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INTRODUCTION

Indonesia’s high population density and predomi-
nantly Muslim demographic drive a significant increase 
in demand for sheep meat during festive periods. 
However, local production constraints and suboptimal 
reproductive efficiency have escalated prices substan-
tially. To prevent the extinction of native sheep popu-
lations, there is a critical need to focus on improved 
breeding practices and enhance reproductive efficiency 
(Yue et al., 2023; Yuan et al., 2019; Mazinani & Rude, 
2020). The total sheep meat production in Indonesia was 
50,702.06 tons in 2021, increased to 52,162.3 tons in 2022, 
and further increased to 52,998.8 tons in 2023, showing 
a relatively high annual increase (Badan Pusat Statistik, 
2023). Thin-tailed sheep, also known as local lamb or vil-
lage sheep, is an indigenous breed raised in Indonesia, 
and these sheep are predominantly raised for meat pro-
duction (Putra et al., 2021). The genetic diversity of in-
digenous sheep in Indonesia is reflected in their physical 
traits and ability to adapt to tropical conditions, which 
can vary based on their geographical origins and the lo-
cal environments in which they are raised (Ibrahim et al., 
2020).

In sheep, litter size is considered a significant 
reproductive characteristic that offers substantial 
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ABSTRACT

The inhibin alpha (INHA) serves as a marker for the number of fully developed ovarian follicles 
and plays a crucial role in regulating the secretion of pituitary FSH (follicle-stimulating hormone) and 
the frequency of ovulation. This study aims to examine the effect of INHA gene polymorphisms on the 
litter size of thin-tailed sheep. Detection of single nucleotide polymorphisms (SNPs) in the INHA gene 
was performed using PCR and DNA sequencing techniques. A total of 45 ewes were included in the 
study. Three SNPs were identified: g.236311141G>C, g.236311367G>A, and g.236311368G>A. Further 
investigation of the g.236311367G > A variant revealed that individuals with the GA genotype had 
a significantly higher litter size than those with the AA or GG genotype (p<0.05). SNPs at positions 
g.236311141G/C and g.236311368G/A were non-synonymous mutations resulting in amino acid 
changes p.A225P and V301I, respectively. Our results suggest that g.236311367G>A loci may serve as a 
potential molecular marker for improving the litter size trait in thin-tailed sheep.
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economic advantages (Tao et al., 2021; Li et al., 2022; 
Yuan et al., 2019; Su et al., 2022). Achieving rapid 
genetic enhancement of the reproductive traits through 
conventional breeding techniques is a formidable 
task because of limited heritability and the fact that 
most quantitative traits are influenced by multiple 
genes (Chen et al., 2021; Vaishnav et al., 2023; Haile 
et al., 2020). Marker-assisted selection can be used to 
increase litter size and optimize production efficiency 
(Abd El-Hack et al., 2018; Wijayanti et al., 2022). INHA 
plays a pivotal role in regulating ovarian function and 
hormone secretion, impacting reproductive traits such 
as litter size. Inhibin is a heterodimer of alpha and beta 
subunits linked through two sulfur bonds. The beta 
subunits can be categorized into types A and B. Two 
variants of INH (INHA and INHB) have been identified. 
Inhibin A is composed of alpha subunits and beta A 
subunits; inhibin B is composed of alpha subunits and 
beta B subunits (Yu et al., 2019). Inhibin belongs to the 
transforming growth factor-β (TGF-β) superfamily and 
primarily functions to inhibit the synthesis and release 
of follicle-stimulating hormone (FSH) (Dolatabady et al., 
2022).

Studies in pigs and cattle have suggested that INHA 
indicates the quantity of mature ovarian follicles and 
regulates the release of pituitary FSH and ovulation 
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frequency (Dolatabady et al., 2022; Wasti et al., 2020). 
In males, inhibin inhibits testicular spermatogenesis 
and stimulates testosterone secretion by Leydig cells. 
This impacts the reproductive capabilities of mammals 
(Bian et al., 2023; Nikitkina et al., 2021). INHA has 
been linked to reproductive success in the Suhuai 
pig and Dazu black goat (Wang et al., 2021; Bian et al., 
2023). The highest levels of inhibin A were observed in 
poultry with the largest ovarian follicles. Inhibin B was 
primarily detected in F5 follicles. Inhibin upregulation 
in poultry is believed to support androgen production 
in theca cells (Wasti et al., 2020). In chickens, INHA 
was suggested to regulate egg-laying (Cui et al., 2021). 
Inhibin modulates reproductive processes through 
endocrine, paracrine, and autocrine mechanisms, 
exerting its effects primarily on the pituitary gland. 
INHA inhibits the release of FSH and exerts localized 
control on estrogen synthesis. Elevated levels of FSH 
and estrogen are associated with the increased ovulation 
in animals, hence enhancing the probability of multiple 
births. Consequently, INHA significantly impacts litter 
size (Bian et al., 2023). These results indicate that an 
SNP in the 5′UTR regulatory region of the INHA gene is 
significantly associated with reproductive performance 
and could improve breeding in Suhuai pigs (Liu et al., 
2017a). Isa et al. (2017) found a significant effect of the 
CT genotype at the g.3234A>G locus on litter size in the 
West African Dwarf goat population. Additionally, Liu 
et al. (2017a) noted a significant association between 
the G759A mutation and litter size in the INHA gene 
of the Jining Grey goat does, suggesting that INHA 
could be a potential marker for high prolificacy in 
goats. Furthermore, Pillai & Venkatachalapathy (2020) 
reported that the genotypes of c.911T>C (PP and PQ) 
had a significant influence on litter size in the INHA 
gene of Malabari goats in India.

The INHA gene in sheep is composed of two 
exons and one intron.  INHA gene is recognized 
as a promising candidate for studying litter size 
in livestock, but studies on INHA polymorphisms 
related to reproductive traits in Indonesian sheep 
are lacking. Enhancing reproductive performance is 
crucial in the sheep fattening and breeding industry. 
This improvement is particularly beneficial for small 
farmers, as it can enhance their economic livelihoods. 
In Indonesia, where livestock farming heavily depends 
on individual and small farms, improving the litter 
size trait in sheep could substantially increase farmer 
income.

The inhibin alpha (INHA) gene is currently 
recognized as a candidate gene related to litter size 
in sheep, goats, and pigs (Dolatabady et al., 2022; Bian 
et al., 2023; Liu et al., 2017b). Previous studies have 
highlighted the specific selection of the INHA gene 
in high fecundity sheep. Exon 2 of the INHA gene 
has been particularly interesting, as different sheep 
breeds exhibit nucleotide variations in this exon. These 
variations are believed to contribute to the increased 
litter size and improved reproductive performance 
in sheep (Dolatabady et al., 2022; Tian et al., 2010). 
Identifying SNPs and analyzing their associations with 
litter size is crucial for understanding the genetic basis 

of reproductive traits. Hence, the primary objective of 
this investigation is to identify INHA polymorphisms 
in thin-tailed sheep through sequencing and analyzing 
their associations with litter size.

MATERIALS AND METHODS

Ethics Statement

The Faculty of Veterinary Medicine at 
Airlangga University approved the use of animals in 
experiments. The Animal Care and Use Committee 
(ACUC) granted ethical permission for this study 
(No: 1.KEH.117.09.2022). Animal experiments were 
conducted in strict adherence to local legislation and 
regulations governing animal care.

Animal and Sample Preparation

In total, 45 local thin-tailed sheep, aged 2-4 years 
with body condition score (BCS) of 2.5-4.0, were 
subjected to aseptic blood collection from the jugular 
vein, yielding approximately 5 mL of blood per ewe. 
EDTA was used as an anticoagulant. Genomic DNA was 
extracted from the whole blood according to Sambrook 
& Russel (2001) protocol. The sheep had been raised 
at Barakah Farm, Wonosari-Malang, Indonesia. The 
ewes were chosen through random selection. In the 
study, the animals were provided with leguminous and 
gramineous grasses equivalent to 10% of their body 
weight during the day. Additionally, they were given a 
daily ration of commercial concentrate feed, amounting 
to 5% of their body weights per head. The concentrate 
feed had a composition of 15% crude protein.

Primer Design, Sequencing, and Genotyping

The primers were designed using Primer 
3 (https://primer3.ut.ee/) with the primer base 
sequence derived from the National Center for 
Biotechnology (NCBI) (https://www.ncbi.nlm.
n i h . g o v / s e a r c h / a l l / ? t e r m = N M _ 0 0 1 3 0 8 5 7 9 . 1 ) 
with access code NM_001308579.1. The target 
region was part of exon 2, spanning 511 bp (frag-
ment 1 F: TATCCTCTCTGTTCCTGCTC and R: 
GATTCCCTTAGATGCAAGCA). PCR was conducted 
using the gradient PCR system T100 Thermal Cycler 
with a reaction volume of 30 µL, consisting of 2.5 µL 
genomic DNA, 0.5 µL each of forward and reverse 
primer, 12.5 µL Taq Green PCR Master Mix, and 14 
µL ddH₂O. PCR amplification was performed using 
the following conditions: initial denaturation at 94 °C 
for 3 min; 35 cycles of denaturation at 94 °C for 30 s, 
annealing at 54 °C for 30 s, and elongation at 72 °C for 1 
s; final extension at 72 °C for 5 min. PCR products were 
identified using 1.5% agarose gel electrophoresis with 
ethidium bromide. Then, a 25-µL PCR product with 
forward primer was submitted to the 1st BASE DNA 
for capillary electrophoresis. The DNA sequences were 
analyzed using the BioEdit program ver. 7.00 (Tom Hall, 
Ibis Therapeutics, California, USA) and SNPs were con-
firmed based on electropherogram results.
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Statistical Analyses

Genotyping data were calculated using Pop Gene 
version 1.32 (Yeh et al., 2022) to compute allele and 
genotype frequencies, assess polymorphism information 
content (PIC), evaluate heterozygosity (HE), determine 
the number of effective alleles, and use chi-square (χ2) 
tests to derive the corresponding p-value (Nei & Kumar, 
2000). Ewe populations with p-value < 0.05 from the χ2 

test were considered to adhere to the Hardy–Weinberg 
equilibrium. For statistical analysis, we used SPSS 
software, version 25. To investigate the correlation 
between genotype and litter size of Indonesian Thin-
tailed sheep, the model was as follows (Bian et al., 2023):

Yij = µ + Gi + eij

where Yij is the litter size phenotype of the individual 
Indonesian Thin-tailed sheep, µ is the population mean, 
Gi is the effect of genotype, and eij is the random error 
effect.

STRING Database Predicts Protein–Protein 
Interactions

Proteins regulate several physiological processes 
and investigating the connections between proteins 
can help understand the regulation of traits such as 
litter size. To examine the pathways by which INHA 
influences litter size, we used the STRING database to 
predict protein–protein interaction networks of INHA 
(https://string-db.org).

RESULTS

PCR Amplicons of Sheep INHA

INHA was PCR amplified using primers shown 
in Figure 1. PCR products were separated using 1.5% 
agarose gels. The 511 bp size of amplified fragments 
matched the expected target fragments, signifying the 
robust specificity of the amplification process.

SNPs Identification by Sequencing

A total of 511 base pairs (bp) derived from exon 2 
were sequenced. The insertion of genotype locations 
adhered to the latest version of the sheep genome 
assembly, Oar_Rambouillet_v1.0, linked to RefSeq (ac-
cession number NM_001308579.1). Sequence analysis 
of the entire population (n= 45) identified three poly-
morphisms (Figure 2). According to Table 1, the results 
obtained by sanger sequencing showed three-point mu-
tations in exons 2 of the INHA gene in comparison to the 
reference sequence (NM_001308579.1). Table 1 provides 
information including the location and impact of amino 
acid substitution for single nucleotide polymorphisms 
(SNPs).

One synonymous polymorphism (SNP2) was found 
in exon 2 of INHA. Additionally, two non-synonymous 
SNPs, SNP1 (A225P), resulted in a change from arginine 
to proline, and SNP3 (V301I) led to a substitution from 
valine to isoleucine were detected. Based on Ensemble 
data, two novel SNPs (SNP1 and SNP3) identified in 
this study have not been documented in the other sheep 
breeds described in the manuscript. Furthermore, our 
study did not identify any heterozygous individuals 
harboring the predicted mutation (GC and TA for 
SNP1). Genetic analysis of Indonesian thin-tailed sheep 
showed that (g. 236311141G/C and g. 236311367G/A) 
SNPs loci were in Hardy-Weinberg equilibrium (p>0.05), 
but the g. 236311368G/A locus did not (p>0.05). The 
all-SNP sites were in a low polymorphic information 
content state (PIC < 0.25), as shown in Table 2.

Association of Polymorphism with Litter Size in Thin-
Tailed Sheep

We analyzed all SNPs to assess their associations 
with litter size. Statistical analysis showed that the G/A 
genotype in SNP2 (g.236311367) or variant rs593506513, 
had a statistically significant association with litter 
size (Table 3). No significant associations were found 
between the other SNPs and the examined parameters 
related to litter size.

Figure 1.  Polymerase chain reaction results of Indonesian Thin-Tailed Sheep for the inhibin alpha (INHA) gene. M= 
100 bp DNA marker; Lines 1-15 show 511 bp PCR amplification results; bp= base pair.
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Functional Protein Association Networks (STRING)

Interactions between mutant genes were examined 
using the STRING database. This study demonstrated 
the interaction between sheep INHA and its functional 
partners by examining the protein–protein interaction 
networks between INHA and growth differentiation 
factor 9 (GDF9), bone morphogenetic protein 15 
(BMP15), FSH receptor (FSHR), and Anti-Mullerian 
hormone (AMH) (Figure 3).

Figure 1.  SNPs distribution of the INHA gene in Thin-tailed Indonesian sheep. (A-C) SNPs identified by sequencing.
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Figure 2. (A-C) SNPs identified by sequencing. SNPs distribution of the INHA gene in 
Thin-tailed Indonesian sheep.
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Figure 2. (A-C) SNPs identified by sequencing. SNPs distribution of the INHA gene in 
Thin-tailed Indonesian sheep.

Table 1. Details on SNPs locations and amino acid substitution effects in the INHA gene of Indonesian Thin-Tailed Sheep

Gene Mutation type SNP  Location Mutation region Amino acid change

INHA

G/C SNP1 g. 236311141 Exon 2 A225P
CCG/CCC

G/A SNP2 g. 236311367 Exon 2 P300P
CCG/CCA

G/A SNP3 g. 236311368 Exon 2 V301I
CCG/CCA

(A) (B)

(C)

Locus Genotype Allele frequency Ho He PIC Ne Chi square test 
(p value)

g. 236311141G/C GG GC CC G C 0.000 0.043 0.038 1.04 0.000(44) (0) (1) 0.98 0.02
g. 236311367G/A GG GA AA G A 0.044 0.085 0.073 1.09 0.001(42) (2) (1) 0.96 0.04
g. 236311368G/A GG GA AA G A 0.089 0.085 0.073 1.09 0.750(41) (4) (0) 0.96 0.04

Table 2. Frequencies of alleles and genotypes of the INHA gene in thin tail sheep

Note: PIC= polymorphism information content, Ho= observed heterozygosity, He= expected heterozygosity, Ne= effective allele numbers, HWE= 
Hardy–Weinberg equilibrium.

Table 3.  Association of INHA gene polymorphism and litter 
size in Indonesian thin-tailed sheep

Locus Genotype N LS (Mean ± SD) 
g. 236311141G/C GG 44 1.90±0.67

CC 1 2.00
g. 236311367G/A GG 42 1.85±0.60b

GA 2 3.00±1.41a

AA 1 2.00±0.00ab

g. 236311368G/A GG 41 1.92±0.68
GA 4 1.75±0.50

Note:  Means in the same column with different superscript differ 
significantly (p<0.05). LS=litter size.
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DISCUSSION
 
INHA plays a pivotal role in the suppression of 

FSH release by the pituitary gland and interacts with 
GDF9, BMP15, and FSHR (Yu et al., 2019). Immunization 
against inhibin improves ovarian follicular develop-
ment, ovulation rate, and transferable embryos by 
increasing FSH secretion (Dolatabady et al., 2022). 
INHA—synthesized by oocytes—is a member of the 
TGF-β superfamily, which regulates follicular develop-
ment (Grieco et al., 2011; Wang et al., 2021; Wasti et al., 
2020; Li et al., 2016). INHA performs crucial functions 
in regulating the ovulation rate in many species (Pillai 
& Venkatachalapathy, 2020). Given the significant roles 
played by INHA in female fertility, it is a potential 
candidate for enhancing reproductive traits in sheep 
(Dolatabady et al., 2022). In sheep, INHA has been 
scarcely studied, and the influence of INHA polymor-
phisms on litter size in thin-tailed sheep is unclear. 
Previous research by Dolatabady et al. (2022) identified 
novel mutations in four Iranian sheep breeds exon 2 
of the INHA gene, including two SNPs (317C>A and 
683C>T) resulting in amino acid changes, with frequen-
cies varying among sheep breeds. In our study, three 
SNPs were detected within the amplified portion of 
INHA in thin-tailed sheep. Two SNPs, c.674G/C and 
c.901G/A, resulted in alterations in amino acids at posi-
tions 225 and 301 in the INHA sequence. A common 
SNP, rs593506513 (SNP2), was found in both studies, 
indicating its presence across different sheep breeds. 
This shared SNP underscores its potential significance 

in sheep genetics and reproduction, warranting further 
research into its functional effects in different breeds.

Only one locus had three INHA genotypes at the 
gene location investigated, whereas the remaining four 
loci had two INHA genotypes in the population (Table 
3). The three SNPs variant exhibited low polymor-
phism (0.25 > PIC). Our findings revealed the absence 
of individuals with the heterozygous TA genotype at 
this genetic locus. Our study has limitations because 
the sample size of sheep included was relatively small. 
Consequently, expanding the sample size would allow 
for the inclusion of three genotypes, thereby resulting in 
the increased PIC value. In addition, some sheep devi-
ated from HWE (p≤0.05) at the examined loci (Table 3), 
suggesting a potential influence of selection.

Non-synonymous mutations are responsible for 
amino acid substitutions and can significantly impact 
complex traits. For instance, point mutations in BMP15, 
MTNR1A, BMP7, and BMP2 (Calvo et al., 2020; Zhang et 
al., 2019; He et al., 2019) have been shown to affect litter 
size significantly. There has been a growing focus on the 
significance of synonymous mutations in influencing 
reproductive characteristics. A synonymous mutation 
in MTNR1A had a strong correlation with reproductive 
seasonality in the Rasa Aragonesa sheep (Martínez-Royo 
et al., 2012). Consistently, a synonymous mutation in the 
TGF-β-induced factor homeobox 1 gene was strongly 
associated with litter size in the small-tailed Han sheep 
(Wang et al., 2020). Significant genetic variation was 
identified within the luteinizing hormone beta poly-
peptide gene, demonstrating a strong association with 
litter size in the small-tailed Han sheep (Wang et al., 
2020). Consistently, a synonymous mutation in FSHR 
was highly correlated with litter size in both small-tailed 
Han sheep and Hu sheep (Pan et al., 2014). These find-
ings underscore the significance of genetic alterations as 
valuable markers for enhancing sheep fertility. 

In this study, a g.236311367G>A synonymous 
mutation exhibited a significant association with lit-
ter size in Indonesian thin-tailed sheep. Specifically, 
individuals with the GA genotype displayed larger 
litter sizes than those with the AA or GG genotype 
(p<0.05). Synonymous mutations, once overlooked, are 
now recognized for their significant roles in influencing 
reproductive traits. For instance, a synonymous muta-
tion in the melatonin receptor 1A gene was identified 
in Rasa Aragonesa sheep, showing a strong association 
with reproductive seasonality (Martínez-Royo et al., 
2012). In Small Tail Han sheep, a synonymous mutation 
in the luteinizing hormone beta polypeptide gene was 
found to be highly correlated with litter size (Wang et 
al., 2020). Additionally, a synonymous mutation in the 
follicle-stimulating hormone receptor gene was associ-
ated with litter size in various sheep breeds, including 
Small Tail Han and Hu (Pan et al., 2014). These discover-
ies highlight the potential of synonymous mutations 
as valuable markers for enhancing sheep fecundity. 
Many studies have reported that INHA is involved in 
reproductive function (Wang et al., 2021; Wasti et al., 
2020; Bian et al., 2023; Cui et al., 2021; Yu et al., 2019). The 
SNP at g.236311367G > A was reported in four Iranian 
Indigenous sheep (Dolatabady et al., 2022). 

Figure 3.  The network summary view shows the inhibin alpha 
(INHA) gene interaction. INHA gene concurrence of 
sheep with line color indicates the type of interaction 
evidence. Note: Inhibin subunit beta C (INHBC), 
Inhibin beta A chain (INHB), Uncharacterized 
protein (UBE2QL1), AMH_N domain-containing 
protein (AMH), Bone morphogenetic protein 15 
(BMP15), Growth differentiation factor 9 (GDF9), 
Uncharacterized protein (W5PLG8), Follicle-
stimulating hormone receptor (FSHR), Transforming 
growth factor beta receptor 3 (TGFBR3), Activin 
receptor type-2A (ACVR2A).
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The connection between the BMP15 prodomain 
and INHA is firmly established, indicating that the 
BMP15 prodomain might oversee the collaboration 
between BMP15 and GDF9. Despite no direct proof of a 
physical interaction between the prodomains of GDF9 
and INHA, considering the functions of prodomains 
in related TGFB family members, it’s plausible that 
the GDF9 prodomain could also interact with INHA 
to modulate their post-secretion functions (Heath et 
al., 2017). AMH signaling is crucial for determining 
sex and regulating gonadal function by controlling the 
number of follicles and selecting the dominant one. 
In the ovarian function regulation within the TGF-β 
family, AMH and inhibin play complementary roles. 
The heightened expression of INHA in the ovaries of 
FecBBB/B+ sheep, responsible for encoding the inhibin-α 
subunit, suggests a potential association with inhibin 
levels (Ma et al., 2023). Protein interaction networks play 
a critical role in understanding complicated features 
such as reproduction, as many physiological processes 
depend on the connections between many proteins. The 
INHA protein interacts with multiple proteins involved 
in follicular growth, including GDF9, AMH, FSHR, and 
BMP15 (Chu et al., 2007). In the g.236311367G>A gene of 
INHA, thin-tailed sheep with mutant-type alleles (GA, 
AA) have bigger litters than ewes with wild-type alleles 
(GG). These results show that INHA may play a part in 
the development of ovarian follicles, especially when 
there is a synonymous mutation. It may work with 
GDF9, AMH, FSHR, and BMP15. This could explain the 
variations in fertility reported in thin-tailed Indonesian 
sheep. Our findings indicate that a synonymous 
mutation in INHA may contribute to improving litter 
size traits in sheep.

CONCLUSION

This study identified a total of three SNPs sites 
(g. 236311141, g. 236311367, and g. 236311368) in the 
INHA gene of Indonesian Thin-tailed sheep. Among 
these loci, the g.236311367G>A SNP was found to 
have a significant association with litter size. The 
g.236311367G>A locus has the potential to serve as a 
genetic marker for reproduction traits, including litter 
size, for future breeding purposes.
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