Effect of Rumen-Protected Glucose Supplementation on Feedlot Performance, Carcass Characteristics, and Meat Quality of Kamphaeng Saen Steers

P. Tong, P. Boonsaen, P. Thirawong, A. Khongpradit, S. Sawanon, S. Buaphan

Abstract

This study aimed to determine the effects of dietary rumen-protected glucose (RPG) supplementation on feedlot steer performance, blood metabolite, carcass characteristics, and meat quality. Twelve Kamphaeng Saen steers were used with mean ± standard deviation for age 27.9 ± 6.9 months and initial body weight of 471 ± 3.03 kg. Steers were randomly assigned to either a control diet (CON) or a diet supplemented with 200 g/head/d of RPG by top-dressing at each feeding daily (RPG). Both groups were fed the concentrate diet, consisting of 14% crude protein and using rice straw as a roughage source in a ratio of 75:25. After being fed for 120 d, the steers were slaughtered. The feedlot performance, ruminal fermentation, blood biochemical parameters, carcass characteristics, and meat quality were evaluated. The results showed that there were no significant differences in the dry matter intake, average daily gain, feed conversion ratio, gain feed ratio (G:F), blood metabolite, and carcass characteristics between the CON and RPG groups. The marbling score, fat and protein contents of the longissimus dorsi muscle of the steers fed the RPG diet were significantly (p<0.05) greater than those for the steers fed the CON diet. In addition, the cooking loss and shear force of the steers fed the RPG diet were significantly (p<0.05) lower than those for the steers fed the CON diet. These results indicated that rumen-protected glucose has the potential to improve the meat quality of Kamphaeng Saen steers.

References

AOAC. 2016. Official Methods of Analysis of AOAC International. 20th ed. Assoc. Off. Anal. Chem. Rockville, MD.
Barcellos, V. C., C. Mottin, R. A. C. Passetti, A. Guerrero, C. E. Eiras, P. E. Prohman, A. C. P. Vital, & I. N. do Prado. 2017. Carcass characteristics and sensorial evaluation of meat from Nellore steers and crossbred Angus vs. Nellore bulls. Acta Sci. 39:437-448. https://doi.org/10.4025/actascianimsci.v39i4.36692
Beglinger, C., L. Degen, D. Matzinger, M. D’Amato, & J. Drewe. 2006. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:1149-1154. https://doi.org/10.1152/ajpregu.2001.280.4.R1149
Boonsaen, P., N. W. Soe, W. Maitreejet, S., Majarune, T. Reungprim, & S. Sawanon. 2017. Effects of protein levels and energy sources in total mixed ration on feedlot performance and carcass quality of Kamphaeng Saen steers. Agric. Nat. Resour (Bangk). 51:57-61. https://doi.org/10.1016/j.anres.2017.02.003
Brock, C., V. N. Long, & A. Robinson. 2023. Supplementation of rumen-protected sugar decreases blood β-hydroxy butyric acid concentration and improves reproduction in fresh lactating dairy cows. J. Dairy Sci. 106:371. https://www.adsa.org/Portals/0/SiteContent/Docs/Meetings/2023ADSA/Abstracts_BOOK_2023.pdf.
Bunmee, T., N. Chaiwang, C. Kaewkot, & S. Jaturasitha. 2018. Current situation and future prospects for beef production in Thailand-A review. Asian-Australas. J. Anim. Sci. 31:968-975. https://doi.org/10.5713/ajas.18.0201
Chanjula, P., T. Raungprim, S. Yimmongkol, S. Poonko, S. Majarune, & W. Maitreejet. 2016. Effects of elevated crude glycerin concentrations on feedlot performance and carcass characteristics in finishing steers. Asian-Australas. J. Anim. Sci. 29:80-88. https://doi.org/10.5713/ajas.15.0219
Corrigan, M. E., G. E. Erickson, T. J. Klopfenstein, M. K. Luebbe, K. J. Vander Pol, N. F. Meyer, C. D. Buckner, S. J.Vanness, & K. J. Hanford. 2009. Effect of corn processing method and corn wet distillers grains plus solubles inclusion level in finishing steers. J. Anim. Sci. 87:3351-3362. https://doi.org/10.2527/jas.2009-1836
Deckardt, K., A. Khol-Parisini, & Q. Zebeli. 2013. Peculiarities of enhancing resistant starch in ruminants using chemical methods: Opportunities and challenges. Nutrients 5:1970-1988. https://doi.org/10.3390/nu5061970
Devlin, D., N. Gault, B. Moss, E. Tolland, J. Tollerton, L. Farmer, & A. Gordon. 2017. Factors affecting eating quality of beef. Advances Animal Biosciences 8:s2-s5. https://doi.org/10.1017/S2040470017001583
Ducatti, T., I. N. do Prado, P. P. Rotta, R. M. do Prado, D. Perotto, D. Maggioni, & J. V. Visentainer. 2009. Chemical composition and fatty acid profile in crossbred (Bos taurus vs. Bos indicus) young bulls finished in a feedlot. Asian-Australas. J. Anim. Sci. 22:433-439. https://doi.org/10.5713/ajas.2009.80255
Freitas, A. K., J. F. P. Lobato, L. L. Cardoso, J. U. Tarouco, R. M. Vieira, D. R. Dillenburg, & I. Castro. 2014. Nutritional composition of the meat of Hereford and Braford steers finished on pastures or in a feedlot in southern Brazil. Meat Sci. 96:353-360. https://doi.org/10.1016/j.meatsci.2013.07.021
Françozo, M. C., I. N. D. Prado, U. Cecato, M. V. Valero, F. Zawadzki, O. L. Ribeiro, R. M. D. Prado, & J. V. Visentainer. 2013. Growth performance, carcass characteristics, and meat quality of finishing bulls fed crude glycerin-supplemented diets. Braz. Arch. Biol. Technol. 56:327-336. https://doi.org/10.1590/S1516-89132013000200019
Frank, D., S. T. Joo, & R. Warner. 2016. Consumer acceptability of intramuscular fat. Food Sci. Anim. Resour. 36:699-708. https://doi.org/10.5851/kosfa.2016.36.6.699
Hall, M. B., T. D. Nennich, P. H. Doane, & G. E. Brink. 2015. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo. J. Dairy Sci. 98:3988-3999. https://doi.org/10.3168/jds.2014-8854
Harmon, D. L. 1992. Dietary influences on carbohydrases and small intestinal starch hydrolysis capacity in ruminants. J. Nutr. 122:203-210. https://doi.org/10.1093/jn/122.1.203
Huang, S., L. M. Wang, T. Sivendiran, & B. M. Bohrer. 2018. Review: Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit. Rev. Food Sci. Nutr. 58:2673-2678. https://doi.org/10.1080/10408398.2017.1396202
Hunt, M. R., A. J. Garmyn, T. G. O’Quinn, C. H. Corbin, J. F. Legako, R. J. Rathmann, J. C. Brooks, & M. F. Miller. 2014. Consumer assessment of beef palatability from four beef muscles from USDA choice and select graded carcasses. Meat Sci. 98:1-8. https://doi.org/10.1016/j.meatsci.2014.04.004
Huntington, G. B., D. L. Harmon, & C. J. Richards. 2006. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J Anim Sci. 84:E14-E24. https://doi.org/10.2527/2006.8413_supplE14x
Jaturasitha, S., R. Norkeaw, T. Vearasilp, M. Wicke, & M. Kreuzer. 2009. Carcass and meat quality of Thai native cattle fattened on Guinea grass (Panicum maxima) or Guineagrass-legume (Stylosanthes guianensis ) pastures. Meat Sci. 81:155-162. https://doi.org/10.1016/j.meatsci.2008.07.013
Jung, E. Y., Y. H. Hwang, & S. T. Joo. 2016. The relationship between chemical composition, meat quality, and palatability of the 10 primal cuts from Hanwoo steer. Food Sci. Anim. Resour. 36:145-151. https://doi.org/10.5851/kosfa.2016.36.2.145
Kaić, A., A. Kasap, I. Širić, & B. Mioč. 2020. Drip loss assessment by EZ and bag methods and their relationship with pH value and color in mutton. Arch Anim Breed. 63:277-281. https://doi.org/10.5194/aab-63-277-2020
Khasrad, Sarbaini, Arfa`i, & Rusdimansyah. 2017. Effect of cattle breeds on the meat quality of Longissimus Dorsi muscles. Pak. J. Nutr. 16:164-167. https://doi.org/10.3923/pjn.2017.164.167
Khongpradit, A., P. Boonsaen, N. Homwong, Y. Suzuki, S. Koike, S. Sawanon, & Y. Kobayashi. 2020. Effect of pineapple stem starch feeding on rumen microbial fermentation, blood lipid profile, and growth performance of fattening cattle. Anim. Sci. J. 91:e13459. https://doi.org/10.1111/asj.13459
Lawrie, R. A. & D. A. Ledward. 2006. Lawrie’s Meat Science. 7th Rev. Ed., Woodhead Publishing Limited, Abington Hall, Abington, Cambridge, UK. https://doi.org/10.1533/9781845691615
Lee, Y., B. Lee, H. K. Kim, Y. K. Yun, S. J. Kang, K. T. Kim, B. D. Kim, E. J. Kim, & Y. M. Choi. 2018. Sensory quality characteristics with different beef quality grades and surface texture features assessed by dented area and firmness, and the relation to muscle fiber and bundle characteristics. Meat Sci. 145:195-201. https://doi.org/10.1016/j.meatsci.2018.06.034
Lee, B. & Y. M. Choi. 2019. Correlation of marbling characteristics with meat quality and histochemical characteristics in Longissimus Thoracis muscle from Hanwoo steers. Food Sci. Anim. Resour. 39:151-61. https://doi.org/10.5851/kosfa.2019.e12
Li, X. P., Z. L. Tana, J. Z. Jiao, D. L. Long, C. S. Zhou, K. L. Yi, C. H. Liu, J. H. Kang, M. Wang, F. H. Duan, S. X. Tanga, Z. X. He, & X. F. Han. 2019. Supplementation with fat-coated rumen-protected glucose during the transition period enhances milk production and influences blood biochemical parameters of liver function and inflammation in dairy cows. Anim. Feed Sci. Technol. 252:92-102. https://doi.org/10.1016/j.anifeedsci.2019.04.010
Liu, J., M. P. Ellies-Oury, T. Stoyanchev, & J. F. Hocquette. 2022. Consumer Perception of Beef quality and how to control, improve and predict it? focus on eating quality. Foods 11:1732. https://doi.org/10.3390/foods11121732
Luo, J., C. S. Ranadheera, S. King, C. Evans, & S. Baines. 2017. In vitro investigation of the effect of dairy propionibacteria on rumen pH, lactic acid and volatile fatty acids. J. Integr. Agric. 16:1566-1575. https://doi.org/10.1016/S2095-3119(16)61556-3
Malacco, V. M. R., M. Erickson, F. F. Cardoso, B. P. Biese, J. G. Laguna, & S. S. Donkin. 2020. Short communication: Effect of glucose infusion dose and stage of lactation on glucose tolerance test kinetics in lactating dairy cows. J. Dairy Sci. 103:7547-7554. https://doi.org/10.3168/jds.2019-17139
Matsuba, K., A. Padlom, A. Khongpradit, P. Boonsaen, P. Thirawong, S. Sawanon, Y. Suzuki, S. Koike, & Y. Kobayashi. 2019. Selection of plant oil as a supplemental energy source by monitoring rumen profiles and its dietary application in Thai crossbred beef cattle. Asian-Australas. J. Anim. Sci. 32:15111520. https://doi.org/10.5713/ajas.18.0946
McCarthy, C. S., B. C. Dooley, E. H. Branstad, A. J. Kramer, E. A. Horst, E. J. Mayorga, M. Al-Qaisi, M. A. Abeyta, G. Perez-Hernandez, B. M. Goetz, A. R. Castillo, M. R. Knobbe, C. A. Macgregor, J. P. Russi, J. A. D. R. N. Appuhamy, H. A. Ramirez- Ramirez, & L. H. Baumgard. 2020. Energetic metabolism, milk production, and inflammatory response of transition dairy cows fed rumen-protected glucose. J. Dairy Sci. 103:7451-7461. https://doi.org/10.3168/jds.2020-18151
Miao, D., A. K. Steck, L. Zhang, K. M. Guyer, L. Jiang, T. Armstrong, S. M. Muller, J. Krischer, M. Rewers, & L. Yu. 2015. Electrochemiluminescence assays for insulin and glutamic acid decarboxylase autoantibodies improve prediction of type 1 diabetes risk. Diabetes Technol. Ther. 17:119-127. https://doi.org/10.1089/dia.2014.0186
Nafikov, R. A. & D. C. Beitz. 2007. Carbohydrate and lipid metabolism in farm animals. J. Nutr. 137:702-705. https://doi.org/10.1093/jn/137.3.702
Nagaraja, T. G. & E. C. Titgemeyer. 2007. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 90:E17-E38. https://doi.org/10.3168/jds.2006-478
National Bureau of Agriculture Commodity and Food Standards. 2004. Thai Agricultural Commodity and Food Standards TACFS6001: Beef. Ministry of Agriculture and Cooperatives, Bangkok, Thailand.
National Research Council. 2001. Nutrient Requirements of Dairy Cattle, 7th revised ed. National Academic Science, Washington, DC, USA. https://doi.org/10.17226/20680
National Research Council. 2016. Nutrient Requirements of Beef Cattle, 8th revised ed. National Academic Science, Washington, DC, USA.
Nayananjalie, W. A. D., K. L. Pike, T. R. Wiles, M. A. McCann, J. M. Scheffler, S. P. Greiner, H. H. Schramm, D. E. Gerrard, H. Jiang, & M. D. Hanigan. 2015. Effect of early grain feeding of beef steers on postabsorptive metabolism. J. Anim. Sci. 93:2439-2450. https://doi.org/10.2527/jas.2014-8277
Nichols, K., J. J. Kim, M. Carson, J. A. Metcalf, J. P. Cant, & J. Doelman. 2016. Glucose supplementation stimulates peripheral branched-chain amino acid catabolism in lactating dairy cows during essential amino acid infusions. J. Dairy Sci. 99:1145-1160. https://doi.org/10.3168/jds.2015-9912
OIE. 2014. Terrestrial Animal Health Code, Version 7. World Organisation For Animal Health, Paris, France.
Paddon-Jones, D. & H. Leidy. 2014. Dietary protein and muscle in older persons. Curr. Opin. Clin. Nutr. Metab. Care 17:5-11. https://doi.org/10.1097/MCO.0000000000000011
Ramos, S. C., C. D. Jeong, L. L. Mamuad, S. H. Kim, S. H. Kang, E. T. Kim, Y. Cho, S. S. Lee, & S. S. Lee. 2021. Diet transition from high-forage to high-concentrate alters rumen bacterial community composition, epithelial transcriptomes and ruminal fermentation parameters in dairy cows. Animal 11:838. https://doi.org/10.3390/ani11030838
Reynolds, C. K., P. C. Aikman, B. Lopoli, D. J. Humphries, & D. E. Beever. 2003. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 86:1201-1217. https://doi.org/10.3168/jds.S0022-0302(03)73704-7
Rhoades, R. D., J. E. Sawyer, K. Y. Chung, M. L. Schell, D. K. Lunt, & S. B. Smith. 2007. Effect of dietary energy source on in vitro substrate utilization and insulin sensitivity of muscle and adipose tissues of Angus and Wagyu steers. J. Anim. Sci. 85:1719-1726. https://doi.org/10.2527/jas.2006-498
Russi, J. P., N. DiLorenzo, & A. E. Relling. 2019. Effects of rumen-protected carbohydrate supplementation on performance and blood metabolites in feedlot finishing steers during heat stress. Transl. Anim. Sci. 3:513-521. https://doi.org/10.1093/tas/txy122
Sauls-Hiestermana, J. A., S. Banuelos, B. Atanasov, B. J. Bradford, & J. S. Stevenson. 2020. Physiologic responses to feeding rumen-protected glucose to lactating dairy cows. Anim. Reprod. Sci. 216:106346. https://doi.org/10.1016/j.anireprosci.2020.106346
Scheffler, J. M., M. A. McCann, S. P. Greiner, H. Jiang, M. D. Hanigan, G. A. Bridges, S. L. Lake, & D. E. Gerrard. 2014. Early metabolic imprinting events increase marbling scores in fed cattle. J. Anim. Sci. 92:320-324. https://doi.org/10.2527/jas.2012-6209
Schmid, A. R., R. D. Goodrich, R. M. Jordan, G. C. Marten, & J. C. Meiske. 1976. Relationships among agronomic characteristics of corn and sorghum cultivars and silage quality. Agron. J. 68:403406. https://doi.org/10.2134/agronj1976.00021962006800020051x
Shahrai, N. N., A. S. Babji, M. Y. Maskat, A. F. Razali, & S. M. Yusop. 2021. Effects of marbling on physical and sensory characteristics of ribeye steaks from four different cattle breeds. Anim. Biosci 34:904-913. https://doi.org/10.5713/ajas.20.0201
Smith, S. B. & J. D.  Crouse. 1984. Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. J. Nutr. 114:792-800. https://doi.org/10.1093/jn/114.4.792
Smith, S. B., T. L. Blackmon, J. E. Sawyer, R. K. Miller, J. R. Baber, J. C. Morrill, A. R. Cabral, & T. A. Wickersham. 2018. Glucose and acetate metabolism in bovine intramuscular and subcutaneous adipose tissues from steers infused with glucose, propionate, or acetate. J. Anim. Sci. 96:921-929. https://doi.org/10.1093/jas/sky017
Su, M., D. Chan, J. Zhou, & Q. Shen. 2022. Effects of different dietary carbohydrate sources on the meat quality and flavor substances of xiangxi yellow cattle. Animal 12:1136. https://doi.org/10.3390/ani12091136
Sniffen, C. J., J. D. O’Connor, P. J. Van Soest, D. G. Fox, & J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577. https://doi.org/10.2527/1992.70113562x
Wang, Y. P., M. Cai, D. K. Hua, F. Zhang, L. S. Jiang, Y. G. Zhao, H. Wang, X. M. Nan, & B. H. Xiong. 2020a. Metabolomics reveals effects of rumen-protected glucose on metabolism of dairy cows in early lactation. Anim. Feed Sci. Technol. 269:114620. https://doi.org/10.1016/j.anifeedsci.2020.114620
Wang, Y., X. Han, Z. Tan, J. Kang, & Z. Wang. 2020b. Rumen-protected glucose stimulates the insulin-like growth factor system and mTOR/AKT pathway in the endometrium of early postpartum dairy cows. Animal 10:357-371. https://doi.org/10.3390/ani10020357
Zhang, X., J. Wu, X. Han, Z. Tan, & J. Jiao. 2019. Effects of rumen-protected glucose on ileal microbiota and genes involved in ileal epithelial metabolism and immune homeostasis in transition dairy cows. Anim. Feed Sci. Technol. 254:114199. https://doi.org/10.1016/j.anifeedsci.2019.06.003

Authors

P. Tong
P. Boonsaen
P. Thirawong
A. Khongpradit
S. Sawanon
S. Buaphan
Sirirat.b@ku.th (Primary Contact)
TongP., BoonsaenP., ThirawongP., KhongpraditA., SawanonS., & BuaphanS. (2024). Effect of Rumen-Protected Glucose Supplementation on Feedlot Performance, Carcass Characteristics, and Meat Quality of Kamphaeng Saen Steers. Tropical Animal Science Journal, 47(2), 197-205. https://doi.org/10.5398/tasj.2024.47.2.197

Article Details