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INTRODUCTION

Red meat, such as lamb, provides a crucial source 
of nutrients and protein for human health and body 
development (McNeill, 2014; Kausar et al., 2019). The 
global production and demand for red meat have been 
steadily increasing (Zhang et al., 2017; Parlasca & Qaim, 
2022). This rising demand is primarily driven by popu-
lation growth and increasing income levels (Parlasca & 
Qaim, 2022; Henchion et al., 2014). 

In Indonesia, sheep are a common livestock 
contributing substantially to meeting the demand 
for red meat. However, the sheep production is still 
predominantly from local sheep breeds raised by 
smallholders (Tiesnamurti et al., 2020). The Javanese 
thin-tailed (JTT) sheep is a local breed commonly 
raised by farmers and significantly contributes to meat 
production (Ibrahim et al., 2023; Harahap et al., 2023). 
The production of local breeds is important for rural 
development and contributes to economic, social-
culture, and religious activities (Nyam et al., 2020). 
Gonzales-Barron et al. (2021) suggested that one of the 
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ABSTRACT

The insulin-like growth factor binding-protein 7 (IGFBP7) gene is one of the potential genes 
related to meat quality. The objective of the current study was to evaluate polymorphism of the 
IGFBP7 gene (g.72351183A>C) and its association with meat quality traits in the Javanese thin-tailed 
(JTT) sheep. A comprehensive analysis was conducted on 88 JTT male sheep to examine their fatty 
acid composition, carcass characteristics, carcass retail cuts, and the physical properties of lamb 
meat. The polymorphism was detected using the PCR-RFLP technique. The association between the 
IGFBP7 gene polymorphism and the observed variables of meat quality was evaluated using one-way 
analysis of variance (ANOVA). The study results indicated that the IGFBP7 gene was polymorphic 
in JTT sheep population, with the allele distribution conforming to Hardy-Weinberg equilibrium. 
The AA genotype was found to be predominant. The IGFBP7 gene variants were associated (p<0.05) 
with erucic acid, linoleic acid, eicosapentaenoic acid, and total polyunsaturated fatty acid (PUFA). 
Sheep possesing the CC genotype exhibited the highest levels of linoleic acid, eicosapentaenoic 
acid, and total PUFA in comparison to those with AA and AC genotypes. However, the IGFBP7 
gene polymorphism was not associated with carcass characteristics, carcass retail cuts, and physical 
properties of meat. These findings suggest that the IGFBP7 gene is a promising candidate marker for 
improving fatty acid composition in JTT sheep.

Keywords: IGFBP7 gene; Javanese thin-tailed sheep; lamb meat quality

strategies to maintain and also to improve local breed 
sheep production is enhancing meat quality. 

The meat quality is a substantial factor influencing 
the perspective of customer purchase decisions (Li et al., 
2023). The quality of meat encompasses a wide range of 
attributes to meet customer’s needs, including nutrional, 
commercial, sensory, safety, image, and technological 
properties (Prache et al., 2022). Numerous factors influ-
ence meat quality, such as diet, genetics, slaughter age, 
muscle part, and ante-mortem and post-mortem condi-
tions (Mwangi et al., 2019). Meat quality traits have been 
shown to be heritable (Mortimer et al., 2014). Therefore, 
meat quality traits had the potency to be improved 
through selection (Juárez et al., 2021). 

Several types of research have been conducted to 
recognize potential genes associated with meat quality 
in Indonesian local sheep, focusing on aspects such as 
fatty acid component, characteristics of carcass, and 
physical properties (Gunawan et al., 2019; Abdillah et 
al., 2021; Harahap et al., 2021). Transcriptomic analysis 
identified that the insulin-like growth factor binding-
protein 7 (IGFBP7)  as one of the observed genes that re-
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lated to tenderness in Indonesian improved local sheep 
breed (Listyarini et al., 2023). Furthermore, the IGFBP7 
gene has been reported to be linked to various meat 
quality attributes in small-tailed Han sheep and their 
crossbreeds with Mongolian sheep (Cheng et al., 2020).  

The IGFBP7 gene belongs to the IGFBP family gene 
(Kostecká & Blahovec, 2002). The IGFBP family genes 
itself have a function to regulate insulin-like growth 
factors (IGFs) activities and have substantial functions 
on the growth and differentiation of cells (Kostecká & 
Blahovec, 2002). The IGFBP7 gene has been reported to 
be associated with the deposition of subcutaneous fat 
in cattle (Hu et al., 2021). However, to our knowledge, 
the molecular characterization of the IGFBP7 gene and 
its correlation with meat quality in Javanese thin-tailed 
sheep, particularly concerning fatty acid composition, 
carcass characteristics, carcass retail cuts, and physical 
properties, has not been previously studied. Hence, the 
current study had the objective to identify the IGFBP7 
gene polymorphisms and investigate their relationship 
with meat quality in Javanese thin-tailed sheep. 

MATERIALS AND METHODS 

Animals

All treatments involving animals in the current 
study were permitted by the Institutional Animal Care 
and Use Committee of IPB University, with permit 
number 117-2018 IPB. The study utilized 88 males of 
Javanese thin-tailed (JTT) sheep. The sheep were raised 
under similar conditions and slaughtered at ages 10-12 
months. The slaughtering method fulfilled animal wel-
fare requirements and followed the Indonesian National 
Standard procedures number 99003-2018 (BSN, 2018). 
The observed variables of meat quality in the study 
were fatty acids composition, carcass characteristics, car-
cass retail cuts, and physical properties. Samples from 
the longissimus dorsi muscle were collected for analyses 
of fatty acid composition, physical properties, and 
DNA extraction. To note, the longissimus dorsi muscle is 
commonly used in many other studies on meat quality 
evaluation, as demonstrated in research by Cheng et al. 
(2020) and Chaves Lima et al. (2024).  In addition, Bonny 
et al. (2018) and Mortensen et al. (2024) indicated that the 
longismuss dorsi muscle is the primary muscle for com-
mercial meat yield; therefore, it is frequently utilized for 
meat quality assessment.

Fatty Acid Determination

The components of fatty acid were extracted and 
analyzed following the AOAC 969.333 method from a 
100 g sample of the longissimus dorsi muscle (Latimer, 
2012). The analysis was conducted using gas chromatog-
raphy to determine the proportions of various fatty acid 
compositions. The analysis results encompassed total 
fat content and the fraction of the total fatty acids, in-
cluding total saturated fatty acids (SFA), total monoun-
saturated fatty acids (MUFA), and total polyunsaturated 
fatty acids (PUFA). 

Carcass Characteristic and Retail Cuts

The observed variables of carcass characteristics in 
the study were hot carcass weight, carcass percentage, 
and carcass length. The variables of carcass characteris-
tics and the retail cut were according to Harahap et al. 
(2023). The weight of the hot carcass was the weight of 
the carcass immediately after the sheep was slaughtered 
and processed. The carcass percentage was determined 
by dividing the hot carcass weight by the live weight, 
which was expressed as a percentage. The carcass length 
was the distance from the shoulder point to the distal 
end of the tarsus.

Physical Properties

The observed variables for physical properties 
included pH, tenderness, cooking loss, and water 
holding capacity (WHC). The pH value (ultimate 
pH) was determined using a pH meter after storing 
the carcass for 24 hours (Listyarini et al., 2023). The 
tenderness was assessed using the Warner-Blatzer shear 
force method (Listyarini et al., 2023). The cooking loss 
was assessed by modifying the protocol described in 
Suliman et al. (2021) study, which involved determining 
the difference between the initial and final meat 
weights after the meat had been boiled until its internal 
temperature reached 80 °C. The WHC was evaluated 
according to Dagong et al. (2012) by assessing the 
quantity of weight lost from the initial meat weight after 
pressing it with a force of  2,250 g on filter paper for 5 
minutes.

DNA Extraction and Genotyping

The longissimus dorsi muscle sample was taken for 
DNA extraction using a DNA kit (Geneaid Biotech, 
Taiwan). Specific primers were designed utilizing the 
Primer3 online application (https://primer3.ut.ee/). The 
amplification of the IGFBP7 gene used a sequence of 
forward primer 5’ -GCCTTATGCGTGCAAACTGT- 3’ 
and reverse 5’ -GGTGAAGGTGCTGAGCTGTA- 3’. 
The accession number for designing the primer was 
NC_019463.2. The primers flanked a DNA sequence of 
426 bp. The PCR premix for each sample consisted of 
2 µL of DNA, 6.1 µL of nuclease-free water, 7.5 μL of 
MyTaq Red Mix (Meridian Bioscience, USA), and 2 µL 
of each primer. The amplification began with a prelimi-
nary phase at 95 oC, lasting for a duration of 1 minute. 
Subsequently, 35 cycles were conducted, involving de-
naturation at 95 oC for 15 seconds, annealing of forward 
and reverse primers at 55 oC for 15 seconds, and elonga-
tion of DNA at 72 oC for 10 seconds in each cycle. The 
last step involved a 3-minute extension at 72 oC. 

The polymerase chain reaction-restriction frag-
ment length polymorphism (PCR-RFLP) was employed 
for genotyping assessment, according to Gunawan et 
al. (2018). The mixture for digesting DNA amplicon 
contained 5 µL of the DNA amplicon, 0.7 µL of enzyme 
buffer, 0.3 µL of restriction enzyme (Tsp451), and 1 µL 
of nuclease-free water. After incubating at 37 oC for 54 
hours, the mixture was visualized using 2% agarose 
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gel electrophoresis under a UV transilluminator (Alpha 
Imager, Alpha Innotech, Santa Clara, USA). 

Data Analysis

The allele frequencies and the Hardy-Weinberg 
equilibrium were determined based on the methodolo-
gies outlined by Nei & Kumar (2000) and Hartl & Clark 
(1997), respectively. A one-way analysis of variance 
(ANOVA) was conducted to assess the association 
between IGFBP7 gene polymorphism and the observed 
variables using the following formula:

Yij = μ + Gi+ eij 

whereas Yij represents the observed variables (fatty acid 
composition, carcass characteristics, retail cuts, and 
physical properties), µ represents the overall mean, Gi 
represents the effect of genotype i, and eij represents the 
residual error. The Tukey test was employed to deter-
mine the differences between genotypes for observed 
variables if statistical significance was detected (p<0.05).

RESULTS

The IGFBP7 Gene Polymorphism

The PCR amplification of the IGFBP7 gene with 
SNP position g.72351183A>C yielded a 426 bp product, 
matching the expected size based on the primer pair 
simulation using the online program (https://primer3.
ut.ee/). Subsequently, the Tsp451 restriction enzyme 
successfully digested the PCR amplicon, resulting 
in three genotypes of AA (426 bp), CC (147 and 279 
bp), and AC (147, 279, and 426 bp), as was previously 
demonstrated in Komarudin et al. (2024). The AA 
genotype was predominant (n=69; 78%), followed 
by AC (n=17; 21%) and CC (n=2; 1%) genotype. 
Allele frequency analysis revealed that A allele was 
predominant, constituting 88% of the population, 
whereas C allele accounted for 12%. The calculation of 
allele distribution showed that the sheep population 
in the study was on the Hardy-Weinberg equilibrium 
(calculated chi-squre<3.84).

Association of IGFBP7 Gene with Fatty Acid 
Composition 

The IGFBP7 gene variants showed significant asso-
ciations (p<0.05) with erucic acid (C22:1n9), linoleic acid 
(C18:2n6c), eicosapentaenoic acid (C20:5n3), and total 
PUFA. However, this polymorphism did not show asso-
ciations (p>0.05) with total fat content, total fatty acids, 
total SFA, total MUFA, and the majority components of 
SFA, MUFA, and PUFA (Table 1). 

Association of IGFBP7 Gene with Carcass 
Characteristics and Retail Cuts

The IGFBP7 gene polymorphism was not sig-
nificantly associated (p>0.05) with body live weight, hot 
carcass weight, carcass percentage, and carcass length 
(Table 2). The carcass percentage of JTT sheep in the 

study ranged from 39.07% to 41.88%. Furthermore, the 
IGFBP7 gene polymorphism was also not associated 
(p>0.05) with the retail cuts (Table 3).

Association of IGFBP7 Gene with Physical Properties

In the analysis of physical properties, the different 
genotypes of the IGFBP7 gene did not show significant 
differences (p>0.05) with pH, tenderness, cooking loss, 
and WHC (Table 4). The pH value in the study ranged 
from 5.65 to 5.72, tenderness from 3.10 to 3.96 kg/cm², 
cooking loss from 44.00% to 51.42%, and WHC from 
28.14% to 29.48%, respectively.

DISCUSSION

The PCR-RLFP method was successfully em-
ployed to amplify and genotype the IGFBP7 variant 
(g.72351183A>C). The results revealed that the IGFBP7 
gene was polymorphic in the Javanese thin-tailed (JTT) 
sheep population in the study, exhibiting three distinct 
genotypes (AA, AC, and CC). The A allele occurred 
more frequently than the C allele. However, the distri-
bution of alleles in the JTT sheep population examined 
in the current study was on the Hardy-Weinberg 
equilibrium. 

The IGFBP7 gene polymorphism in the study 
showed significant associations (p<0.05) with erucic acid 
(C22:1n9), linoleic acid (C18:2n6c), eicosapentaenoic acid 
(C20:5n3), and total polyunsaturated fatty acid (PUFA). 
The IGFBP7 gene was essential to preadipocyte cell 
differentiation (Hu et al., 2021). Increased expression 
levels of IGFBP7 gene were observed alongside elevated 
mRNA expression levels of the C/EBPα, PPARγ, and 
LPL genes during the differentiation of progenitor cells 
in cattle (Hu et al., 2021). The IGFBP7 gene seemed to 
interact with C/EBPα, PPARγ, and LPL since the protein 
expression pattern was similar to the mRNA expres-
sion (Hu et al., 2021). The PPARγ and C/EBPα are the 
transcription factors that had important roles in promot-
ing adipogenic differentiation (Hongfang et al., 2022; 
Liu et al., 2020). Likewise, a recent report by Geng et al. 
(2024) revealed a comparable pattern of IGFBP7 expres-
sion in chicken.

The IGFBP7 overexpression simulated the mRNA 
expression genes involved in lipogeneses such as 
C/EBPα, PPARγ, LPL, fatty acid binding protein 4 
(FABP4), and fatty acid binding protein 5 (FABP5) 
during adipogenic differentiation and proliferation of 
preadipocytes in intramuscular tissue, providing strong 
evidence that the IGFBP7 gene plays a positive role in 
adipogenesis (Geng et al., 2024). Xu et al. (2020) reported 
that the PPARγ gene expression on Tan sheep corre-
lated with several fatty acids, including linoleic acid and 
eicosapentaenoic acid in the longissimus dorsi muscle. 
Additionally, they reported that the C/EBPα gene was 
linked to linolenic acid (C18:3n3) in the longissimus dorsi 
and eicosapentaenoic acid in the triceps brachii muscle. 
Meanwhile, the LPL gene was associated with linolenic 
acid and eicosapentaenoic acid in the longissimus dorsi 
muscle. The potential interaction between the IGFBP7 
gene and the PPARγ, C/EBPα, and LPL genes might 
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regulate fatty acids, which had been significant with the 
IGFBP7 polymorphism in the study.

Sheep with the CC genotype exhibited lower 
levels of erucic acid (C22:1n9) compared to those with 

the AC genotype. However, the total MUFA between 
genotypes was not differ (p>0.05). Sheep possessing the 
CC genotype had the highest levels (p<0.05) of linoleic 
acid, eicosapentaenoic acid, and total PUFA compared 

Table 1. Association between IGFBP7 gene polymorphism with fatty acid composition

Variables (%)
Population of sheep The genotype of IGFBP7 gene 

(x̅±SEM) p-value
x̅±SEM min max AA (n=69) AC (n=17) CC (n=2)

Fat content 6.00±0.42 1.02 14.23 6.13±0.47 5.76±1.02 3.54±2.00 0.64ns

Total saturated fatty acid 43.64±0.39 27.83 52.65 43.87±0.45 42.71±0.79 43.74±1.30 0.50ns

Caprylic acid, C8:0 0.17±0.04 0.00 2.99 0.16±0.05 0.22±0.11 0.00±0.00 0.73ns

Capric acid, C10:0 0.12±0.01 0.03 0.39 0.12±0.01 0.12±0.02 0.09±0.02 0.75ns

Lauric acid, C12:0 0.28±0.03 0.06 1.45 0.28±0.03 0.29±0.06 0.19±0.06 0.88 ns

Tridecanoic acid, C13:0 0.02±0.00 0.00 0.07 0.01±0.00 0.02±0.00 0.03±0.01 0.14ns

Myristic acid, C14:0 2.58±0.11 1.14 5.86 2.60±0.12 2.50±0.27 2.53±0.81 0.94ns

Pentacyclic acid, C15:0 0.58±0.02 0.00 0.99 0.57±0.02 0.59±0.03 0.85±0.15 0.08ns

Palmitic acid, C16:0 20.25±0.24 14.00 24.86 20.36±0.28 19.88±0.44 19.69±1.10 0.68ns

Margaric acid, C17:0 0.87±0.04 0.05 1.92 0.90±0.04 0.76±0.09 0.63±0.38 0.24 ns

Stearic acid, C18:0 16.86±0.29 9.86 23.65 16.92±0.32 16.30±0.69 19.48±2.64 0.28ns

Arachidic acid, C20:0 1.63±0.18 0.00 6.24 1.66±0.20 1.70±0.49 0.11±0.11 0.46ns

Heneicosylic acid, C21:0 0.23±0.03 0.00 1.06 0.23±0.04 0.26±0.09 0.09±0.01 0.75ns

Behenic acid, C22:0 0.03±0.00 0.00 0.11 0.03±0.00 0.03±0.01 0.03±0.03 0.64ns

Tricosylic acid, C23:0 0.02±0.00 0.00 0.13 0.02±0.00 0.03±0.01 0.03±0.03 0.65ns

Lignoceric acid, C24:0 0.01±0.00 0.00 0.06 0.01±0.00 0.01±0.00 0.01±0.01 0.76ns

Total MUFA 34.97±0.40 22.20 50.99 35.04±0.48 34.94±0.77 32.82±0.65 0.72ns

Myristoleic acid, C14:1 0.10±0.01 0.00 0.33 0.10±0.01 0.11±0.02 0.06±0.06 0.47ns

Palmitoleic acid, C16:1 1.50±0.06 0.09 2.79 1.57±0.07 1.29±0.17 0.88±0.06 0.07ns

Ginkgoleic acid, C17:1 0.29±0.03 0.00 1.15 0.30±0.04 0.25±0.07 0.03±0.01 0.39ns

Oleic acid, C18:1n9c 30.26±0.33 19.40 42.84 30.33±0.39 30.24±0.66 27.94±1.32 0.57ns

Elaidic acid, C18:1n9t 2.66±0.15 0.00 6.21 2.58±0.18 2.82±0.20 3.90±0.15 0.35ns

Paullinic acid, C20:1 0.10±0.03 0.00 1.49 0.10±0.04 0.10±0.06 0.00±0.00 0.89ns

Erucic acid, C22:1n9 0.04±0.01 0.00 0.71 0.03±0.01b 0.10±0.04a 0.02±0.01b 0.02*
Nervonic acid, C24:1 0.02±0.00 0.00 0.11 0.02±0.00 0.02±0.01 0.00±0.00 0.55ns

Total PUFA 3.03±0.17 0.69 7.21 2.86±0.18b 3.34±0.37b 6.43±0.78a 0.00**
Linoleic acid, C18:2n6c 1.36±0.14 0.00 4.48 1.25±0.14b 1.52±0.34b 3.52±0.46a 0.04*
Linolelaidic acid, C18:2n9t 0.26±0.02 0.00 1.18 0.25±0.03 0.30±0.05 0.28±0.09 0.67ns

y-Linoleic acid, C18:3n6 0.08±0.01 0.00 0.36 0.08±0.01 0.09±0.02 0.01±0.01 0.45ns

a-Linolenic acid, C18:3n3 0.42±0.03 0.00 1.11 0.43±0.04 0.35±0.07 0.80±0.22 0.12ns

Eicosadienoic acid, C20:2 0.04±0.00 0.00 0.15 0.04±0.00 0.04±0.01 0.08±0.03 0.17ns

Dihomo-y-linolenic acid, C20:3n6 0.04±0.00 0.00 0.17 0.04±0.00 0.05±0.01 0.09±0.02 0.13ns

Arachidonic acid, C20:4n6 0.43±0.04 0.00 1.80 0.41±0.03 0.47±0.12 0.76±0.23 0.32ns

Docosadienoic acid, C22:2 0.00±0.00 0.00 0.08 0.00±0.00 0.01±0.00 0.02±0.02 0.14ns

Eicosapentaenoic acid, C20:5n3 0.35±0.04 0.00 1.97 0.31±0.03b 0.47±0.13b 0.77±0.15a 0.04*
Cervonic acid, C22:6n3 0.05±0.01 0.00 0.37 0.05±0.01 0.05±0.02 0.12±0.00 0.31 ns

Total unsaturated fatty acid 38.00±0.40 26.92 56.55 37.89±0.47 38.28±0.79 39.25±1.43 0.83ns

Total fatty acid 81.64±0.63 54.75 109.20 81.77±0.76 80.98±1.02 82.98±0.13 0.84ns

Note: 	x̅= mean, SEM= standard error of mean, ns= not significant, *= mean in the same row with different superscripts differ significantly at p<0.05, **= 
mean in the same row with different superscripts differ significantly at p<0.01.

Table 2. Association between IGFBP7 gene polymorphism with carcass characteristics

Variables
Population of sheep The genotype of IGFBP7 gene 

(x̅±SEM) p-value
x̅±SEM min max AA (n=69) AC (n=17) CC (n=2)

Live weight (kg) 25.42±0.50 18.52 38.00 25.51±0.59 24.89±1.03 26.97±1.82 0.80ns

Hot carcass (kg) 10.44±0.27 6.96 17.97 10.43±0.31 10.49±0.58 10.48±0.11 0.99ns

Percentage of carcass (%) 40.84±0.42 34.39 52.60 40.64±0.48 41.88±0.86 39.07±3.03 0.41ns

Length of carcass (cm) 61.36±0.67 49.00 75.00 61.03±0.75 61.94±1.52 68.00±5.00 0.28ns

Note: n=number of sample, x̅= mean, SEM= standard error of mean, ns= not significant.
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to sheep with the AA and AC genotypes. Meat with 
higher PUFA is crucial for improving meat quality and 
also human health (Gunawan et al., 2021). PUFA has an 
important role in many cellular and biological functions 
such as maintaining cell membrane integrity and fluid-
ity, regulating blood pressure, supporting the nervous 
system function, modulating inflammatory responses, 
and regulating skeletal muscle metabolism (Kapoor et 
al., 2021). Increased PUFA consumption could reduce 
the incidence of cardiac diseases (Marangoni et al., 2020; 
Ooi et al., 2015) and is important for brain development 
and cognitive functions (Van Dael, 2021; Djuricic et al., 
2021). 

The variants of the IGFBP7 gene variants did not 
exhibit any association (p>0.05) with carcass charac-
teristics and retail cuts. The previous studies on sheep 
have demonstrated varying results in the association 
of the IGFBP7 gene with carcass characteristics or retail 
cuts. Cheng et al. (2020) reported a weak association be-
tween IGFBP7 gene and carcass characteristics, whereas 
Armstrong et al. (2020) did not identify  IGFBP7 as 
a gene significantly associated with those traits. In 
contrast, major sheep genes reported to be associated 
with these traits include Callipyge, Carwell, Calpain, 
Calpastatin, Myostatin, and Leptin genes (Gebreselassie 
et al., 2019; Talebi et al., 2022; Meira et al., 2018). The 
contribution of IGFBP7 gene to carcass characteristics 
might be minor, if any, in which it modulates the fatty 
acid content through adipogenesis rate. Nevertheless, 
this was not significant enough to affect the overall 
properties of the carcass. Notably, the major component 
of the carcass is protein, for which its biosynthesis 
may not be highly associated with the role of IGFBP7 
gene. Typically, hot carcass weight and percentage of 
carcass had a high positive correlation with live weight 

(Bautista-Díaz et al., 2020; Gurgel et al., 2021). The 
comparable live weights observed among genotypes in 
the study may also have contributed to the similar hot 
carcass weights and carcass percentages. The percentage 
of carcass in the study was similar to the findings by 
Purbowati et al. (2021) in Indonesian local sheep.

The variation of the IGFBP7 gene in the study was 
not significantly associated (p>0.05) with the pH, tender-
ness, cooking loss, and WHC of lamb meat. According 
to Hu et al. (2021) and Geng et al. (2024), the roles of 
IGFBP7 are mostly associated with lipid biosynthesis in 
the tissue. On the other hand, it is known that muscle 
proteins are the main factor influencing tenderness 
(Thu, 2006), cooking loss (Purslow et al., 2016), and 
WHC (Huff-Lonergan & Lonergan, 2005; Bowker 
& Zhuang, 2015). Therefore, finding no association 
between IGFBP7 and those parameters might be ac-
ceptable. Meanwhile, the pH of the muscle represents 
the rate of degradation of muscle glucose or glycogen 
(Álvarez et al., 2019). Accordingly, it is unlikely that 
IGFBP7 is associated with the pH changes in the meat. 

The pH is a crucial parameter of meat quality 
(Geletu et al., 2021). The range of pH in our study ob-
served fell within the range value associated with high 
meat quality, indicating the absence of meat quality 
issues such as DFD (dark, firm, dry) meat, as defined 
by Poznyakosvkiy et al. (2015) and Ijaz et al. (2020). The 
ultimate pH value in the study was similar to prior lamb 
research (Ekiz et al., 2019; Gallo et al., 2019).

Tenderness values observed in the study were 
classified as indicative of high edible quality, based on 
the threshold of hard meat by Aksoy & Ulutaş (2016) 
and Listyarini et al. (2023). The tenderness values ob-
served in the study were lower than those reported by 
Setyaningrum et al. (2015) for thin-tailed lambs. The 

Table 3. Association between IGFBP7 gene polymorphism with carcass retail cuts

Variables (g)
Population of sheep The genotype of IGFBP7 gene 

(x̅±SEM) p-value
x̅±SEM min max AA (n=69) AC (n=17) CC (n=2)

Leg 1,694.65±36.22 998.50 2,513.30 1,688.65±41.43 1,701.01±84.30 1,847.40±47.90 0.81ns 
Loin 457.70±18.52 211.10 1,027.70 457.24±21.88 467.16±36.70 393.05±43.15 0.85ns

Flank 171.63±8.33 77.50 450.30 172.98±10.10 168.70±13.70 148.75±18.05 0.90ns

Shoulder 894.43±27.99 456.90 1,766.50 903.48±32.72 854.59±58.56 920.85±67.25 0.79ns

Rack 431.99±12.92 229.70 787.10 426.61±14.58 448.52±31.47 477.15±11.55 0.70ns

Breast 482.44±15.20 266.90 952.80 482.92±18.40 478.03±25.43 503.40±37.20 0.97ns

Shank 411.74±10.09 239.50 669.80 411.23±11.40 413.76±24.63 412.15±47.25 0.99ns

Neck 497.41±17.70 202.30 1,003.70 492.88±20.19 516.26±41.86 493.35±1.75 0.88ns

Note: n=number of sample, x̅= mean, SEM= standard error of mean, ns= not significant.

Table 4. Association between IGFBP7 gene polymorphism with physical properties

Variables
Population of sheep The genotype of IGFBP7 gene 

(x̅±SEM) p-value
x̅±SEM min max AA (n= 69) AC (n=17) CC (n= 2)

pH 5.70±0.02 5.28 6.48 5.69 ± 0.03 5.72 ± 0.07 5.65 ± 0.04 0.88ns

Tenderness (kg/cm3) 3.85±0.06 2.30 4.90 3.84 ± 0.07 3.96 ± 0.14 3.10 ± 0.05 0.14ns

Cooking loss (%) 45.67±0.89 25.71 62.50 45.92 ± 1.02 44.00 ± 1.97 51.42 ± 1.02 0.44ns

WHC (%) 28.41±0.35 21.15 39.52 28.14 ± 0.39 29.48 ± 0.85 28.86 ± 0.46 0.31ns

Note: n=number of sample, x̅= mean, SEM= standard error of mean, ns= not significant, WHC= water holding capacity.
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cooking loss in the study was slightly elevated com-
pared to previous studies on lamb by Aksoy et al. (2019) 
and Wang et al. (2021), which could potentially be influ-
enced by breed differences and cooking temperatures. 
Vaskoska et al. (2020) demonstrated that meat cooking 
loss increases with higher cooking temperatures. 

CONCLUSION

The IGFBP7 gene (g.72351183 A>C) was found to 
be polymorphic in the Javanese thin-tailed (JTT) sheep 
population in the current study. The polymorphism 
was associated with erucic acid, linoleic acid, eicosapen-
taenoic acid, and total PUFA. Nevertheless, the IGFBP7 
gene polymorphism was not associated with carcass 
characteristics, retail cuts, and the physical properties 
of lamb meat. Among the genotypes, the CC genotype 
appeared to be the most favorable due to its highest 
total PUFA content.  It is proposed that the IGFBP7 gene 
appears to be a promising candidate for improving the 
fatty acid composition in JTT sheep. 
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