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INTRODUCTION
 
One of the major problems of the livestock industry 

is udder health and follow-up. Especially in the dairy 
sector, subclinical mastitis diagnosis and tracking ud-
der health are essential for qualified milk production. 
The need for alternative methods continues due to the 
difficulties (high cost, qualified labor, and laboratory 
requirements) in the determination of the somatic cell 
count (SCC), which is accepted as the gold-standard 
indicator in the international literature for monitoring 
udder health.

People use their intelligence to act in situations 
that require perception and foresight. Various artificial 
intelligence applications allow machines to imitate 
human intelligence. The main purpose of bringing hu-
man intelligence to computers up to a certain level is 
to develop methods and machine intelligence to create 
computer-based mechanisms that will solve problems, 
communicate with humans, perceive and interact with 
the physical environment by understanding the basic 
principles of humans. Artificial neural networks (ANN), 
which is based on the working principle of the biologi-
cal nervous system, is based on the fact that many nerve 
cells (neurons) work together in the learning process 
to solve the problem. The ability to generalize, akin to 
human learning, allows it to learn from past data or 
examples and to make decisions by using the knowl-
edge gained from experience on new data that has not 
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ABSTRACT

The main objective of the research is to generate an alternative approach to classical 
techniques in the prediction of the somatic cell count (SCC), which is the gold standard indicator of 
subclinical mastitis. This approach involves using the physical properties of milk such as density, 
the temperature at fore milking (TFM), pH, and electrical conductivity (EC) with a feed-forward 
backpropagation multilayer perceptron (MLP) artificial neural networks (ANN) model, which is 
one of the widely used machine learning techniques. The performance of the model was assessed 
by test with cross-validation on data that was not introduced to the model before and compared to 
the classical linear model (multiple linear regression) as the control model. The findings showed 
that the model has satisfactory results in terms of loss and performance criteria (R2=0.95, RMSE=0.01; 
AIC=-338). The test model (ANN) had a higher performance (AIC=-338) than the control model 
(AIC=-240) created with the classical linear model despite using more parameters (81). Using big 
data from automated milking information—like estrus cycle, lactation stage, and milk yield—on 
supercomputers can improve the accuracy of performance assessments in dairy farming.
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been encountered before in the future. ANNs can be 
configured on subjects in the field of dairy and livestock 
science, e.g., prediction, quality classification, disease 
detection, temperature measurement, etc. It is known 
that research has been conducted on disease diagnosis 
(Zülkadir & Coşkun, 2018;), breed classification (Yeşil 
& Göncü, 2023; Weber et al., 2020), lameness diagnosis 
(Coşkun et al., 2023), prediction of live weight (Aytekin 
et al., 2018), and individual recognition (Zhang et al., 
2018; Zhao & He, 2015) with different machine learning 
models in animal sciences.

To the best of our knowledge from the previous 
literature, due to both high test costs and direct-indirect 
costs and time loss caused by the high workload during 
SCC tests, the need for more efficient, easy, and low-cost 
prediction methods continues. Furthermore, comparing 
performances of different ML techniques based on only 
accuracy or coefficient of determination (R2) and loss 
criteria (error) regardless of the number of parameters 
has become a common evaluation approach. In this 
study, however, we compared the performance of ANN 
not only based on the classical performance criteria 
(multiple logistic regression model -MLRM-) but also 
the number of parameters (AIC score). Although at-
tempts to satisfy the existing gap in literature are insuf-
ficient, it is understood that no study shows high perfor-
mance in SCC detection. This study aims to contribute 
to the removal of the current gap among the literature. 
Our motivation was to search for an alternative method 
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to SCC detection with variables that are more practical 
to measure and easily adapted to automation systems in 
terms of cost and ease of use. This study aims to develop 
an alternative method model for SCC detection, which 
is the gold-standard indicator of subclinical mastitis in 
cows with deep ANN over the physical properties of 
milk, pH, temperature at fore milking (TFM), electrical 
conductivity (EC), and milk density. Therefore, our re-
search makes numerous contributions to the literature. 
First, the prediction techniques used up to date with 
variables acquired only from milking information 
limit the performance of the model. Second, despite 
network-based models using high parameters increas-
ing the success in terms of error and accuracy, there is 
no knowledge about whether they provide more benefit 
than the additional increase in processor load they cre-
ate. Additionally, there is no study that considers the 
milk’s physical features directly related to SCC to solve 
the practical problem, promising sensitive, precise, and 
efficient results. Therefore, it is unclear how improve-
ment can be achieved using the milk’s physical proper-
ties to detect SCC via deep machine learning. Unlike 
previous studies, this study also discusses the model 
performances in terms of processor workload since en-
ergy concerns are gaining more importance in artificial 
intelligence. Over and above, this is the first research 
study to determine SCC with deep ANN based on the 
physical properties of milk and evaluate the model ef-
ficiency by considering energy consumption concerns 
and the number of parameters. Finally, this study 
emerges several avenues for further research to investi-
gate in more depth whether SCC detection models over 
physical properties with a high number of parameters 
provide more benefit than processor load and energy 
consumption via enlightening the impact of the number 
of parameters on the model’s efficiency.

MATERIALS AND METHODS

The current study has been generated by improv-
ing and expanding the project titled “Relationships 
Between Some Traits Related to Mastitis in Holstein 
Friesian Cows’ Milk”. The research was supported by 
Cukurova University Research Unit Projects (Project 
No: FDK-2021-13656) and approved by the Local Ethics 
Board of Animal Research of Cukurova University 
(28.11.2017 – 10/2.).

Experimental Material, Sampling, and Measurements

The animal material used in the present study con-
sists of 160 Holstein Friesian dairy cows of similar age 
and lactation in the Çukurova University Experimental 
Farm, Adana/Turkey. Milking is done twice a day 
with the automatic 10x2 fishbone milking system. The 
company employs a full-time expert zootechnician and 
veterinarian. Milk samples were taken twice a week 
between November 2021 and June 2022, at both milking 
times, from cows of similar age and lactation. Samples 
were taken daily from those with mastitis during the 
treatment period. Right before the milking heads are 
attached to the cows entering the milking system, the 

foremilk accumulated at the teat was taken into the 
milking cups, and then the analysis samples were taken 
into the 250 mL sample tubes, and the milk TFM, EC, 
and pH were determined with the AZ-86505. The milk 
density is determined via a pycnometer. Afterward, 
milk SCC measurements were performed with a Delaval 
DCC SCC, which was developed to detect SCC-induced 
change in cow-specific milk and operated based on 
DNA-specific fluorescent staining in the somatic cell 
nucleus. 

Data Analysis and Modelling

Although the herd projection size in the enterprise 
is based on 160 lactating cows per year, a total of 2500 
data points were obtained from 500 observations of 250 
different cows in the enterprise between 2018 and 2023. 
A total of 2281 remaining data points after data prepro-
cessing were used for research. 

Analyses were executed on a PC with a 12th Gen 
i3 12100 CPU model and 64 GB DDR5 4800 Mhz RAM, 
and a CUDA-supported RTX 3060 GPU model with 12 
GB VRAM. The data analyses of the current study were 
performed in the R environment, a free, open-source, 
and accessible programming language developed prior 
for statistical purposes (R for Statistical Computing, 
2022). For this purpose, after applying homogeneity and 
normality tests to the data set, analysis and modeling 
were carried out by applying a logarithmic transforma-
tion to the SCC since it shows right-skewed distribution. 
(Appendix A.) (Kayaalp, 2017; Kayaalp et al., 2015; 
Cebeci, 2020). However, actual values were retained in 
the charts and descriptive statistics.

Descriptive statistics. Basic core packages embedded 
in the R environment were used to calculate the de-
scriptive statistics of the variables. The GGally package 
was used for the analysis and display of the summary 
graphs and charts (Appendix A). 

Compilation, fitting, and training of ANN model. 
Modelling of ANN was performed with the Keras 
package (library) using the TensorFlow GPU version 
as a backend. It consists of 4 neurons (ec, pH, density, 
and milk temperature during milking) in the input 
layer, 8 neurons in the first hidden layer, 4 neurons in 
the second hidden layer, and a single neuron in the 
output layer. The model architecture and elements of 
the artificial neural network used in the learning process 
are given in Figure 1 and Table 1, respectively.

The training or learning process is basically the 
process of optimizing performance and loss values 
using a trial and error method. The performance 
values are desired to converge to 1 (one), while the loss 
values are expected to converge to 0 (zero) (Soydaner, 
2020). The sequential model was used in modeling 
the network, and the “ReLU” (Rectified Linear Unit) 
function was preferred in the activation process of 
hidden layers, as reported by Asadi & Jiang (2020). 
The ReLU layer is the layer where the activation 
function is applied (İnik & Ülker, 2017). RMSProp 
(Root Mean Squared Propagation) algorithm was 
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used as the optimization function, as reported by 
Soydaner (2020). Accordingly, the loss functions Mean 
Squared Error (MSE) and Mean Absolute Error (MAE) 
are used to validate the model. During training, the 
hyperparameters of ephocs, learning rate and batch size 
were 1000, 0.16, and 0.015, respectively. Over-fitting was 
prevented by regularizing the model, increasing the 
number of observations, reducing the complexity of the 
network, early stopping during training and dropping 
out in between hidden layers.

Evaluation and comparison of the models. While 
creating models, 75% was reserved as a training set 
of the total data set, and 25% was the test in terms of 
evaluating model performances on previously unknown 
data. In the training of ANN, the validation split rate for 
cross-validation was also preferred as 25%, where the 
dataset is more than 1000 observations, the validation 
split rate should be 10%; otherwise, 20-25% would be 
sufficient for the validation process. Cross-validation 
is used to determine which of the models outperforms 
in model selection by determining the prediction error 
and performance values of the model on previously 
unknown data (Fushiki, 2011). In order to compare the 

performance of the ANN model, which uses a large 
number of parameters, the Multiple Linear Regression 
Model (MLRM), one of the classical methods, was 
preferred because it uses few parameters (Kayaalp et al., 
2015). Core packages of the R programming language 
were used in the MLRM analysis. The root mean 
squared of error (RMSE), coefficient of determination 
(R2), and Akaike Information Criteria (AIC score) were 
computed as loss and performance criteria. It is reported 
that using the AIC score will give positive results in 
evaluating model performance if the number of inputs 
and outputs is large. In terms of the AIC score, the 
performance of the model with a lower value is higher 
(Panchal et al., 2010). The packages of the R environment 
used in the analysis and modeling are given in Table 2.

Execution time was also observed for the whole 
model training to make inferences about both the pro-
cessor load of the model in the case of working with big 
data and the cost-effectiveness of the TensorFlow GPU 
version executed on a CUDA-supported graphics card. 
Execution time refers to the time between the start and 
end of the training process and is important in terms of 
hardware (material) and model (method) performance 
in research (İnik & Ülker, 2017).

RESULTS

The ANN model was used to predict SCC over 
the model variables of EC, pH, TFM, and milk den-
sity, which are the factors affecting SCC as a numerical 
response variable. Descriptive statistics belonging to 
variables used in the training and compilation of the 
model are presented in Table 3, and summary graphics 
are given in Appendix A.

Means ± standard errors of the variables used in 
the model were EC (mS) 7.23±0.10, TFM (°C) 35.71±0.06, 
Density (gr/mL) 1.03±0.00, pH 6.86±0.01, SCC (*1000 pcs/
mL) 790.43±49.87. Similar to the present study Norberg 
et al. (2004), when they tried to predict healthy or clini-
cal mastitis individuals with EC, mean EC values were 
5.30 in healthy, 5.75 for subclinical, and 6.75 for clinical 
mastitis cows, respectively. 

It is seen from Figure 2 that the MAE and loss 
(MSE) values converge to 0 and become stable by the 
50th iteration in the learning (training) process of the 
model. While it is expected that the loss values, such as 
mean absolute error and mean squared error will con-
verge to 0 (zero) in the training process. In addition, it 
is understood that the training and validation curves de-

Figure 1. The model architecture of the test model used in the 
research (fully connected ANN with feedforward 
backpropagation multilayer perceptron). “scc” 
stands for milk somatic cell count; “ec” for “electrical 
conductivity”; “temp” for the temperature at 
foremilking; “ph” for pH (negative logarithm of 
hydrogen concentration); “dens” for density of milk. 
The meaning of the number “1” in the figure stands 
for each bias per node.

Table 1. Elements of the fully connected ANN model architec-
ture with feedforward backpropagation multilayer 
perceptron

Layers Layer type Output 
shape NoP NoM

Input Input 4 4
1. Hidden 3. dense (None, 8) 40 (4x8+8) 8
1. Dropout 2. dropout (None, 8) 0
2. Hidden 2. dense (None, 4) 36 (8x4+4) 4
2. Dropout 1. dropout (None, 4) 0
Output 1. dense (None, 1) 5 (4x1+1) 1

Note: Total number of parameters= 81; Total number of trainable pa-
rameters= 81; Total number of non-trainable parameters= 0. NoP 
stands for the number of parameters; NoM stands for the number 
of multipliers.

Table 2. The packages of R environment used in the prediction 
of somatic cell count through multilayer perceptron

Packages Use purpose Reference
ehaGoF calculation of perfor-

mance metrics
(Eyduran & Gulbe, 
2022)

GGally summarise and 
visualization (Schloerke et al., 2022) 

Keras modeling MLP (Kalinowski et al., 
2022)

Core packages modeling MLRM and 
descriptive statistics

(R for Statistical 
Computing, 2022)
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crease together in parallel during the learning process, 
and both curves approach each other without diverging. 
The model is completed successfully without encounter-
ing any over-fitting (or memorization) problems during 
the training process.

The execution time was observed to be executed in 
683 seconds. The coefficient of determination (R2) of the 
ANN model was determined as 0.95, 0.01, and -338 for 
the RMSE and AIC scores, respectively, at a satisfactory 
level, as expected in a successful model (Kayaalp et al., 
2015; Cebeci, 2021).

DISCUSSION

Panchal et al. (2016) found the EC, pH, and milk 
temperature values as 6.79, 7.03, and 35.77 for cases with 
mastitis, 5.16, 6.49, and 33.53 for healthy ones. Since 
the aim of the present study is not to diagnose healthy 
animals and animals with mastitis, descriptive statistics 
are given together without any distinction according to 
health status. Harmon (1994) reported that the pH of 
milk varies between 6.6 and 6.9 and can reach higher 
levels because disease factors such as mastitis cause 
deterioration in milk structure. Severe clinical signs of 
mastitis were observed in cases around the maximum 
pH value of 7.32 attained in our study. 

Too et al. (2019) found the lowest training period 
to be 1051 seconds in their study where they estimated 
plant diseases. It is known that the difference between 
the training time obtained in the current study is due 
to several factors, such as data size, the structure of the 
network used in training the models, the number of 
neurons in the hidden layers and input layer, and the 
characteristics of the hardware used in model training.

With lower performance than the current study, 
Soyeurt et al. (2020) compared the 4 different models, 
and the model using ANN was the most successful, 
with 0.60 R2 and 162.17 RMSE. This suggests that they 
developed their prediction model without applying 
any conversion to the response variable in their study 
(log(162.17) = 2.29 > 0.01). In addition, it is reported 
that this is due to the high variation observed in the 
response variable. For this reason, it is stated that 
prediction performance will increase in predictions 
made with different variables directly affecting response 
variables except for the mid-infrared spectrum. Anglart 

et al. (2020) modeled the cow SCC with logarithmic 
transformation, as in our study, by using the data of a 
series of milking information such as milking time, 
milk yield obtained from the automated milking 
system and the sensor data of only milk flow rate and 
conductivity from milk physical properties. In their 
study, they determined the loss to be 0.09. Bobbo et al. 
(2021) reported an accuracy rate and error values of 80% 
and 15%, respectively, in the model they used. Lievaart 
et al. (2010), when they tried to estimate the SCC over 
the sampling interval using the ANN model, stated 
that the model error values were in the range of 15-40 
SCC (*1000/mL) according to different interval values 
between 4 and 14 days. To be able to compare these 
values with our current research, when the logarithmic 
transformation is applied, it is seen that they are in the 
range of 4.18-4.60 and are higher than the error values 
obtained in the findings we presented (RMSE= 0.01; 
MSE=1e-04). Panchal et al. (2016) reported that when 
they estimated SCC using a multiple linear regression 
model over EC and pH in milk, they found it to be 
4.91% of RMSE, which is lower than ours considering 
that the % RMSE value is less than 1% and 0.01% for 
MLRM and ANN, respectively. Bai et al. (2022) tried to 
estimate the total udder SCC from the milk obtained 
from the mammary lobe, and stated that the model they 
used could only explain 15% of the variation in SCC. 
Similarly, Wellnitz et al. (2009) found 0.25 of R2 when 
estimating total udder SCC over anterior milk lobe SCC 
using random-effect linear regression. They reported 
that the anterior milk lobe SCC performed poorly in 
terms of the model for low SCC (<1,000,000) values in 

Figure 2. The training (learning) process of the model. A) 
= “loss” stands for “mean squared error” during 
training, = “val_loss” during validation; B) = “mae” 
for “mean absolute error” during training, = “val_
mae” during validation. The vertical axis indicates 
the loss values while the horizontal axis indicates the 
number of ephocs during the learning process. “x” 
axis shows the number of iterations while training, 
and the axis “y” shows the degree of errors (SCC/mL) 
for each iteration.
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Table 3. Descriptive statistics of the variables used in the pre-
diction of somatic cell count through multilayer 
perceptron

Parameters N Mean ± Std. error Min. Max.
SCC (*1000/mL) 500 790.43±49.87 6 4588
EC (mS) 500 7.23±0.10 4.91 12.65
pH 500 6.86±0.01 6.55 7.32
Density (gr/mL) 500 1.03±0.00 1.01 1.05
TFM (oC) 500 35.71±0.06 33 38.62

Note: “SCC” stands for milk somatic cell count; “EC” for “electrical con-
ductivity”; “TFM” for temperature at foremilking; “pH” for nega-
tive logarithm of hydrogen concentration; “Density” for density of 
milK; “Std. Error” for standard error; “N” for number of observa-
tions; “Min.”. and “Max.” for minimum and maximum observa-
tions respectively.
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estimating the total SCC of the whole udder, and the 
success of prediction increased at high SCC values. 
The increase in prediction success at high SCC values 
is similar to the findings we obtained (Figure 3). This 
suggests that the SCC has a nonlinear data structure and 
that at high SCC values, most of the variation is due to 
a single factor (mastitis). This indicates that the sources 
of variation that cause high SCC values are decreasing. 
In other words, it suggests that higher SCC values are 
caused by major factors such as mastitis

The current study shows that the prediction 
performance has increased since 4 different input 
variables are used to predict SCC. Therefore, the higher 
the number of factors affecting the variation included 
in the model as a predictive model variable in the 
prediction of SCC, the better the model explains the 
variation of the response variable (R2 of 0.95). This is 
because the model does not include the physical and 
chemical properties of milk with a high correlation, 
which directly affects SCC. The difference is that the EC, 
pH, TFM, and density parameters used in the prediction 
of SCC in the current study better represent the factors 
causing the overall variation in SCC (Kayaalp et al., 
2015). It is seen that these previous studies reported 
lower results than our findings in the current study. 
This also suggests that model performance increases 
when the number of input and predictive model 
variables of milk physical and chemical properties 
directly affecting the variation in SCC is increased 
instead of milking information. In addition, it shows 
the importance of increasing the number of predictive 
model variables (input) together with the selection of 
the right predictive model variables, instead of using a 
large number of inputs that would complicate the model 
structure of the ANN. On the other hand, considering 
that mastitis, which is the major factor affecting SCC 
levels, can develop separately in each udder lobe when 
the results are evaluated together, it is understood that 
udder lobe SCC values and SCC measurement interval 
alone are not sufficient parameters in the prediction of 
SCC values of the total udder (for 4 lobes).

Similar to the present study, Bai et al. (2022) and 
Kusumoto & Yuasa (2019), in their studies on the diag-
nosis of mastitis with ANN, found the accuracy rates of 
their most successful models to be 97% and 90%, and 
error values of 4% and 7%, respectively. Hernández-
Ramos et al. (2019) achieved 100% success when they 
tried to predict the SCC of the milk of cheese samples in 
3 categories (low, medium, and high) using ANNs with 
the physicochemical compounds of hard sheep cheeses. 
This is because they estimate SCC categorically instead 
of numerically. As the response variable (out-put) SCC 
is included in the model by dividing it into 3 categories, 
it can be explained by the decrease in the number of fac-
tors that cause variation in intermediate values.
Model Performances

While the RMSE and AIC scores of the ANN 
model (0.01 and -338), respectively, were lower than the 
MLRM (0.10 and -240), the coefficient of determination 
(R2=0.95) was higher than the MLRM (0.79) (Table 4). 
It is understood that the ANN model has a lower AIC 
score, although the AIC score has the advantage of hav-

ing few numbers of parameters in the MLRM because it 
penalizes the number of parameters entering the model. 
This is due to using the likelihood function or MSE in 
calculating the AIC score (Panchal et al., 2010). The find-
ings show that the ANN model outperforms the control 
model (MLRM) in terms of prediction accuracy. This is 
because the control model, MLRM, is highly influenced 
by the interactions between the independent variables 
affecting SCC, which is our response variable, and gives 
misleading results. Interactions between input variables 
do not cause any change in the performance of our test 
model, ANN. Ebrahimi et al. (2019) compared different 
machine-learning applications to predict subclinical 
mastitis based on milk volume, flow rate, EC, milk-
ing time, milk fat, protein, and lactose contents. They 
reported that the deep learning model (%RMSE=15%) 
performed better in terms of error values. In the current 
research, the ANN model also performs better than the 
control model (MLRM). Lievaart et al. (2010) reported 
that they obtained the highest AIC score (3513) in the 
group with low SCC when they tried to predict SCC for 
the coming months using a linear mixed-effects model. 
Similar to our results, it shows that prediction success is 
reduced at low SCC levels. In addition, the linear model 
AIC score (-240) obtained in our research is significantly 
lower than the AIC score (3513) obtained in the afore-
mentioned study, and the predictive model variables 
(EC, TFM, density, and pH) used in the current study 
were more accurate in estimating SCC. The technique 
presented in the current study also saves time compared 
to the model presented in the other study since it does 
not require any weekly interval in the prediction of SCC.

When compared with the prediction and actual 
values conducted on the test set for both models, MLRM 
(Figure 4) shows a higher deviation from the actual ones 
compared to the ANN (Figure 5). Figures 3 and 5 show 
that the prediction values made on the test set with 
ANN are in parallel with the actual observation values 
and successfully explain the variation of the general 
-low and high- SCC (R2=0.95). This shows that the model 
developed with ANN better represents the factors that 
cause general variation in SCC. In other words, it shows 
that ANN better explains the variation occurring in 
SCC. From Figure 4, it is clarified that the error values 
belonging to the MLRM predictions validated on the 
test data observation values show a high deviation, 
causing the coefficient of determination (R2) to decrease 
and the loss values such as RMSE, MSE, MAE to 
increase. Observing high deviations in the MLRM error 
values caused the AIC score to increase, although the 
number of parameters included in the model was low. 
In addition, when the prediction curves of both the 
MLRM (Figure 4) and the ANN model are examined 

Table 4. Performance indicators of the models validated on the 
test set

Note: *NoP: Number of Parameters; MLRM= multiple logistic regression 
model; ANN= artificial neural networks.

Model N (test) R2 MSE RMSE AIC *NoP.
MLRM 125 0.79 0.01 0.1 -240 5
ANN 125 0.95 1.00E-4 0.01 -338 81
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(Figure 5), it is seen that the deviation decreases as the 
SCC values increase. In Figures 4 and 5, it is understood 
that SCC has a non-linear data structure. For this reason, 
high deviations are observed in the loss values of the 
predictions made with linear models. 

CONCLUSION

In this study, a deep learning approach (ANN) 
was compared to a low parameter estimation approach 
(MLRM) for predicting SCC, the gold-standard indica-
tor of subclinical mastitis. The ANN model showed 
superior performance with better metrics (AIC=-338; 
RMSE=0.01; R²=0.95) compared to MLRM (AIC=-240; 
R²=0.79), despite requiring more parameters. The 
training time was a satisfactory 683 seconds using 
TensorFlow GPU on a CUDA-supported system, 
demonstrating an efficient and cost-effective method 
for handling large datasets. Future research with super-
computers and automated milking data is expected to 

improve prediction accuracy further. Overall, SCC de-
tection using the deep learning technique proved effec-
tive and economical, highlighting the ongoing need for 
AI-driven solutions in animal health and milk quality.
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