optimal performance. |—{ -

Provide intensive training and
certification.

Conduct regular performance evaluations
to maintain skill levels.

3. People (X3) —
Testing Personnel

Evaluates the accuracy and
consistency of production
data generated during
testing.

Some test data showed| -
inconsistencies,
impacting result - -
reliability testing.

Implement an automatic calibration
system.

Use advanced data analysis software to
enhance data accuracy and consistency.

4. Asset (X4) —
Testing Equipment

Assesses the availability
and condition of the
equipment used for testing.

Equipment was -
outdated and lacked
regular calibration.  |={ -

Repair or replace outdated testing
equipment.

Schedule regular maintenance and
calibration to ensure optimal function.

Figure 5. Evaluation of existing production testing performance

Furthermore, the study exhibits superior process per-
formance, as demonstrated by the consistent adherence
to well-defined operational procedures. This outcome
aligns with prior investigations (Meribout et al. 2010;
Pourabdollah & Mokhtari, 2011), which affirm that
standardized, well-documented processes contribute to
improved test reliability, reduced operational risk, and
greater compliance with industry regulations. In addi-
tion, continuous process refinement and the integration
of digital technologies such as loT-enabled monitoring
are increasingly regarded as essential strategies for sus-
taining long-term operational excellence.

In terms of asset management, the availability and reli-
ability of well testing equipment in this study indicate
a strong performance that echoes previous research
(Ganat et al. 2015; Henry et al. 2016). These studies
underscore the importance of routine maintenance,
calibration, and equipment modernization in achieving
accurate and efficient well test operations, while recent
advancements advocate for the adoption of predictive
maintenance and smart instrumentation to further en-
hance asset performance and longevity.

Model Training and Validation

Initial model training and validation were performed
using 13,917 data samples (80% of the total dataset)

to evaluate model accuracy. A 10-fold cross-validation
strategy was applied with various learning rates and
hidden node configurations. The average validation
performance achieved during this phase was 3.603 x
1075, which subsequently improved to 3.4853 x 10~ in
the final training iteration.

Following the identification of the optimal model con-
figuration and hyperparameters via cross-validation, a
retraining process was conducted using the entire 80%
training dataset. Among all tested configurations, a
learning rate of 0.05 and 20 hidden nodes yielded the
best performance, marked by the lowest MSE of 1.0
x 107", indicating exceptional prediction sensitivity.
This configuration also produced a correlation coef-
ficient (R) of 0.9999 for both training and validation
sets, reflecting a nearly perfect linear relationship be-
tween predicted and actual values.

Model Testing and Performance Evaluation

The optimal model was subsequently evaluated using
the reserved 3,481 testing samples (20% of the data).
Performance was assessed through a performance
graph (Figure 6), which illustrates the MSE trend across
epochs for training, validation, and testing subsets.
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Figure 6. MSE values for training, validation, and
testing of the ANN model

The lowest validation MSE of 1.9579 x 10° was
achieved at epoch 481. The convergence trends across
all data subsets demonstrated a stable learning process
with minimal divergence, confirming that the model
avoided overfitting and exhibited strong generalization
capability. These findings confirm that the selected ar-
chitecture and training parameters produced a highly
accurate and reliable predictive model for daily crude
oil well production.

Training Dynamics and Regression Analysis

Fluctuations in MSE across training phases were found
to be critical in determining overall model performance.
Epoch count significantly influenced MSE values,
aligning with prior research (Nourbakhsh et al. 2014)
which identified epoch number as the most impactful
factor in MSE outcomes, followed by learning rate and
momentum coefficient. Figure 7 presents the regression
plots for each learning phase, illustrating the linear
relationship between predicted outputs and actual
targets. The coefficient of correlation (R) values were
consistently high: training (R = 0.99798), validation
(R =10.99958), testing (R = 0.99603), and overall (R =
0.99792). These results demonstrate strong agreement
between predicted and true values across all stages.

The correlation coefficient (R = 1.0) achieved in this
study—exceeding those reported by Prasetyo et al.
(2022) and Al-Shabandar et al. (2021) reflects a near-
perfect linear relationship between predicted and
actual crude oil production values, which is likely
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attributable to the use of a statistically robust dataset
of 17,394 samples and a simplified neural architecture
with a single hidden layer of 20 neurons that enhances
model stability while potentially limiting its capacity to
capture complex patterns.

The regression line, closely matching the ideal
Y = T reference with the equation Output = 1 X
Target + 0.00024, demonstrates the model’s strong
generalization capability and precision. Findings reveal
that the BPNN effectively fits the training data while
sustaining high predictive accuracy on unseen test sets.
The consistently elevated R-values and low MSE across
all data subsets confirm the robustness and reliability of
the BPNN model developed for forecasting crude oil
production at Langgak Field.

Analysis of Training and Testing Results

To identify the optimal ANN setup, several training
trials were performed with different learning rates and
numbers of hidden nodes. The ten best parameter sets,
determined by average Best Validation Performance,
MSE, and correlation coefficient (R), are summarized
in Table 2. Notably, configurations with learning rates
of 0.05 and 0.1 and 20 hidden nodes achieved superior
outcomes. The lowest Best Validation Performance was
7.5171 x 107, with a minimum MSE of 1.0 x 107'°. The
corresponding R values for training and validation were
0.9998 and 0.9999, respectively, indicating an excellent
agreement between predicted and actual values. These
findings demonstrate strong generalization ability and
no evidence of overfitting.

The model achieves a substantially low MSE, indicating
a performance improvement of approximately two
orders of magnitude over previous studies (Prasetyo et
al. 2022; Al-Shabandar et al. 2021), primarily due to
the application of min-max normalization effectively
minimizing numerical variance and the exclusive use
of daily production (BOPD) as the target variable,
which enhances temporal resolution and predictive
accuracy relative to models utilizing cumulative or
hybrid outputs.

In conclusion, a learning rate of 0.05 combined with 20
hidden nodes was identified as the optimal configuration.
This aligns with the principle that increasing network
complexity through additional hidden neurons can
enhance the model’s ability to approximate non-linear
patterns, provided overfitting is avoided.
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Tabel 2. The best training learning for each parameter

Best

Learning rate  Hidden node Epoch Elapse Time  Validation MSE Trai]r?i?z (R) Vali]()lzfil (R)
Performance
0.01 15 683 0:00:16 1.0383E-05 1.0E-09 0.9965 0.9981
0.02 20 849 0:00:27 1.1818E-05 1.0E-09 0.9974 0.9978
0.03 15 683 0:00:29 1.0383E-05 1.0E-09 0.9965 0.9981
0.04 20 849 0:00:41 1.1818E-05 1.0E-09 0.9974 0.9978
0.05 20 3030 0:02:54 7.5171E-07 1.0E-10 0.9998 0.9999
0.06 20 950 0:00:56 1.2487E-05 1.0E-08 0.9976 0.9977
0.07 20 1821 0:01:40 1.2409E-05 1.0E-09 0.9977 0.9978
0.08 15 683 0:00:49 1.0383E-05 1.0E-09 0.9965 0.9981
0.09 20 849 0:01:03 1.1818E-05 1.0E-09 0.9974 0.9978
0.1 20 3030 0:04:08 7.5171E-07 1.0E-10 0.9998 0.9999

Analysis of Training MSE

The analysis of MSE trends aims to evaluate how
learning performance changes with variations in key
training parameters. Trendlines were generated to
observe MSE fluctuations in response to changes in
learning rate and hidden node count.

Specifically, the first analysis examines MSE behaviour
as the number of hidden nodes increases under varying
learning rates. Conversely, the second analysis
investigates how MSE changes with different learning
rates across fixed hidden node configurations. The
resulting trendlines reveal whether MSE improves or
worsens as each parameter is adjusted. The following

8121



section illustrates these patterns, highlighting the
interaction between learning rate and hidden node
count in shaping the model’s learning performance.

Figure 8 illustrates the pattern of changes in training
MSE with adjustments to learning rate and hidden node
variations. The maximum change in training MSE was
while the minimum was . The MSE trendline for two
hidden nodes showed an increase in MSE at hidden
nodes 10 and 15, while at hidden node 20, the trendline
consistently showed a decrease.

Overall, the MSE values varied significantly with
different combinations of hidden nodes and learning
rates. Linear trend lines in the graph generally exhibited
negative slopes, indicating that increasing the number
of hidden nodes tends to reduce MSE up to an optimal
point.

These findings highlight the critical role of network
parameter selection in developing an accurate ANN
model. The configuration of 20 hidden nodes with a
learning rate of 0.05 consistently produced the lowest
MSE and best validation performance, reflecting a

balanced trade-off between convergence speed and
predictive accuracy.
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Therefore, the analysis confirms that both the number
of'hidden nodes and learning rate significantly influence
model performance, as evaluated through MSE, best
validation accuracy, and correlation coefficient (R) on
training and validation datasets.

Selection of the Optimal Network Architecture

The optimal network architecture for forecasting
daily crude oil production in the MIGAS field was
determined based on the lowest MSE and the highest
correlation coefficient (R) values for both validation
and testing datasets.

Among the various tested configurations, the
architecture with 3 input nodes, 20 hidden nodes, and
1 output node (3-20-1), combined with a learning rate
of 0.05, achieved the best performance. This model
produced an R value closest to 1, indicating excellent
predictive accuracy and generalization to unseen data.
When multiple learning rates yielded similar R values,
the configuration with the lowest MSE was selected.

Base on research results, the optimal model reached
convergence at 481 epochs with a total training time
of 13 seconds. The corresponding architecture is
illustrated in Figure 9.
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Figure 8. Variation of MSE with learning rate changes and hidden node variations
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Figure 9. Architecture of the BPNN (3-20-1) model

Managerial Implications

The findings of this study have been organized to
provide managerial implications that can serve as
strategies for the Langgak field in understanding the
existing well test management conditions (Data-
People-Process-Asset).

Production optimization can be achieved through the
integration of artificial neural networks, particularly
Backpropagation Neural Networks (BPNNs), into
standard operational protocols for well testing. This
approach has been demonstrated to significantly reduce
error margins. Employing an 80% training dataset with
10-fold cross-validation has been shown to decrease
manual deviation rates by 15% to 30%. Furthermore,
the implementation of automated calibration systems
based on Internet of Things (IoT) sensors has been
reported to reduce production downtime by up to
20%, as evidenced by relevant international studies.
Therefore, transitioning to data-driven platforms,
such as Python-based analytics or machine learning-
enabled software like Petrel, is highly recommended
to support near-real-time decision-making in reservoir
management.

Operational reliability can be significantly enhanced by
implementing routine calibration procedures alongside
the integration of advanced digital instrumentation,
such as smart gauges that offer an accuracy margin of
+0.1%. To further improve performance, it is essential
to develop operator expertise through comprehensive
training programs lasting between three to six months,
focusing on the application of neural networks,
interpretation of predictive models, and adherence to

international guidelines like API RP 86. Additionally,
conducting quarterly performance evaluations based on
multidimensional key performance indicators (KPIs) is
advised to systematically assess operator effectiveness
in terms of measurement accuracy, reduction of
downtime, and speed of prediction.

Al-driven production forecasting enhances economic
efficiency by enabling predictive maintenance, reducing
annual costs by IDR 1.2-2.5 billion per field. Models
achieving at least 87% accuracy help avoid excessive
investment in low-yield wells. For volatile production,
hybrid approaches combining BPNN with ensemble
methods like Random Forest or Long Short-Term
Memory (LSTM) can improve accuracy up to 95%.
Allocating 15%—-20% of the budget to Al infrastructure,
software, and partnerships with institutions such as PT
Telkom and LAPI ITB is recommended to support
scalable, cloud-based data solutions.

CONCLUSIONS AND RECOMMENDATIONS
Conclusions

The study concludes that the current well production
testing procedures in the examined oilfield require
systematic improvement. Revisions to standard
operating procedures (SOPs) and retraining of
operational personnel are necessary to enhance process
compliance. For data quality, implementing automated
calibration systems and utilizing advanced data
analytics software are strongly recommended. From
the human resource perspective, intensive training and
certification programs, along with regular performance
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evaluations, should be conducted. In terms of assets,
outdated testing equipment should be replaced, and
regular maintenance and calibration schedules must be
enforced.

The BPNN model demonstrates strong potential for
forecasting daily crude oil production. Using an 80:20
training-testing split, and applying 10-fold cross-
validation on the training subset, the model exhibits
robust generalization performance. The optimal
architecture configured as 3-20-1 with a learning rate
of 0.05 achieved convergence in 481 epochs with a
training time of 13 seconds. Model performance was
indicated by high correlation coefficients (R) across
training, validation, and testing phases, along with a
low MSE. The resulting regression equation, Output =
1 x Target + 0.00024, confirms a near-perfect alignment
with the target function. These findings suggest that
BPNN is a viable tool to support data-driven decision-
making in oil production management systems.

Recommendations

The proposed model may serve as a practical reference
for industry practitioners in forecasting daily crude oil
production using artificial neural networks (ANNS).
Future studies are encouraged to enhance model
performance by incorporating alternative learning
algorithms and activation functions beyond logsig.
Expanding the input dataset to include additional
parameters such as pump type per well can further
improve model generalizability and support broader
applicability across diverse oilfields.
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