Characterization and Antimicrobial Activity of Whey Edible Film Composite Enriched with Clove Essential Oil

Fahrullah, M. Ervandi, D. Rosyidi

Abstract

Antimicrobial edible films made from clove essential oil play a role in reducing, inhibiting, or slowing the growth of bacteria that may be existed in food packaging or packaging materials to extend the shelf life of packaged foods. This study aims to produce whey and clove oil films with film thickness, elongation, tensile strength, water vapor transmission rate, optical properties, antimicrobial properties of clove oil, and its inhibition against pathogenic microbes. The physical and antimicrobial characteristics of edible film were investigated using an experimental method in a completely randomized design with four treatments. The treatment used different concentrations of clove oil (C0: 0% clove essential oil, C1: 5% clove essential oil, C2: 10% clove essential oil, and C3: 15% clove essential oil). The percentage value of elongation and microbial inhibitory activity were significantly affected (p<0.01) by the concentration of clove essential oil. Based on all variables, 10% clove essential oil concentration is the best treatment with a thickness of 0.035 mm, elongation of 78%, tensile strength of 8.82 N, water vapor transmission rate of 7.80 g.mm-2.day-1, and inhibitions of E. coli and S. aureus resulted in high rates. The results conclude that the addition of clove essential oil has a promising potential to improve the antimicrobial properties of whey edible film composites. The use of clove essential oil at the level of 10% is the best treatment.

References

ASTM E96-95. Standard Test Method for Water Vapor Transmission of Materials.
Atarés, L., J. Bonilla, & A. Chiralt. 2010. Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J. Food Eng. 100: 678-687. https://doi.org/10.1016/j.jfoodeng.2010.05.018
Atarés, L. & A. Chiralt. 2016. Essential oils as additives in biodegradable films and coatings for active food packaging. 2016. Trends Food Sci. Technol. 48: 51–62. https://doi.org/10.1016/j.tifs.2015.12.001
Ayu, D. F., R. Efendi, V. S. Johan, & L. Habibah. 2020. Addition of red galanga (Alpinia purpurata) juice in edible coating of meranti sago strach on chemical, microbiology and hedonic characteristics of tomatoes (Lycopersicum esculentum mill). Jurnal Teknologi dan Industri Pertanian Indonesia 12:1-8. https://doi.org/10.17969/jtipi.v12i1.15521
Baldwin, E. A., R. D. Hagenmaier, & J. Bai. 2011. Edible Coatings and Films to Improve Food Quality: Second Edition. CRC Press, New York. https://doi.org/10.1201/b11082
Bassanetti, I., M. Carcelli, A. Buschini, S. Montalbano, G. Leonardi, P. Pelagatti, G. Tosi, P. Massi, L. Fiorentini, & D. Rogolino. 2017. Investigation of antibacterial activity of new classes of essential oils derivatives. Food Control. 73: 606–612. https://doi.org/10.1016/j.foodcont.2016.09.010
Benavides, S., R. Villalobos, & J. E. Reyes. 2012. Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. J. Food Eng. 110: 232-239. https://doi.org/10.1016/j.jfoodeng.2011.05.023
Bourtoom, T. 2008. Edible films and coatings: Characteristics and properties. International Food Research Journal 15:237-248.
Chakravartula, S. S. N., M. Soccio, N. Lotti, F. Balestra, M. D. Rosa, & V. Siracusa. 2019. Characterization of composite edible films based on pectin / alginate / whey protein concentrate. Materials. 12: 2454. https://doi.org/10.3390/ma12152454
Chen, C., Z. Xu, Y. Ma, Y, J. Liu, Q. Zhang, Z. Tang, K. Fu, F. Yang, & J. Xie. 2018. Properties, vapour-phase antimicrobial and antioxidant activities of active poly (vinyl alcohol) packaging films incorporated with clove oil. Food Control. 88: 105–112. https://doi.org/10.1016/j.foodcont.2017.12.039
Chen, H., J. Wang, Y. Cheng, C. Wang, H. Liu, H. Bian, Y. Pan, J. Sun, & W. Han. 2019. Application of protein-based films and coating for food packaging: A review. Polymers. 11: 2039. https://doi.org/10.3390/polym11122039
Cofelice, M., F. Cuomo, & A. Chiralt. 2019. Alginate films encapsulating lemongrass essential oil by spray calcium application. Colloids Interfaces. 3: 58. https://doi.org/10.3390/colloids3030058
Fahrullah, F., L. E. Radiati, Purwadi, & D. Rosyidi. 2020a. The effect of different on the characteristics of whey composite edible film. Jurnal Teknologi Hasil Ternak 15:31-37. https://doi.org/10.21776/ub.jitek.2020.015.01.4
Fahrullah, F., L. E. Radiati, Purwadi, & D. Rosyidi. 2020b. The physical characteristics of whey based edible film added with konjac. Current Research in Nutrition and Food Science. 8:333-339. https://doi.org/10.12944/CRNFSJ.8.1.31
Fabra, M. J., P. Talens, & A. Chiralt. 2009. Microstructure and optical properties of sodium caseinate films containing oleic acid bees wax mixture. Food Hydrocolloid 23:676-683. https://doi.org/10.1016/j.foodhyd.2008.04.015
Galus, S. & J. Kadzinska. 2016. Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films incorporated with rapeseed oil. Food Technol. Biotechnol. 54: 78-89.  https://doi.org/10.17113/ftb.54.01.16.3889
Gutierrez, S., A. Moran, H. Martinez-Blanco, M. A. Ferrero, & L. B. Rodriguez-Aparicio. 2017. The usefulness of non-toxic plant metabolites in the control of bacterial proliferation. Probiotics Antimicrob. Proteins. 9: 323–333. https://doi.org/10.1007/s12602-017-9259-9
Hosseini, S. F., M. Rezaei, M. Zandi, & F. Farahmandghavi. 2015. Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind. Crops and Products. 67: 403–413. https://doi.org/10.1016/j.indcrop.2015.01.062
Hosseini, M., A. Jamshidi, M. Raeisi, & M. Azizzadeh. 2019. The antibacterial and antioxidant effects of clove (Syzygium aromaticum) and lemon verbena (Aloysia citriodora) essential oils. Journal of Human, Environment, and Health Promotion. 5: 86-93. https://doi.org/10.29252/jhehp.5.2.7
JIS. 1975. Japanese Industrial Standard Z 1707. Japan: Japanese Standards Association.
Khalil, A. A., U. ur Rahman, M. R. Khan, M. R, A. Sahar, T. Mehmood, & M. Khan. 2017. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. Royal Society Chemistry Advances 7: 32669–32681. https://doi.org/10.1039/c7ra04803c
Kurek, M., S. Galus, & F. Debeaufort. 2014. Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packag. Shelf Life 1:56-67. https://doi.org/10.1016/j.fpsl.2014.01.001
Lorevice, M. V., C. G. Otoni, M. R. de Moura, & L. H. C. Mattoso. 2016. Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low- methyl pectin films. Food Hydrocolloids 52: 732–740. https://doi.org/10.1016/j.foodhyd.2015.08.003
Leuangsukrerk, M., T. Phupoksakul, K. Tananwong, C. Borompichaichanrtkul, & T. Janjarasskul. 2014. Properties of konjac glucomannan whey protein isolate blend films. Food Sci. Technol. 59: 94-100. https://doi.org/10.1016/j.lwt.2014.05.029
Maruddin, F., R. Malaka, F. Fahrullah, & M. Taufik. 2018. Characteristics of edible film based dangke whey with carrageenan addition. Indonesian Veterinary Journal 19: 291-297. https://doi.org/10.19087/jveteriner.2018.19.2.291
Nugroho, A., B. Basito, & R. B. K. Anandito. 2013. Kajian pembuatan edible film tapioka dengan pengaruh penambahan pektin beberapa jenis kulit pisang terhadap karakteristik fisik dan mekanik. Jurnal Teknosains Pangan 2: 73-79.
Ramos, O. L., J. C. Fernandes, S. I. Silva, M. E. Pintado, & F. X. Malcata. 2012. Edible films and coatings from whey proteins: A review on formulation, and on mechanical and bioactive properties. Crit. Rev. Food Sci. Nutr. 52: 533–552. https://doi.org/10.1080/10408398.2010.500528
Sasaki, R. S., L. H. C. Mattoso, & M. R. de Moura. 2016. New edible bionanocomposite prepared by pectin and clove essential oil nanoemulsions. Journal Nanosci. Nanotechnol. 16: 6540–6544. https://doi.org/10.1166/jnn.2016.11702
Sharma, S., S. Barkauskaite, B. Duffy, A. K. Jaiswal, & S. Jaiswal. 2020. Characterization and antimicrobial activity of biodegradable active packaging enriched with clove and thyme essential oil for food packaging application. Foods. 9: 1-16. https://doi.org/10.3390/foods9081117
Shendurse, A. M., G. Gopikrishna, & A. C. Patel. 2018. Milk protein based edible films and coating-preparation and food applications. J. Nutr. Health Food Eng. 8: 219-226. https://doi.org/10.15406/jnhfe.2018.08.00273
Song, N. B., J. H. Lee, M. Al-Mijan, & K. B. Song. 2014. Development of a chicken feather protein film containing clove oil and its application in smoked salmon packaging. LWT-Food Sci. Technol. 57: 453-460. https://doi.org/10.1016/j.lwt.2014.02.009
Tajkarimi, M., S. A. Ibrahim, & D. O. Cliver. 2010. Antimicrobial herb and spice compounds in food. Food Control. 21: 1199-1218. https://doi.org/10.1016/j.foodcont.2010.02.003
Tooraj, M., H. Tajik, S. M. R. Rohani, & A. R. Oromiehie. 2012. Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. Veterinary Research Forum. 3:167-173.
Vimal, A., A. Jha, & A. Kumar. 2018. Eugenol derivatives prospectively inhibit l-asparaginase: A heady target protein of Salmonella typhimurium. Microb. Pathog. 114: 8–16. https://doi.org/10.1016/j.micpath.2017.11.009
Wardana, A. A, & T. D. Widyaningsih. 2017. Developments of edible films from tapioca starch and agar, enriched with red cabbage (Brassica oleracea) as a sausage deterioration bio-indicator. IOP Conf. Series: Earth and Environmental Science. 109. https://doi.org/10.1088/1755-1315/109/1/012031
Wittaya, T. 2014 Influence of type and concentration of plasticizer on the properties of edible film from mung bean proteins. Science and Technology Journal. 13: 51-58.
Zeleny, M. 1982. Multiple Criteria Decision Making. Mc Graw - Hill, Boston.

Authors

Fahrullah
fahrullah@umgo.ac.id (Primary Contact)
M. Ervandi
D. Rosyidi
Fahrullah, ErvandiM., & RosyidiD. (2021). Characterization and Antimicrobial Activity of Whey Edible Film Composite Enriched with Clove Essential Oil. Tropical Animal Science Journal, 44(3), 369-376. https://doi.org/10.5398/tasj.2021.44.3.369

Article Details

List of Cited By :

Crossref logo