
January 2025      75    

CORDERO-LÓPEZ ET AL. / Tropical Animal Science Journal 48(1):75-82p-ISSN 2615-787X   e-ISSN 2615-790X   
Accredited by Directorate General of Higher Education, Research, 
and Technology, Republic of Indonesia, No. 225/E/KPT/2022

Tropical Animal Science Journal, January 2025, 48(1):75-82
DOI: https://doi.org/10.5398/tasj.2025.48.1.75

Available online at https://journal.ipb.ac.id/index.php/tasj

Copyright © 2025 by Authors, published by Tropical Animal Science Journal. 
This is an open-access article distributed under the CC BY-SA 4.0 License 
(https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION
	
Beef is a high-demand source of protein, ranking 

third in production worldwide with a contribution of 
72 446 000 tons (FAO, 2023). However, the high demand 
for this protein entails greater risks of biological 
contamination at different stages of primary processing 
(Tarekegn et al., 2023). Ground beef, in particular, is one 
of the products that present the greatest risk due to the 
mixture of bacteria from the surface of the carcass, the 
addition of trimmings left over from other carcasses, 
or the lack of hygienic processes in the equipment 
(Abayneh et al., 2019). These situations promote ground 
beef contamination with bacteria of public health 
importance, such as Escherichia coli (including serotype 
O157:H7), Listeria monocytogenes, Salmonella spp., and 
Campylobacter spp. (Kaesbohrer et al., 2019; Kassem et al., 
2020). Unfortunately, although there is the development 
of increasingly permeable technologies and hygienic 
practices in the livestock production industry, there are 
still developing geographic areas that produce farm 
animals where food is public health (Ejikeugwu et al., 
2021; Moawad et al., 2017). 

Escherichia coli is considered a commensal-type 
bacterium that is related to the microbiota of both 
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ABSTRACT 

The various pathotypes of Escherichia coli cause gastrointestinal infections and diarrhea in 
humans. Cattle have been reported as reservoirs of different strains of pathogenic E. coli, where 
the origin of animal-human transmission is usually based on the food chain. Therefore, the study of 
different food matrices plays an important role, especially in foods of high demand and consumption 
worldwide, such as beef and beef products. The present study determined the antimicrobial resistance 
profile of E. coli in ground beef marketed in the municipality of Huasca de Ocampo, Hidalgo, Mexico. 
In the present study, 10 ground beef samples were collected. The isolated strains were identified by 
traditional means and molecular by the 16S rRNA gene, the antibiotic sensitivity profile was identified 
by the Kirby-Bauer method and genotypic identification was performed for the type 1 integrase gene. 
All strains showed multidrug resistance to different classes of antimicrobials, and the resistance 
profile yielded a MAR index of 0.64. Of the 13 isolates, 6 (45.15%) were amplified in the presence of 
the type 1 integrase gene. This cross-sectional study showed a high prevalence of multidrug resistant 
E. coli recovered from ground beef. In addition, the bacterial resistance profile showed that all the 
isolated strains were resistant to antibiotics of the β-lactam family, while some antibiotics, such as 
fluoroquinolones, are highly sensitive drugs for the treatment of possible E. coli infections in the area 
studied.
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animals and humans; however, some strains are 
considered pathogenic and can cause gastroenteritis, 
cystitis, meningitis, peritonitis, or even septicemia in 
the host (Ajuwon et al., 2021; Jamil et al., 2022; Yassin et 
al., 2017). Furthermore, E. coli has the ability to harbor 
genes that confer antimicrobial resistance, reinforcing 
the problem that it implies for public health. Only in 
2019, E. coli was the first pathogen for deaths associated 
with antimicrobial resistance, being responsible for 
more than 250,000 deaths associated with antimicrobial 
resistance, especially third-generation cephalosporin-
resistant E. coli and fluoroquinolone-resistant E. coli 
(Antimicrobial Resistance Collaborators, 2022). 

The presence of pathogenic strains of E. coli in 
animals represents a risk of infection in humans, 
especially when consuming undercooked meat 
(Llorente et al., 2014; Martínez-Vázquez et al., 2018). 
Moreover, meat products have been declared by the 
CDC (Centers for Disease Control and Prevention) 
as a route of transmission of antimicrobial resistance 
between animals and humans, mainly due to the 
indiscriminate use of antibiotics in the production of 
food of animal origin (Ghodousi et al., 2015; Vikram 
et al., 2018). In addition, antimicrobial resistance is 
increasingly expanding in trophic networks, which 
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represents an emerging danger due to the therapeutic 
deficiencies that this implies for the treatment of 
infections (Kaesbohrer et al., 2019; Obaidat, 2020). 

The objective of the present study was the 
determination of multidrug resistance E. coli and the 
characterization of the isolates in their antimicrobial 
resistance profile in ground beef samples in the 
municipality of Huasca de Ocampo, Hidalgo, since 
there are no previous records in this geographic area, to 
generate information that will help health authorities to 
improve the use of antibiotics in beef production.

MATERIALS AND METHODS

Study Area

Huasca de Ocampo, Hidalgo is located at 20° 
12’ 10” north latitude and between 98° 35’ 55” west 
longitude, has a production volume of 3977.360 tons 
of cattle and 2452.020 tons of beef carcasses with an 
approximate value of $ 4341.41 USD per ton (SIAP, 
2023). Huasca de Ocampo is adjacent to Mexico 
City, a characteristic that allows the exploitation of 
environmental goods and services related to tourism 
(OECD, 2019). It has the distinction of “Pueblo Mágico” 
(Magic Town), a status that grants the area a high flow 
of tourists related to cultural and gastronomic aspects, a 
situation that denotes the importance of food safety in 
the region (Velázquez-García & Bautista-Moedano, 2021; 
Winiarczyk-Raźniak & Raźniak, 2021).

Sample Collection

Sampling corresponded to cross-sectional monitor-
ing. Ten samples of 50 g of ground beef were collected 
from 10 sampling points (one sample per point of sale), 
covering the 10 butcher shops established in Huasca de 
Ocampo. Samples were collected in November 2021, 
and the meat was placed in sterile containers and kept 
at 4 °C for transport (Pungpian et al., 2021), then trans-
ferred to the Parasitology and Bacteriology Teaching 
Laboratory of the Institute of Agricultural Sciences of 
the Autonomous University of the State of Hidalgo, for 
processing.

Bacterial Isolation

It was performed as reported by Abayneh et al. 
(2019) with some modifications. 1 g of ground beef 
was weighed and placed in 15 mL falcon tubes, 3 mL 
of peptonized water sterile 1% was added to each 
tube, and the samples were homogenized with vortex 
and incubated at 37 °C for 24 hours. The sample was 
then seeded on MacConkey agar MCD LAB® (Mc) 
and MacConkey agar with sorbitol BD DifcoTM® 
(McS) at 37 °C for 24 hours. Colonies with morphology 
corresponding to E. coli according to each media were 
selected (Crecencio et al., 2020; Ajuwon et al., 2021). 
Presumptive colonies from both agars were seeded 
on DIBICO® eosin and methylene blue (EMB) agar 
(Bhoomika et al., 2016). The isolates were incubated at 
37 °C for 24 hours and blue-black colonies that showed 

metallic green luster were selected. Gram staining was 
performed (Saida et al., 1998) with the HYCEL® Gram 
stain train for observation by light microscopy at 100x. 
Isolates were confirmed by standard biochemical 
tests, such as indole, SIM Agar (Sulfite Indole Motility, 
DIBICO®), methyl red and Voges-Proskauer (MR-VP 
DIBICO®), Simmons citrate (DIBICO®) (Ghodousi et 
al., 2015) and TSI (Triple Sugar Iron Agar, DIBICO®) 
(Crecencio et al., 2020).

Antimicrobial Resistance Profile

E. coli isolates (n=13) were evaluated using 
the Kirby-Bauer disk diffusion method (Hudzicki, 
2009), Multibac I.D. Gram-negative sensidisks 
were used (IDlab, Mexico), with test profiles for 12 
antibiotics: amikacin (AK) 30 µg, ampicillin (AM) 
10 µg, carbenicillin (CB) 100 µg, cephalothin (CF) 30 
µg, cefotaxime (CFX) 30 µg, ciprofloxacin (CPF) 5 
µg, chloramphenicol (CL) 30 µg, gentamicin (GE) 10 
µg, netilmicin (NET) 30 µg, nitrofurantoin (NF) 300 
µg, norfloxacin (NOF) 10 µg, and sulfamethoxazole/
trimethoprim (STX) 25 µg. The analysis was performed 
according to the Clinical and Laboratory Standards 
Institute (CLSI) (Weinstein & Lewis, 2020). The 
results were expressed by categories of sensitive (S), 
intermediate (I), and resistant (R), according to the 
parameters provided by the manufacturer. 

DNA Extraction

DNA was obtained using the methodology 
described by Ribeiro et al. (2016). The isolates were in-
oculated in thioglycolate broth at 37 °C. 1 mL of bacte-
rial culture was taken and centrifuged at 14500 rpm. The 
pellet was suspended in TE (Tris-HCl [10 mM]: EDTA 
[1 mM]) buffer. The suspension was lysed in heat for 15 
minutes at 100 °C and frozen for 15 minutes at -20 °C, 
then centrifuged for 10 minutes at 14500 rpm to obtain 
the supernatant with the bacterial genetic material, 
which was preserved in freezing at -20 °C for later use.

Presence of Integron

The following primers were used for type I 
integrase (Intl-1): IntI1F 5' CCTCCCGCACGATGATC 
3' and IntI1R 5' TCCACACGCATCGTCAGGC 3'    
(280 bp) and for the variable region of the integron 
5'_CS 5' GGCATCCAAGCAAGCAGCAAG 3' and 
3'_CS 5' AAGCAGACTTGACCTGA 3' (Henriques et 
al., 2006). Previously established PCR conditions were 
implemented (Henriques et al., 2006; Vega-Sánchez et al., 
2014), and amplicons were visualized on 1.5% agarose 
gel (Miranda-Estrada et al., 2017). The band obtained 
from the variable region was purified with the Wizard® 
SV Gel and PCR Clean-Up System purification kit for 
sequencing, following the supplier’s methodology.

Sequencing Identification

To identify the isolates, the sequence of 16S rRNA 
gene was analyzed. The 16S rRNA gene was amplified 
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with the primers and the PCR reactions described 
by Zepeda-Velazquez et al. (2023); the presence of an 
amplicon was verified in 1.5% agarose gels. Purification 
of the amplified product was carried out using the kit 
Wizard® SV Gel and PCR Clean-Up System (Promega) 
and sequenced using the Sanger method at the National 
Laboratory of Genomics for Biodiversity of the Center 
for Research and Advanced Studies of the National 
Polytechnic Institute, Mexico.

Phylogenetic Analysis

The sequences obtained were analyzed with the 
DNAstar SeqMan software (Lasergene), and compared 
with the National Center for Biotechnology Information 
database using the basic local alignment search tool 
(BLAST). 

Data Analysis

The descriptive analysis of the antimicrobial 
resistance was carried out using Microsoft Excel 
2019, and the data were represented in percentages. 
The multiple antibiotic resistance index (MARI) was 
calculated from the resistance designations of the 
isolates, which is calculated using the formula a/b where 
a= the number of antibiotics to which the strain showed 
resistance and b= the number of antibiotics used in the 
test (Hadžić-Hasanović et al., 2020). The MARI indicates 
values close to 1 with greater relevance of the resistance 
and close to 0 with lesser relevance of the resistance 
presented by each strain.

RESULTS

A total of 13 isolates were obtained and identified 
according to morphology, biochemical characteristics, 
and sequence analysis (Table 1). The total number of 
isolates (13/13) presented 100% resistance to ampicillin 
(AM), carbenicillin (CB), cephalothin (CF), cefotaxime 
(CFX), and nitrofurantoin (NF). An 84.62% (11/13) of 

the isolates were resistant to Netilmicin (NET) and 
69.23% (9/13) to chloramphenicol (CL), while other 
antibiotics such as amikacin (AK), trimethoprim (STX) 
presented 46.15% (6/13) and 38.46% (5/13) of resistance 
respectively. In contrast, gentamicin (GE) presented 
46.15% (6/13) sensitivity and only 30.77% (4/13) resistant 
isolates. Finally, the antibiotics ciprofloxacin (CPF) and 
norfloxacin (NOF) showed a sensitivity of 53.85% (7/13) 
and 84.62% (11/13) respectively (Figure 1). As many 
as 100% (13/13) of isolates were resistant to β-lactams 
(AM, CB, CF, and CFX) and nitrofuran family (NF), in 
contrast to fluoroquinolones (CPF and NOF) presented 
the highest percentage of sensitive strains, and no 
isolate with resistance to these antibiotics’ family. In 
the case of aminoglycosides (AK, GE, and NET), E. coli 
isolates showed greater resistance activity of 53.85% 

Table 1. 	Molecular identification of Eschericia coli through analysis of 16S rRNA obtained from ground meat from butcher shops in 
Huasca de Ocampo Hidalgo, Mexico

Sampled butcher’s shop 
(1 to 10)* Id strain Identification % identity to type strain GenBank nucleotide 

accession code
2 Mc2 Escherichia coli 98.34 OQ073501

McS2 Escherichia coli 99.81 OQ344332
3 Mc3 Escherichia coli 99.46 OP740807
5 Mc5 Escherichia coli 99.67 OP986071

McS5 Escherichia coli 99.57 MT427668
6 Mc6 Escherichia coli 99.06 MN208223

McS6 Escherichia coli 98.75 KY856932
7 Mc7 Escherichia coli 99.93 OP986844

McS7 Escherichia coli 100 OQ344332
8 Mc8 Escherichia coli 98.77 MW026012
9 Mc9 Escherichia coli 99.48 OP363870

McS9 Escherichia coli 99.25 MK784807
10 Mc10 Escherichia coli 99.41 OP740807

Note: 	*1 to 10= butcher shops sampled in this study. The butcher's shop 1 and 4 do not have any isolates of E. coli. Id= Identification of the strain, %= 
percentage.

Figure 1.	Morphological and biochemical characteristics of 
Eschericia coli obtained from ground meat from 
butcher shops in Huasca de Ocampo Hidalgo, Mexico. 
A) Lactose positive colony on MacConkey agar. B) 
Sorbitol negative colony on sorbitol MacConkey 
agar. C) Colony with a metallic green glow on EMB 
agar.  D) Positive motility and indole on SIM agar. E) 
Positive methyl red. F) Negative Vogues-Proskauer. 
G) Negative citrate. H) TSI: acid-acid surface and gas 
production.

28 

 
Figure 1. Morphological and biochemical characteristics of E. coli, obtained from ground meat from butcher shops in Huasca de Ocampo Hidalgo, Mexico. A) Lactose 
positive colony on MacConkey agar. B) Sorbitol negative colony on sorbitol MacConkey agar. C) Colony with a metallic green glow on EMB agar.  D) Positive 
motility and indole on SIM agar. E) Positive methyl red. F) Negative Vogues-Proskauer. F) Negative citrate. G) TSI: acid-acid surface and gas production. 
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than sensitivity of 28.21%. In the phenicol (CL) and 
sulfonamide potentiated (STX) families, the isolates 
showed sensitivity activity of 23.08% and 15.38%, 
respectively. In 100% percent (13/13) of the isolates 
showed multi-resistance to 3 or more families of the 
antibiotics evaluated. The resistance patterns with the 
highest frequency were profile 1 (McS2 and McS7) 
and profile 11 (Mc7 and Mc10); the rest of the patterns 
presented only one isolate with this profile.  From the 
resistance profile, the MARI was calculated, which 
indicates the ratio of the number of antibiotics to which 
a strain is resistant between the number of antibiotics 
included in the test. The mean MARI was 0.64; the 
values indicated that the two strains presented the 
highest MARI with 0.83. These corresponded to Mc7 

and Mc10; conversely, the lowest resistance values were 
0.50 for strains McS2, McS7, and Mc9 (Table 2).

Out of the 13 E. coli isolates, 6 (45.15%) amplified 
in the presence of the type 1 integrase enzyme, the 
amplicon presents a band of 280 bp, and the isolates 
correspond to Mc3, Mc5, Mc6, Mc7, Mc8, and McS9 
(Figure 2). From the sequencing of the variable region 
of the integron of 3 isolates, we were able to determine 
the presence of 3 plasmids. The data from the blast 
search are reported in Table 3.  Isolate Mc3 presented 
the plasmid psh13D178-2, with the InCFII skeleton and 
harboring the genes mphA, blaTEM-1, aac(3)-IId, dfrA1, 
aadA5 and sul1. Strain Mc7 presented the plasmid 
pLSB54-mcr-1, which presents the blaCTX-M-14, oqxA, oqxB, 
fosA3, floR, cmlA1, sul1, sul2, sul3 and dfr12 genes. And 

Table 2. 	Multidrug resistance patterns and class 1 integron gene arrangement of Eschericia coli obtained from ground meat from 
butcher shops in Huasca de Ocampo Hidalgo, Mexico

Profile Antibiotic resistance profile n (%) of 
isolates

MDR 
n (%)

MAR 
index

Integrase 
(Intl-1) Gene cassettes

1 AM - CB - CF - CFX - NET - NF 2 (15.38) 2 (15.38) 0.5 - -
2 AM - CB - CF - CFX - CL - NF 1 (7.69) 1 (7.69) 0.5 - -
3 AM - CB - CF - CFX - AK - NET - NF 1 (7.69) 1 (7.69) 0.58 - -
4 AM - CB - CF - CFX - NET - CL - NF 1 (7.69) 1 (7.69) 0.58 + mphA, blaTEM-1, aac(3)-IId, 

dfrA1, aadA5 y sul1
5 AM - CB - CF - CFX - NET - NF - SXT 1 (7.69) 1 (7.69) 0.58 + -
6 AM - CB - CF - CFX - AK - CL - NF 1 (7.69) 1 (7.69) 0.58 + aac(6’)-Ib, aada2, aph(3’)-1a, 

blaKPC-2, blaOXA-9, blaTEM-1A, catA1, 
dfrA12, mph(A), sul1-

7 AM - CB - CF - CFX - NET - CL - NF - SXT 1 (7.69) 1 (7.69) 0.67 + -
8 AM - CB - CF - CFX - AK - NET - CL - NF 1 (7.69) 1 (7.69) 0.67 - -
9 AM - CB - CF - CFX - AK - GE - NET - CL 

- NF
1 (7.69) 1 (7.69) 0.75 - -

10 AM - CB - CF - CFX - GE - NET - CL - NF 
- SXT

1 (7.69) 1 (7.69) 0.75 + -

11 AM - CB - CF - CFX - AK - GE - NET - CL 
- NF - SXT

2 (15.38) 2 (15.38) 0.83 + blaCTX-M-14, oqxA, oqxB, fosA3, 
floR, cmlA1, sul1, sul2, sul3 y 

dfr12
Total 13 (100%) 13 (100%) 0.64 6 (46.15%) -

Note: 	AK= amikacin, AM= ampicillin, CB= carbenicillin, CF= cephalothin, CFX= cefotaxime, CPF= ciprofloxacin, CL= chloramphenicol, GE= gentami-
cin, NET= netilmicin, NF= nitrofurantoin, NOF= norfloxacin, STX= sulfamethoxazole/trimethoprim, n= number of isolates, %= percentage, MDR= 
Multidrug resistance, Intl-1= Primer selection for class 1 integron integrase gene. 

Figure 2. 	Antibiotic resistance profile by Kirby-Bauer technique in the 13 Eschericia coli isolates obtained from ground meat from 
butcher shops in Huasca de Ocampo Hidalgo, Mexico. AK= amikacin, AM= ampicillin, CB= carbenicillin, CF= cephalothin, 
CFX= cefotaxime, CPF= ciprofloxacin, CL= chloramphenicol, GE= gentamicin, NET= netilmicin, NF= nitrofurantoin, NOF= 
norfloxacin; STX= sulfamethoxazole/trimethoprim; S= sensitive, I= intermediate and R= resistant. 
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in the McS9 isolate, the plasmid pKL00221_2 was found, 
which encodes for the genes: aac(6’)-Ib, aada2, aph(3’)-1a, 
blaKPC-2, blaOXA-9, blaTEM-1A, catA1, dfrA12, mph(A), sul1 
(Table 2).

DISCUSSION 

The presence of E. coli along the meat production 
chain represents a biological risk of relevance (Kim 
et al., 2018). The occurrence of this pathogen in 
livestock production plays an important role in the 
transmission of foodborne diseases (Castro et al., 2019). 
In the present study, isolates of E. coli were recovered, 
a relevant situation due to the nature of the samples 
since meat is considered a perishable food, even more 
so when the presentation is ground, which allows 
the homogenization of bacterial loads throughout the 
product (Abayneh et al., 2019; González-Gutiérrez et al., 
2019). However, other authors report a lower prevalence 
of E. coli in similar meat matrices. Petternel et al. (2014) 
reported a lower prevalence of ground beef collected 
in Austria, with 20% prevalence of E. coli. Similarly, 
Hamed et al. (2017) reported 8% prevalence for shiga 
toxin-producing E. coli in ground beef. In this case, the 
authors determined that these values were higher than 
those found for other products, such as sausages or beef 
hamburgers. Some studies even report the absence of E. 
coli in ground beef that has been minced in restaurants, 
indicating that the finding of this pathogen is related to 
hygiene deficiencies in meat handling (Beyi et al., 2017). 
These findings are important because ruminants are one 
of the main reservoirs of E. coli and cause outbreaks of 
diarrheal diseases (Blount, 2015; Nobili et al., 2017). 
Therefore, it is necessary to understand transmission 
and its bacterial resistance to improve animal and 
human health care (Darphorn et al., 2021). Of the 13 
isolates tested, 13 showed multi-resistance; the high 
frequency of resistance in the strains may result from 
the widespread use of antibiotics in livestock production 
farms (Liu et al., 2015). The Kirby-Bauer test showed 
in our study that 100% of the strains were resistant to 
antibiotics of the β-lactam family, including ampicillin, 
carbenicillin, cephalothin, and cephatoxime. These 
results demonstrate that the isolates maintain a close 
relationship with the production of extended-spectrum 
β-lactamases encoded by blaTEM, blaSHV, and blaCTX-M genes, 
mainly (Galvis & Moreno, 2019). Previously, resistance 
of E. coli to ampicillin has been reported in Peru and 
Mexico, with values up to 90% in chicken meat (Ruiz-
Roldán et al., 2018), cephalothin in up to 75% of isolates 
recovered from bovine carcasses (Reyes-Rodríguez et 
al., 2013), resistance up to 80% of cefatoxime in chicken 

meat (Del Rio-Avila et al., 2016), and in carbenicillin up 
to 72.2% (Fuentes et al., 2013).

In E. coli, the presence of genes, such as aadA, 
aadA5, aadA2, aac(3)-I, aac(3)-IId, aac(3)-IV, aac(6’)-Ib, 
aphA-1. aph(3’)-1a and strA-strB in Enterobacteriaceae 
isolated from animal foods, such as meat (Liu et 
al., 2015; Racewicz et al., 2022). In this study, high 
sensitivity to drugs of the fluoroquinolone family was 
evidenced; however, in other studies, E. coli strains 
have shown high resistance to these drugs, with values 
of up to 91.3% in E. coli isolates obtained from chicken, 
beef, and pork meat collected in Italy (Caruso et al., 
2018). These results show the genetic diversity of the 
bacterium in relation to its biogeography, supported 
by gene transmission strategies such as the acquisition 
of resistance by plasmids. In beef, plasmid-mediated 
quinolone resistance has been reported in E. coli 
associated with the presence of genes such as qnrA1, 
aadA2, blaCARB-1, mphA, floR, sul1(3x), tetA and dfrA1 
(Tyson et al., 2019). The presence of type 1 integrons 
denotes resistance to sulfonamides, recalling that within 
the conserved region of these genetic elements, the sul1 
gene is located (Wan & Chou, 2015). In addition, more 
than 70 cassette genes have been considered in the 
variable region that can harbor and confer resistance 
to most β-lactams, aminoglycosides, trimethoprim, 
rifampicin, chloramphenicol, quinolones, erythromycin 
and quaternary ammonium compounds (Kaushik et 
al., 2018). In addition, type 1 integrons have already 
been reported in meat E. coli isolates. Rebbah et al. 
(2018) analyzed 102 E. coli isolates, 69 presented class 1 
integrons; Sunde et al. (2015) found the presence of class 
1 integrons in 29 of 241 isolates; and Chen et al. (2017) 
analyzed bovine carcass meat, managing to isolate 28 
with presenting the integron. In addition, the presence 
of integrons detonates anthropogenic contamination, 
as they are used as an indicator as it is common to 
find them in human-dominated environments, with 
prolonged exposure to different selective agents such 
as antibiotics (An et al., 2018), suggesting that the 
acquisition of resistance in E. coli isolates is a result of 
interaction between organisms present from human 
activities. The MARI indices in this study presented 
maximum values of 0.83 in three strains evaluated in 

Table 3. 	Molecular identification of plasmids by Blast of class 1 
integron variable region in Eschericia coli isolates

Id strain Plasmid Identity (%) GenBank nucleotide 
accession code

Mc3 pKL00221_2 98.05 ON461900
Mc7 pLSB54-mcr-1 97.84 MG773376

McS9 pKL00221_2 97.70 OP378664
Note:  Id= Identification of the strain, %= percentage.

Figure 3.	Agarose gel electrophoresis (1.5%) of PCR amplifica-
tion of the integrase gene in isolates of Eschericia coli 
(280 bp) obtained from ground meat from butcher 
shops in Huasca de Ocampo Hidalgo, Mexico. Lane 
M= molecular weight marker, Lane 1-6= isolated from 
E. coli positive for the integrase gene, Lane 7= control 
negative, Lane 8= control positive.
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the antimicrobial resistance profile (Mc7 and Mc10); 
the values obtained for all strains was ˃0.2, an indicator 
of the frequent use of antibiotics in the environment 
from which the isolates were obtained (Jaja et al., 2020). 
The results of the present study were similar to those 
reported by Sadat et al. (2022) in E. coli isolates from 
chicken meat, which presented MARI index values in an 
interval of 0.5-1; however, E. coli isolates from beef meat 
have shown lower MARI index values of 0.13 (Adzitey 
et al., 2020), indicating considerable variability in the 
behavior of antibiotic resistance by species.

In all cases, it is relevant to consider that different 
enterobacteria have diverse mechanisms to respond 
to environmental pressures to cope with antibiotic 
treatments, where the gene set is determinant for the 
development of antibiotic resistance (Alonso et al., 2018; 
El-Demerdash et al., 2018; Wang et al., 2020). In addition, 
practices in the livestock production chain play a 
highly relevant role, where transparency of antibiotic 
use could improve production processes (Davis et al., 
2018). Likewise, the development of public policies 
focused on antibiotic regulation is necessary in different 
geographical areas to reduce the spread of antibiotic 
multidrug-resistant bacteria (Ejikeugwu et al., 2021; 
Hossain et al., 2022; Nekouei et al., 2018).

CONCLUSION 

This cross-sectional study showed a high 
prevalence of multidrug resistant E. coli recovered 
from ground beef, which places this food as a reservoir 
of microbiological loads involved in disseminating 
antimicrobial resistance genes and pathogenic potential 
in an area of high tourist traffic. In addition, the bacterial 
resistance profile showed that all the isolated strains 
were resistant to antibiotics of the β-lactam family, 
while some antibiotics, such as fluoroquinolones, are 
highly sensitive drugs for the treatment of possible E. 
coli infections in the area studied. 
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