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ABSTRACT

This study aimed to investigate the genetic impact of single nucleotide polymorphisms (SNPs)
of the sterol regulating element binding factor 1 (SREBF1) and scavenger receptor class B member 1
(SCARBI) genes on carcass and meat characteristics, as well as fatty acid composition, in the Bali cattle.
The blood and beef samples used for DNA sequencing, physical assessment, and fatty acid analysis
were collected from 95 male Bali cattle. The ultrasound images were analyzed using the Image-J NIH
software. A total of 4 SNPs were identified in the SREBF1 gene and 5 SNPs in the SCARBI gene. The
results showed that the 4 SNPs in the SREBFI gene, namely g.12629T>C, g.12731T>C, g.12881A>G,
and g.12986C>T, were associated with heptadecanoic acid (C17:0) and cis-11-eicosanoic acid (C20:1).
The SNPs g.12731T>C of the SREBFI gene was associated with fat content, palmitoleic acid (C16:1),
stearic acid (C18:0), cis-11-eicosanoic acid (C20:1), and total fatty acids. Furthermore, 4 SNPs in the
SCARB1 gene, including g.72219C>T, g.72380C>A, g.72517G>A, and g.72607C>T correlated with
longissimus dorsi thickness (LDT). All SNPs in the SCARBI gene showed significant associations with
cis-10 heptadecanoic acid (C17:1) and cis 8,11,14-eicosatrienoic acid (C20:3n6). The SNP g.72400A>G
of the SCARBI gene was related to caprylic acid (C8:0), lauric acid (C12:0), arachidonic acid (C20:4n6),
monounsaturated fatty acids (MUFA), and unsaturated fatty acids (UFA). These results suggested that
the identified polymorphisms in the SREBF1 and SCARBI genes could serve as valuable references for
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investigating similar genes in other cattle breeds, particularly concerning fatty acids.
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INTRODUCTION

In Indonesia, four cattle-breeds significantly con-
tribute to the diverse livestock production. These breeds
encompass Bali (Bos javanicus), Zebu (Bos indicus),
Taurine (Bos taurus), and crossbred (Bos indicus x Bos
javanicus and Bos indicus x Bos taurus), each serving a
distinct role in meat, milk, and working purposes. Bali
cattle, originating from the banteng (Bibos banteng), are
the native cattle of Indonesia, with excellent adaptability
to the tropical environment (Talib, 2022). Compared to
Bos taurus and Bos indicus, Bali cattle possess unique
morphological traits characterized by compact carcasses
and harmonious body shapes, which are considered ide-
al for meat production. This unique morphological trait
makes Bali cattle significantly have a high carcass per-
centage, with an average of 52.76% (Suryanto et al., 2014)
compared to Ongole cattle (50%) (Sutarno & Setyawan,
2016), indicating their potential to yield superior-quality
meat (Tahuk et al., 2018).

Bali cattle have a small frame but can be efficiently
fattened and mature young (Littler, 2007). The practice
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of fattening at a young age accelerates intramuscular
fat development compared to larger-framed cattle with
a slower fattening period. The presence of fat plays a
crucial role in the flavor profile of meat (Iida et al., 2015),
as it is stored in various body locations, including organ,
subcutaneous (under the skin), intermuscular (between
the muscles), and intramuscular (marbling within the
muscles) (Hall et al., 2016). As cattle age and receive
proper nutrition, there is an increase in fat content, lead-
ing to the production of enhanced flavor (Sakowski ef
al., 2022).

At 3 years of age, Bali cattle possess an intramus-
cular fat percentage of 4.50% (Jakaria et al., 2017), which
is particularly rich in monounsaturated fatty acids
(MUFA), constituting 46% of its composition and con-
tains 10% polyunsaturated fatty acids (PUFA) (Ladeira et
al., 2018). These fatty acids are classified as saturated or
unsaturated fats based on their structural and chemical
properties. Moreover, flavor is a multifaceted aspect of
meat delicacies, influenced by various factors such as
the diet of cattle. This affects meat texture and flavor by
influencing intramuscular fat levels and fatty acid com-
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position (Schumacher et al., 2022). For example, linolenic
acid is a fatty acid that contributes to meat flavor (Dinh
et al., 2021). Cattle fed with a grain-based diet typically
exhibit lower levels of linolenic acid than those raised on
a grass-fed diet (Arshad et al., 2018).

Several molecular-based approaches have been
explored to improve the quality of Bali cattle by investi-
gating their genetic diversity and association with meat
quality traits. Dairoh et al. (2021) stated that SNPs in the
CAPN1 gene were associated with a marbling score in
Bali cattle. Dairoh et al. (2022) also stated that the 3'UTR
region of the CAPN1 gene was found in 8 base dele-
tions in Bali cattle. Furthermore, two specific SNPs in
the ADIPOQ genes (c.-399C>T and c.-273C>G) showed
potential as genetic markers of marbling score for Bali
cattle (Sutikno et al., 2018).

The sterol regulating element binding factor 1
(SREBF1) gene plays a crucial role in regulating animal
lipid metabolism and fatty acid synthesis. This gene reg-
ulates lipogenesis and gene expression in fat accumula-
tion and composition within muscle tissue (Liang et al.,
2020). The SREBF1 gene is also involved in fatty acid
biosynthesis, which is essential for synthesizing fatty ac-
ids (Kanehisa et al., 2019). The scavenger receptor class B
member 1 (SCARB1) gene is critical in lipid metabolism
and cholesterol transportation, as it regulates cholesterol
absorption and transfer within the body (Chinetti et al.,
2000). According to pathway analysis, the SCARBI gene
is associated with the marbling trait and plays a crucial
role in lipid metabolism, export, transport, catabolism,
and storage regulation (Park ef al., 2012). Furthermore, it
is regulated by 17 genes, including insulin, peroxisome
proliferator-activated receptors (PPARs), APOA1, and
FABPI.

In cattle, the SREBF1 gene is located on
chromosome 19 and has a length of 29.408 base
pairs, while the SCARBI gene is found on chro-
mosome 17 with a length of 46.860 base pairs
(Ensemble  database: =~ ENSBTAGO00000007884 and
ENSBTAG00000014269). Recent studies show that the
variations in these genes are related to meat quality in
cattle. Gao et al. (2022) stated that the 84 bp indel varia-
tion in SREBF1 was associated with intramuscular fat,
carcass, and body size of Chinese Qinchuan -cattle.
Genetic variations in the SREBF1 gene are associated
with meat quality characteristics, including marbling
levels (Li et al., 2014). The expression of the SCARBI
gene can influence meat characteristics such as marbling
(intramuscular fat patterns), tenderness, and meat flavor
(Li et al., 2018). Consequently, the SREBF1 and SCARBI1
genes were selected as candidates to determine the as-
sociations between single nucleotide polymorphisms
(SNPs) and meat quality traits in Bali cattle. During
the investigation, there was limited information on the
presence of polymorphisms in these genes, specifically
in Bali cattle (Bos javanicus). Therefore, this study aimed
to investigate the genetic effects of SNPs in the SREBF1
and SCARBI genes on carcass and meat characteris-
tics, as well as fatty acid composition, in the Bali cattle
population.

MATERIALS AND METHODS
Animals and Blood Samples

This study used 95 blood samples for DNA isola-
tion (Koshy et al., 2017), 91 ultrasound data, and 44
meat samples. Bali cattle used were male with a body
weight of 250-350 kg and ages ranging from 18-36
months. Subsequently, blood samples were collected
from the jugular vein using project tubes containing 1.5
mL EDTA. This experimental procedure was approved
by Animal Ethics Committees from the Department of
Food Security, Agriculture, and Fisheries of Banjarmasin
City (approval number: 520/624/DKP3/X11/2021). A 250
g meat sample from the tenderloin part of Bali cattle was
collected for fatty acid analysis.

Carcass and Meat Characteristics Data Collection

An ultrasonography device was used to record the
carcass and meat characteristics of live Bali cattle (Silva
et al., 2012). The ultrasound image data were collected
on live cattle using the retrieval technique described by
the Beef Improvement Federation (BIF, 2016). Portable
ultrasound (SIUI CTS-800, China) was used in bright-
ness mode, with a linear transducer at 7.1 MHz and a
depth of 80 mm. Subsequently, back fat thickness (BFT),
longissimus dorsi thickness (LDT), marbling score (MS),
and percentage of intramuscular fat (IMF) were carried
out transversally and longitudinally between 12-13%
thoracic vertebrae following the methods of Jakaria et al.
(2017), as shown in Figure 1a. This was followed by ana-
lyzing the images using Image-] NIH software (Image],
NIH, USA). The Image-] software was used to calibrate
the scale from units to millimeters. Ultrasound measure-
ments were collected at three points of live Bali cattle
following the methods of Crews et al. (2016), including
back fat thickness, longissimus dorsi thickness, and in-
tramuscular fat. Back fat thickness (A) was measured by
drawing a vertical line in the middle, from the fat layer
under the skin to the lower back. Longissimus dorsi thick-
ness (B) was measured from the bottom of the back fat
to the top of the bone. A 30 mm x 30 mm square guide-
line (C) was employed for measuring intramuscular
fat, as shown in Figure 1b. The measurement values of
intramuscular fat were subjected to simple linear regres-
sion analysis to establish an equation for calculating the
intramuscular fat percentage. The marbling was scored
according to AUSTRALIAN MEAT and MSA (marbling
reference standard). The AUS-MEAT marbling score
ranges from 0 to 9 (AUS-MEAT, 2018).

Fatty Acid Profile

The fatty acid composition was analyzed using
the Association of Official Analytical Chemists (AOAC,
2019). In this process, 40 g of meat was subjected to
lipid extraction using a chloroform-methanol solution.
Transesterification was used to convert the extracted lip-
ids into fatty acid methyl esters (FAMEs). FAMEs were
extracted using a hexane solution, centrifugation, and
drying. The resulting FAMEs products were dissolved
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(a)

(b)

Figure 1. (a) Position of ultrasound image scan (USG) on live cattle, 1= longitudinal; 2= transverse (BIF 2016), (b)
ultrasound image analysis using Image-NIH at a transverse viewpoint (A=backfat thickness; B=longissimus

dorsi thickness; C= intramuscular fat).

in a chloroform solution and filtered to remove unwant-
ed compounds using solid-phase extraction. FAMEs
obtained were injected into the gas chromatography
machine at 1 pL. The separated fatty acids were detected
and measured using a mass spectrometer. Subsequently,
each fatty acid component’s retention time and peak
measurements were recorded. Information about each
fatty acid component was obtained by comparing the
retention time with standards. The gas chromatography
analysis effectively identified and categorized various
fatty acids into saturated, monounsaturated, and poly-
unsaturated fatty.

Primer Design and DNA Amplification

The SREBF1 and SCARBI primer sequences
were designed using an Ensemble genome browser
with  access codes ENSBTAG00000007884  and
ENSBTAG00000014269. The length of primer se-
quences was determined using the Pimer3, BLAST
primer websites (Ye ef al, 2012), Multiple Primary
Analyzer, and Primary Stats (Hung & Weng, 2016).
The primer sequences included forward and reverse
as follows F: 5-TTACCTGAAAACCCCTCACC-3,
R: 5-GTTGCCATCCACGAAGAAAC-3" for SREBF1
gene and F: 5-TCTTTGAGCCAGCATCTTCT-3, R:
5-CCAGGTTCTTGTCGGTATCT-3" for SCARBI gene,
producing PCR products of 783 bp for both genes. The
SREBF1 and SCARBI1 genes were amplified using a
thermocycler AB System machine, following the PCR
conditions, encompassing 1-minute pre-denaturation at
95 °C, 35 cycles of denaturation at 95 °C for 15 seconds,
annealing at 57 °C (SCARB1) and 56°C (SREBF1) for 15
seconds, extension at 72 °C for 10 seconds, and 3 min-
utes final extension at 72 °C. In the electrophoresis pro-
cess, PCR products were separated by 1% agarose gel
and examined with a UV Transilluminator (BioradTM,
California, USA).

DNA Sequencing and Genotyping
The DNA sequencing analysis was performed
on a 20 pL PCR product placed in a 96-well PCR tray

and sealed with a film to be analyzed by the 1% Base
Laboratory Services in Selangor, Malaysia. The DNA
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sequencing was analyzed using Sanger techniques fol-
lowing the methods of Crossley et al. (2020). The SNPs
identification and genotype determination from the
DNA sequencing results were analyzed using FinchTV
(Draper, 2008) and Molecular Evolutionary Genetic
Analysis (MEGA10) software (Long et al., 2018). The
SNPs positions were named starting from the first base
of the complete gene sequence.

Data Analysis

The allele frequency, genotype frequencies,
observed and expected heterozygosity, and Hardy-
Weinberg equilibrium were calculated using the meth-
ods of Webb et al. (2021) with PopGen 1.32 software.
Allele and genotype frequency values were calcu-
lated with the formula of Nei & Kumar (2000) expressed
below:

o= 2ny + Xixjng) My

¢ 2N

Where xi is allele frequency, xii is the genotype frequen-
cy, it is the number of individuals with genotypes ii, nij
is the number of individuals with genotypes ij, and N is
the sample number of individuals.

Heterozygosity (Ho) and expected heterozygosity
(He) values were calculated with the formula of Nei &
Kumar (2000) expressed below:

q
N,
Hy= ) —2 Hezl—inz

i#j i=1

Where Ho is the heterozygosity observation value, N1ij
is the number of individuals with heterozygous, N is the
observed number of individuals, He is the heterozygos-
ity expectations value, xi is the frequency of allele, and g
is the alleles number.

The following formula from Nei & Kumar (2000)
was used to calculate Hardy-Weinberg equilibrium by
chi-Square (x2) as follows:

2= Z(O—EE)2

Where x? is the chi-square, O is the observed value, and
E is the expected value.
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The association of SREBF1 and SCARBI genotypes
with ultrasound back fat thickness, longissimus dorsi
thickness, marbling score, intramuscular fat content,
and fatty acids were analyzed following the methods of
Castelloe (2018) using the General Linear Model (GLM)
with SAS 9.4 (SAS Institute, USA). The mathematical
model for the GLM is as follows:

Yij =+ Gi+eijj

Where Yij is the phenotypic observation, p is the total
mean, Gi is the genotype effect, and eij is the random
error. Moreover, carcass and meat characteristics, in-
cluding fatty acid composition, were also corrected to 36
months of age and similar environment maintenance by
Salamena & Papilaja (2010) formula, as follows:

Xstandard

Xi corrected = ] x X observation value i

Xobservation

Where X 1s corrected data i; X is standard
i corrected standard

group average; X, . i3 observation group average;

and X is observation value i.

observation value I

RESULTS
Novel of Single Nucleotide Polymorphism

The sequence alignments of 95 samples detected
4 SNPs in the SREBF1 gene and 5 SNPs in the SCARB1
gene. These genetic variations were distributed
across both the coding and non-coding regions of
Bali cattle. SNPs in the SREBF1 and SCARBI genes
were detected through the analysis of chromatogram
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images, indicating double peaks, as shown in Figures
2 and 3. The analysis of the SREBFI gene sequence
encompassed the span from exon 13 to 15 regions. The
4 SNPs were found between the regions of exon 13 until
intron 14 only, which included g.12629T>C on exon 13,
g.12731T>C on intron 13, g.12881A>G on exon 14, and
g.12986C>T on intron 14, as shown in Table 1.

The SCARBI1 gene sequence was covered from
intron 7 to intron 8 regions. The 5 SNPs of the SCARB1
gene found in Bali cattle were g.72219C>T on intron 7,
g.72380C>A and g.72400A>G on exon 8, g.72517G>A,
and g.72607C>T on intron 8. Among these SNPs, 4 SNPs,
namely g.72219C>T, g.72400A>G, g.72517G>A, and
g.72607C>T, of the SCARBI gene represented transition
mutations, while 1 SNPs (g.72380C>A) was a transver-
sion mutation. The SNPs g.72380C>A and g.72400A>G
of the SCARBI gene were non-synonymous, causing
amino acid changes, as shown in Table 1.

Polymorphism of SREBF1 and SCARB1 Genes

All SNPs in the SREBF1 and SCARBI genes were
polymorphic based on genetic diversity analyses. The
number of homozygous BB for SNPs g.12629T>C,
g.12731T>C, and g.12881A>G was more than 90% in
the SREBF1 gene. In contrast, for SNPs g.12986C>T,
AA genotypes were higher compared to the BB geno-
type. In the case of the SCARBI gene, the BB genotype
had the highest values for most SNPs, except for SNPs
g.72400A>G. Table 2 shows the genotype, allele frequen-
cies, heterozygosity, and Hardy-Weinberg equilibrium
of the SREBF1 and SCARBI genes. All SNPs identified
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Figure 2. Double band chromatogram of the SREBF1 genes in Bali cattle
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Figure 3. Double band chromatogram of the SCARBI genes in Bali cattle

Table 1. SNPs information on the SREBF1 and SCARB1 genes in Bali cattle

Gene SNPs Location Variation type dbSNP Amino acids

SREBF1 g.12629T>C Exon 13 Transition Novel Ser/Ser
g.12731T>C Intron 13 Transition Novel -
g.12881A>G Exon 14 Transition 15464587519 Ala/Ala
g.12986C>T Intron 14 Transition 15109146406 -

SCARBI1 g.72219C>T Intron 7 Transition Novel -
g.72380C>A Exon 8 Transverse Novel Ser/Tyr
g.72400A>G Exon 8 Transition Novel Thr/Ala
g.72517G>A Intron 8 Transition Novel -
g.72607C>T Intron 8 Transition Novel -

Note: Ala= Alanine; Ser= Serine; Tyr= Tyrosine; Thr= Threonine.
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in the SREBF1 gene and 1 specific SNPs (g.72400A>G) in
the SCARBI gene exhibited Ho values lower than their
respective He values, indicating a deviation from the
Hardy-Weinberg equilibrium. However, 4 SNPs in the
SCARBI1 gene (g.72219C>T, g.72380C>A, g.72517G>A,
and g.72607C>T) were found to be in Hardy-Weinberg
equilibrium.

Association Analysis

This study indicated that all SNPs within the
SREBF1 gene showed no significant association
(p>0.05) with carcass and meat characteristics of Bali
cattle. However, SNPs in the SCARBI gene were signifi-
cantly associated (p<0.05) with carcass characteristics,
as presented in Table 3. Significant associations (p<0.05)

were found among the 4 SNPs in the SCARBI gene
(g.72219C>T, g.72380C>A, g.72517G>A, and g.72607C>T)
and longissimus dorsi thickness (LDT).

In the association analyses, the polymorphism
within the SRBEF1 and SCARBI genes significantly
affected the fatty acid composition in Bali cattle. Based
on statistical analysis, 4 SNPs (g.12629T>C, g.12731T>C,
g.12881A>G, and g.12986C>T) of the SREBFI gene
showed significant associations (P<0.05) with heptadeca-
noic acid (C17:0) and cis-11-eicosenoic acid (C20:1).
As shown in Table 4, SNPs g.12731T>C in the SREBF1
was directly influenced by the fat content, palmitoleic
acid (C16:1), stearic acid (C18:0), cis-11-eicosenoic acid
(C20:1), and total fatty acids. All SNPs (g.72219C>T,
g.72380C>A, g.72400A>G, g.72517G>A, and g.72607C>T)
in the SCARBI gene showed significant associations

Table 2. SNPs diversity values of the SREBF1 and SCARBI genes in Bali cattle

Genotypic frequencies

Allelic frequencies

Gene SNPs N AA AB BB A B H, H, Test

SREBF1 g.12629T>C 95 0.01 0.07 0.92 0.05 0.95 0.074 0.091 *
g.12731T>C 95 0.01 0.06 0.93 0.04 0.96 0.063 0.081 *
g.12881A>G 95 0.01 0.07 0.92 0.05 0.95 0.074 0.091 *
g.12986C>T 95 0.92 0.07 0.01 0.95 0.05 0.074 0.091 *

SCARBI1 8.72219C>T 95 0.00 0.04 0.96 0.02 0.98 0.042 0.041 0.033ns
g.72380C>A 95 0.00 0.05 0.96 0.02 0.98 0.042 0.041 0.033ns
g.72400A>G 95 0.92 0.06 0.02 0.95 0.05 0.063 0.100 *
g.72517G>A 95 0.00 0.04 0.96 0.02 0.98 0.042 0.041 0.033ns
8.72607C>T 95 0.00 0.04 0.96 0.02 0.98 0.042 0.041 0.033ns

Note: AA= reference genotype (wildtype); AB= heterozygous genotype; BB= mutant genotype; Ho= observed heterozygosity; He= expected heterozy-
gosity; ns=not significant; * means significantly= chi square values (x*test) > chi-square table (3.84: a0.05 db 2).

Table 3. Association of SNPs SREBF1 and SCARBI genes with carcass and meat characteristics in Bali cattle

Gene SNPs Genotype (N) LDT BFT MS IMF

SREBF1 2.12629T>C CC (83) 46.99 +5.87 1.89 +0.32 1.51 +£0.56 2.57£1.39
CT (7) 49.42 +4.68 1.83+0.20 1.36 £0.22 2.19+0.55

TT (1) 46.59 +nc 1.58 +nc 1.87 +nc 3.46 £ nc

g.12731T>C TT (1) 46.59 £ nc 1.58 £ nc 1.87 £ nc 3.46 +nc
TC (6) 50.61 +3.79 1.83+0.22 1.41+0.19 2.32+0.46
CC (84) 46.93 £ 5.86 1.89 +£0.32 1.50 +£0.56 2.56 +1.39

g.12881A>G AA (1) 46.59 £ nc 1.58 + nc 1.87 +nc 3.46 + nc
AG (7) 49.42 +4.68 1.83+£0.20 1.36 £0.22 2.19+0.55
GG (83) 46.99 +5.87 1.89 +0.32 1.51 +£0.56 2.57+1.39
g.12986C>T CC (83) 46.99 +5.87 1.89+0.32 1.51+0.56 2.57 +1.39
CT (7) 49.42 +4.68 1.83+0.20 1.36 +0.22 2.19 +0.55

TT (1) 46.59 +nc 1.58 + nc 1.87 +nc 3.46 £ nc
SCARBI1 g.72219C>T CT (4) 53.37 + 8.64* 1.80+0.29 1.66 +0.55 2.95+1.37
TT (87) 46.89 +5.51° 1.88 +0.31 1.49 +0.54 2.53+1.35
g.72380C>A CA (4) 53.37 + 8.64* 1.80+0.29 1.66 +0.55 2.95+1.37
AA (87) 46.89 + 5.51° 1.88 +0.31 1.49 +0.54 2.53+1.35
g.72400A>G AA (84) 47.09 £ 5.49 1.87+0.31 1.49 +0.55 2.52+1.36
AG (6) 49.60 + 8.98 1.93+0.30 1.67 +0.46 298+1.15

GG (1) 39.64 + nc 2.11+nc 1.47 +0.00 2.47 £nc
g.72517G>A GA (4) 53.37 + 8.64* 1.80+0.29 1.66 +0.55 2.95+1.37
AA (87) 46.89 +5.51° 1.88£0.31 1.49 +0.54 2.53+1.35
g.72607C>T CT (4) 53.37 + 8.64* 1.80+0.29 1.66 +0.55 2.95+1.37
TT (87) 46.89 +5.51° 1.88 +0.31 1.49 +0.54 2.53+1.35

Note: N=number of samples; LDT= longissimus dorsi thickness; BFT= back fat thickness; MS= marbling score; IMF= intramuscular fat. Means in the
same column with different superscripts differ significantly (p<0.05); nc= not counted.
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(p<0.05) with cis-10 heptadecenoic acid (C17:1) and
cis-8,11,14-eicosatrienoic acid (C20:3n6). The results
of the association analysis between polymorphisms
in the SCARBI gene and the fatty acid composition of
Bali cattle are presented in Table 5. Moreover, the as-
sociation analysis showed that SNP g.72400A>G in the
SCARBI1 gene was significantly associated (p<0.05) with
caprylic acid (C8:0), lauric acid (C12:0), arachidonic acid
(C20:4n6), total monounsaturated fatty acids (MUFA),
and total unsaturated fatty acids (UFA).

DISCUSSION

The molecular method is a technology used in
genetic studies to obtain information about genetic
diversity at the DNA level. By utilizing this technique,
significant information can be obtained on genetic poly-
morphism and mutations in the population. Ellegren &
Galtier (2016) stated that genetic polymorphism varies
between species and within genomes, significantly af-
fecting species’ evolution and conservation. Molecular
technology is an important key in uncovering and ana-
lyzing genetic diversity at a more detailed and precise
level. In the present study, the DNA Sequencing tech-
nique was applied, which is a powerful tool in modern
genetics, fast, easy, and clear in disclosing complex and
important genetic information (Heather & Chain, 2016).

Sterol regulatory element binding proteins
(SREBF1) are transcription factors that are fundamen-
tally helix-loop-helix-leucine zippers. This transcription
factor is an essential regulator of fatty acid biosynthesis
and cholesterol homeostasis by binding to the DNA
sequence TCACNCCAC for the sterol regulatory ele-
ment (Felder et al., 2005). In this study, the SREBF1 gene
was amplified from blood DNA using a primer pair
from exon 13 to exon 15. The result of DNA sequenc-
ing in Bali cattle revealed that 4 SNPs (g.12629T>C,
g.12731T>C, g.12881A>G, and g.12986C>T) were identi-
fied in the exon 13 and intron 14 regions of the SREBF1
gene. The SNPs in the SREBF1 gene were synonymous
mutations. These synonymous mutations did not result
in any changes, while non-synonymous mutations were
genetic variations that altered amino acid components
(Berg et al., 2015). The genetic diversity within a popula-
tion can be measured by predicting the heterozygos-
ity value. In this study, all SNPs of the SREBF1 gene
exhibited a lower observed heterozygosity (Ho) value
compared to expected heterozygosity (He). This indi-
cated a deviation from the proportions of heterozygous
genotypes as predicted by the Hardy-Weinberg equilib-
rium (Hartl & Clark, 2007). This test instrument assessed
whether the proportions of genotypes within a popula-
tion remained consistent across generations (Waples,
2015) and was evaluated based on the X* value.

The influences of SNPs in the SREBF1 gene on
carcass and meat characteristics were analyzed in 91 live
Bali cattle. Based on statistical analysis, all SNPs in the
SREBF1 gene showed no significant differences (p>0.05)
among the genotypes investigated. The SREBF is a
transcription factor gene that affects marbling (Lee et al.,
2013; Siachos et al., 2021). According to Lee et al. (2013),
SNPs in the SREBF1 gene were significantly associated
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with marbling scores in the exon 9 region. The 84 bp in-
dels in intron 5 illustrated three different genotypes sig-
nificantly associated with stearic acid (C18:0) (Gamarra
et al., 2021). According to Bhuiyan et al. (2009), Korean
Hanwoo bulls with the LL genotype have more stearic
acids (18:0) in their muscle fats than those with the LS
and SS genotypes. Stachowiak et al. (2013) reported two
unique SNPs in the SREBF1 gene were promising mark-
ers for pig carcass and performance attributes, but not
effective markers for fatty acid content. In the present
study, 4 SNPs (g.12629T>C, g.12731T>C, g.12881A>G,
and g.12986C>T) in the SREBF1 gene were significantly
associated (p<0.05) with stearic acid (C18:0). The TC
genotype at SNPs g.12731T>C exhibited the highest av-
erage stearic acid (C18:0) of 34.23%. Shramko et al. (2020)
identified stearic acid as one of the saturated fatty acids
that did not significantly increase low-density lipopro-
tein (LDL) and the risk of cardiovascular disease (CVD).
Based on association analysis, 1 SNP in the SREBFI
gene (g.12731T>C) was associated (p<0.05) with fatty
acid composition, including caprylic (C8:0), heptadeca-
noic (C17:0), palmitoleic (C16:1), and eicosanoic acids
(C20:1). Palmitoleic acid (C16:1) had been identified as a
potential therapeutic agent for metabolic syndrome, in-
sulin resistance, and diabetes (Cruz et al., 2020; Bergman
et al., 2013), while eicosanoic acid (C20:1) exhibited an
anti-inflammatory or inflammation regulator in the
blood.

In the current study, 5 SNPs in the SCARBI gene
(8.72219C>T, g.72380C>A, g.72400A>G, g.72517G>A,
and g.72607C>T) were discovered in the intron 7
and intron 8 regions. The 2 novel SNPs (g.72380C>A
and g.72400A>G) in the SCARBI gene were non-
synonymous mutations. These non-synonymous
mutations were genetic variations that altered amino
acid components. The SNPs g.72380C>A resulted in an
amino acid change from serine to tyrosine, while the
SNPs g.72400A>G caused a change from threonine to
alanine, potentially affecting the structure and function.
This indicated that the SNPs influenced genes’ enzy-
matic activity and structural stability (Ng & Henikoff,
2006). Based on the results, 4 SNPs of the SCARBI gene
(g.72219C>T, g.72380C>A, g.72517G>A, and g.72607C>T)
were found in Hardy-Weinberg equilibrium. The Bali
cattle used for the analysis were obtained from breeders
with an uncontrolled mating system, which increased
the likelihood of inbreeding and deviated from the
Hardy-Weinberg equilibrium (Garnier-Gere et al., 2013;
Graffelman et al., 2017).

Based on statistical analysis, the 4 novel SNPs in the
SCARBI gene were significantly associated (p>0.05) with
backfat thickness (BFT) and longissimus dorsi muscle
thickness (LDT). Previous studies indicated that BFT
and LDT measurements using ultrasonography could
be used to estimate Body Condition Scoring (Hussein
et al., 2013). Based on the study conducted by Siachos
et al. (2021), BFT was found to positively correlate with
LDT (r=0.69), indicating that a rise in BFT increased LDT
values. This study showed a significant association of
the SCARBI genes with fatty acid composition in Bali
cattle. The results indicated that the SNP g.72400A>G
in the SCARBI gene was associated with saturated
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fatty acid components, namely caprylic (C8:0) and lauric
acids (C12:0), exhibiting negative impacts on health.
Previous studies showed that lauric acid increased
LDL (low-density lipoprotein) cholesterol levels in
the blood, potentially raising the risk of heart disease
(Pecina & Ivankovic, 2021). The GG genotype (SNPs
g.72400A>G) of the SCARBI1 gene exhibited the highest
average lauric acid composition at 0.13%. Furthermore,
all SNPs (g.72219C>T, g.72380C>A, g.72400A>G,
g.72517G>A, and g.72607C>T) of the SCARBI gene were
significantly associated with cis-10 heptadecenoic acid
(C17:1) and eicosatrienoic acid (C20:3n6). Eicosatrienoic
acid (C20:3n6) is classified as an omega-6 fatty acid,
constituting essential fats obtainable from food sources.
Omega-6 fatty acids can treat neurological problems,
alleviate symptoms of inflammatory disorders, enhance
metabolism throughout the body, and reduce cardiovas-
cular risk (Calder, 2013; Binia ef al., 2017).

This study also found a significant association
(p<0.05) of the SNP g.72400A>G in the SCARBI gene
with arachidonic acid (C20:4n6), total MUFA, and
UFA. The average value of arachidonic acid was the
highest in the GG genotype (0.35), while total MUFA
and UFA were found in the AA genotype at 17.91%
and 20.55%, respectively. Moreover, unsaturated fatty
acids, including omega-3 and omega-6, possessed
anti-atherogenic and anti-thrombogenic properties.
These characteristics helped reduce the formation of
atherosclerotic plaques in blood vessels and inhibit
blood clots that could block blood flow (Sakowski et al.,
2022; Horcada et al., 2020).

The results indicated that the SREBF1 and
SCARB1 genes exhibited the potential for selection
related to fatty acid traits in beef cattle. The new SNP
variations in these genes can also serve as valuable
information and references to improve meat quality,
particularly regarding fatty acids. However, further
validation in larger populations and different locations
is recommended to confirm the influence of the selected
genetic variations.

CONCLUSION

This study showed that 4 novel SNPs in the SREBF1
gene and 5 novel SNPs in the SCARBI gene significantly
influenced the fatty acid composition of Bali cattle.
These results suggested that the genetic diversity of the
SREBF1 and SCARBI genes exhibited the potential to
serve as valuable information or references in the selec-
tion of fatty acids in other beef cattle.

CONFLICT OF INTEREST

Jakaria and Cece Sumantri serve as editor of the
Tropical Animal Science Journal but have no role in the
decision to publish this article. The authors also declare
that there is no conflict of interest with any financial,
personal, or other relationships with other people or
organizations related to the material discussed in the
manuscript.

436  December 2023

ACKNOWLEDGEMENT

The authors are grateful to the Department of Food
Security, Agriculture, and Fisheries, South Banjarmasin,
South Kalimantan. This study was financially supported
by the National Research and Innovation Agency
(BRIN) via the Research and Innovation for Advanced
Indonesia (RIIM) with contract number: 18/IV/
KS5/06/2022 and 4830/1T3.L1/PT.01.03/P/B/2022.

REFERENCES

AOAC. 2019. Officials Methods of Analysis of AOAC
International. 21* ed. AOAC, Washington, DC.

Arshad, M. S.,, M. Sohaib, R. S. Ahmad, M. T. Nadeem,
A. Imran, M. U. Arshad, J. Kwon, & Z. Amjad. 2018.
Ruminant meat flavor is influenced by different factors
with special reference to fatty acids. Lipids Health Dis.
17:223. https://doi.org/10.1186/s12944-018-0860-z

AUS-MEAT. 2018. Australian Beef Carcase Evaluatin. 9" ed.
AUS-MEAT Limited Company, Murarri, AUS.

Bergman, B. C., D. Howard, I. E. Schauer, D. M. Maabhs, J. K.
Snell-Bergeon, T. W. Clement, R. H. Eckel, L. Perreault,
& M. Rewers. 2013. The importance of palmitoleic acid
to adipocyte insulin resistance and whole-body insulin
sensitivity in type 1 diabetes. J. Clin. Endocrinol. Metab.
98:E40-E50. https://doi.org/10.1210/jc.2012-2892

Berg, J. M., J. L. Tymoczko, & G. J. Gatto. 2015. Biochemistry.
8" ed. W. H. Freeman and Company, New York, NY.

BIF. 2016. Guidelines for Uniform Beef Improvement Program.
9" ed. North Carolina State University, North Carolina.

Binia, A., C. V. Martinez, M. A. Moreno, L. M. Gosaniu, & I.
Montoliu. 2017. Improvement of cardiometabolic markers
after fish oil intervention in young Mexican adults and the
role of PPARa L162V and PPARY2 P12A. J. Nutr. Biochem.
43:98-106. https://doi.org/10.1016/j.jnutbio.2017.02.002

Bhuiyan, M. S. A, S. L. Yu, ]. T. Jeon, Y. M. Cho, & E. W. Park.
2009. DNA polymorphisms in SREBF1 and FASN genes
affect fatty acid composition in Korean cattle (Hanwoo).
Asian-Australas. J. Anim. Sci. 22:765-773. https://doi.
org/10.5713/ajas.2009.80573

Calder, P. C. 2013. Omega-3 polyunsaturated fatty acids
and inflammatory processes: Nutrition or pharma-
cology. Br. J. Clin. Pharmacol. 75:645-662. https://doi.
org/10.1111/j.1365-2125.2012.04374.x

Castelloe, J. 2018. Power Analysis for Generalized Linear
Models Using the New Custom Statement in Proc Power.
SAS Institute Inc, Cary, North Carolina, NC.

Chinetti, G., F. G. Gbaguidi, S. Griglio, Z. Mallat, M.
Antonucci, P. Poulain, J. Chapman, J. C. Fruchart, A.
Tedgui, J. N. Fruchart, & B. Staels. 2000. CLA-1/SR-BI
is expressed in atherosclerotic lesion macrophages and
regulated by activators of peroxisome proliferator-acti-
vated receptors. Circulation 101:2411-2417. https://doi.
0rg/10.1161/01.CIR.101.20.2411

Crews, D., M. Dikeman, S. L. Northcutt, D. Garrick, T. T.
Marston, M. MacNeil, L. W. Olson, J. C. Paschal, G.
Rouse, B. Weaber, T. Wheeler S. Shackelford, R. E.
Williams, & D. E. Wilson. 2016. Guidelines for uniform
beef improvement program: Ultrasound scanning to mea-
sure body composition. Beef Improvement Federation.
9:16-56.

Crossley, B. M., J. Bai, A. Glaser, R. Maes, E. Porter, M.
L. Killian, T. Clement, & K. Toohey-Kurth. 2020.
Guidelines for sanger sequencing and molecular assay
monitoring. J. Vet. Diagn. Invest. 32:767-775. https://doi.
0rg/10.1177/1040638720905833

Cruz, M. M,, J. J. Simido, R. D. C. C. S4, T. S. M. Farias, V. S.


https://doi.org/10.1186/s12944-018-0860-z
https://doi.org/10.1210/jc.2012-2892
https://doi.org/10.1016/j.jnutbio.2017.02.002
https://doi.org/10.5713/ajas.2009.80573
https://doi.org/10.5713/ajas.2009.80573
https://doi.org/10.1111/j.1365-2125.2012.04374.x
https://doi.org/10.1111/j.1365-2125.2012.04374.x
https://doi.org/10.1161/01.CIR.101.20.2411
https://doi.org/10.1161/01.CIR.101.20.2411
https://doi.org/10.1177/1040638720905833
https://doi.org/10.1177/1040638720905833

DAIROH ET AL. / Tropical Animal Science Journal 46(4):428-438

Silva, F. Abdala, V. J. Antraco, L. Armelin-Correa, & M.
I. C. Alonso-Vale. 2020. Palmitoleic acid decreases non-
alcoholic hepatic steatosis and increases lipogenesis and
fatty acid oxidation in adipose tissue from obese mice.
Front. Endocrinol. 11:537061. https://doi.org/10.3389/
fendo.2020.537061

Dairoh, D., J. Jakaria, M. F. Ulum, & C. Sumantri. 2022. A new
SNP at 3'UTR region of calpain 1 gene and its association
with growth and meat quality in beef cattle. ]. Indones.
Trop. Anim. Agric. 47:273-284. https://doi.org/10.14710/
jitaa.47.1.17-28

Dairoh, D., J. Jakaria, M. F. Ulum, A. B. L. Ishak, & C. Sumantri.
2021. Association of SNP g.232 G>T calpain gene with
growth and live meat quality prediction using ultrasound
images in Bali cattle. Jurnal Ilmu Ternak Veteriner 26:49-56.
https://doi.org/10.14334/jitv.v26i2.2701

Dinh, T. T, K. V. To, & M. V. Schilling. 2021. Fatty acid com-
position of meat animals as flavor precursors. Meat Muscle
Biology 5:1-16. https://doi.org/10.22175/mmb.12251

Draper, N. 2008. Identification of SNPs, or Mutation in Sequence
Chromatograms. In: M. Starkey & R. Elaswarapu (eds).
Genomics Protocols. Methods in Molecular Biology™,
vol 439. Humana Press, New Jersey, US. https://doi.
org/10.1007/978-1-59745-188-8_3

Ellegren, H. & N. Galtier. 2016. Determinants of genetic diver-
sity. Nat. Rev. Genet. 17:422-433. https://doi.org/10.1038/
nrg.2016.58

Felder, T. K., K. Klein, W. Patsch, & H. Oberkofler. 2005. A
novel SREBP-1 splice variant: tissue abundance and trans-
activation potency. Biochem. Biophys. Acta. 1731:41-47.
https://doi.org/10.1016/j.bbaexp.2005.08.004

Gamarra, D., N. Aldai, A. Arakawa, M. M. de Pancorbo, &
M. Taniguchi. 2021. Effect of a genetic polymorphism in
SREBP1 on fatty acid composition and related gene ex-
pression in subcutaneous fat tissue of beef cattle breeds.
Anim. Sci. J. 92:e13521. https://doi.org/10.1111/asj.13521

Gao, Y. Y, G. Cheng, Z. X. Cheng, C. Bao, T. Yamada, G. F.
Cao, S. Q. Bao, N. M. Schreurs, L. S. Zan, & B. Tong. 2022.
Association of variants in FABP4, FASN, SCD, SREBP1,
and TCAP genes with intramuscular fat, carcass traits,
and body size in Chinese Qinchuan cattle. Meat. Sci.
192:108882. https://doi.org/10.1016/j.meatsci.2022.108882

Garnier-Géré, P. & L. Chikhi. 2013. Population Subdivision,
Hardy-Weinberg Equilibrium and the Wahlund Effect.
American Cancer Society, New York. https://doi.
0rg/10.1002/9780470015902.a0005446.pub3

Graffelman, J., D. Jain, & B. A. Weir. 2017. Genome-wide study
of Hardy-Weinberg equilibrium with next-generation
sequence data. Hum. Genet. 136:727-741. https://doi.
0rg/10.1007/s00439-017-1786-7

Hall, N., S. C. Schonfeld, & B. Pretorius. 2016. Fatty acids in
beef from grain and grass-fed cattle the unique South
African scenario. South. African. J. Clin. Nutr. 29:55-62.
https://doi.org/10.1080/16070658.2016.1216359

Hartl, D. L. & A. G. Clark. 2007. Principles of population genet-
ics. Ecoscience 14:544-545.

Heather, J. M. & B. Chain. 2016. The sequence of sequencer: The
history of sequencing DNA. Genomics 107:1-8. https://doi.
org/10.1016/j.ygeno.2015.11.003

Horcada, A., O. Polvillo, P. Gonzalez-Redondo, A. Lopez,
D. Tejerina, & S. Garcia-Torres. 2020. Stability of fatty
acid composition of intramuscular fat from pasture- and
grain-fed young bulls during the first 7d postmortem.
Arch. Anim. Breed. 63:45-52. https://doi.org/10.5194/
aab-63-45-2020

Hung, J. H. & Z. Weng. 2016. Designing polymerase chain re-
action primers using primer3plus. Cold. Spring. Harb.
Protoc. 9:821-826. https://doi.org/10.1101/pdb.prot093096

Hussein, H. A, A. Westphal, & R. Staufenbiel. 2013.

Relationship between body condition score and ultra-
sound measurement of backfat thickness in multiparous
Holstein dairy cows at different production phases. Aust.
Vet. J. 19:185-189. https://doi.org/10.1111/avj.12033

Iida, R, K. Saitou, T. Kawamura, S. Yamahguchi, & T.
Nishimura. 2015. Effect of fat content on sensory charac-
teristics of marbled beef from Japanese Black steers. Anim.
Sci. J. 86:707-715. https://doi.org/10.1111/asj.12342

Jakaria, H. Khasanah, R. Priyanto, M. Baihaqi, & M. F. Ulum.
2017. Prediction of meat quality in Bali cattle using ultra-
sound imaging. J. Indones. Trop. Anim. Agric. 42:59-65.
https://doi.org/10.14710/jitaa.42.2.59-65

Kanehisa, M., S. Goto, Y. Sato, M. Furumichi, & M. Tanabe.
2019. KEGG for the identification and annotation of path-
ways and modules in genomic datasets. Nucleic Acids Res.
47:590-596. https://doi.org/10.1093/nar/gky962

Koshy, L., A. L. Anju, S. Harikrishnan, V. R. Kutty, V. T. Jissa,
I. Kurikesu, P. Jayachandran, A. J. Nair, A. Gangaprasad,
G. M. Nair, & P. R. Sudhakaran. 2017. Evaluating ge-
nomic DNA extraction methods from human whole blood
using endpoint and real-time PCR assays. Mol. Biol. Rep.
44:97-108. https://doi.org/10.1007/s11033-016-4085-9

Ladeira, M. M., J. P. Schoonmaker, K. C. Swanson, S. K.
Ducket, M. P. Gionbelli, L. M. Rodrigues, & P. D.
Teixeira. 2018. Review: Nutrigenomics of marbling and
fatty acid profile in ruminant meat. Animals 12:5282-s294.
https://doi.org/10.1017/S1751731118001933

Lee, S. H., B. H. Choi, D. Lim, C. Gondro, Y. M. Cho, & C. G.
Dang. 2013. A genome-wide association study identifies
major loci for carcass weight on BTA14 in Hanwoo (Korean
cattle). PLoS ONE 8:e74677. https://doi.org/10.1371/jour-
nal.pone.0074677

Li, X, Z. Q. Du, & J. H. Yao. 2018. Polymorphisms in candidate
genes related to lipid metabolism and their association
with meat quality traits in Simmental cattle. Anim. Sci. J.
89:167-174.

Li, X,, S. Yang, Z. Tang, K. Li, M. F. Rothschild, & B. Liu. 2014.
Genome-wide scans to detect positive selection in Chinese
Holstein cattle. PLoS ONE 9:e83752.

Liang, C., L. Qiao, Y. Han, J. Liu, J. Zhang, & W. Liu. 2020.
Regulatory roles of SREBF1 and SREBF2 in lipid me-
tabolism and deposition in two Chinese representative
fat-tailed sheep breeds. Animals 10:1317. https://doi.
org/10.3390/ani10081317

Littler, B.2007. Live beef cattle assessment [internet]. Department
of Primary Industries, NSW. Primefact 622. http://www.
dpi.nsw.gov.au/_data/assets/pdf_file/0008/148355/Live-
beef-cattle-assessment.pdf [January 05, 2023].

Long, K., L. Cai, & L. He. 2018. DNA sequencing data
analysis. Methods Mol. Biol. 1754:1-13. https://doi.
org/10.1007/978-1-4939-7717-8_1

Nei, M. & S. Kumar. 2000. Molecular Evolution and
Phylogenetics. Oxford University Press, New York, NY.

Ng, P. C. & S. Henikoff. 2006. Predicting deleterious amino acid
substitutions. Genome Res. 17:138-145.

Park, H., S. Seo, Y. M. Cho, S. J. Oh, H. H. Seong, S. H. Lee,
& D. Lim. 2012. Identification of candidate genes associ-
ated with beef marbling using QTL and pathway analysis
in Hanwoo (Korean Cattle). Asian-Australas. ]J. Anim. Sci.
25:613-620. https://doi.org/10.5713/ajas.2011.11347

Pecina, M. & A. Ivankovic. 2021. Candidate genes and fatty ac-
ids in beef meat - a review. Ital. J. Anim. Sci. 20:1716-1729.
https://doi.org/10.1080/1828051X.2021.1991240

Sakowski, T., G. Grodkowski, M. Golebiewski, J. Slosarz,
P. Kostusiak, P. Solarczyk, & K. Puppel. 2022. Genetic
and environmental determinant of beef quality - a re-
view. Front. Vet. Sci. 9:819605. https://doi.org/10.3389/
fvets.2022.819605

Salamena, F. J. & J. Papilaja. 2010. Characterization and genetic

December 2023 437


https://doi.org/10.3389/fendo.2020.537061
https://doi.org/10.3389/fendo.2020.537061
https://doi.org/10.14710/jitaa.47.1.17-28
https://doi.org/10.14710/jitaa.47.1.17-28
https://doi.org/10.14334/jitv.v26i2.2701
https://doi.org/10.22175/mmb.12251
https://doi.org/10.1038/nrg.2016.58
https://doi.org/10.1038/nrg.2016.58
https://doi.org/10.1016/j.bbaexp.2005.08.004
https://doi.org/10.1111/asj.13521
https://doi.org/10.1016/j.meatsci.2022.108882
https://doi.org/10.1002/9780470015902.a0005446.pub3
https://doi.org/10.1002/9780470015902.a0005446.pub3
https://doi.org/10.1007/s00439-017-1786-7
https://doi.org/10.1007/s00439-017-1786-7
https://doi.org/10.1080/16070658.2016.1216359
https://doi.org/10.1016/j.ygeno.2015.11.003
https://doi.org/10.1016/j.ygeno.2015.11.003
https://doi.org/10.5194/aab-63-45-2020
https://doi.org/10.5194/aab-63-45-2020
https://doi.org/10.1101/pdb.prot093096
https://doi.org/10.1111/avj.12033
https://doi.org/10.1111/asj.12342
https://doi.org/10.14710/jitaa.42.2.59-65
https://doi.org/10.1093/nar/gky962
https://doi.org/10.1007/s11033-016-4085-9
https://doi.org/10.1017/S1751731118001933
https://doi.org/10.1371/journal.pone.0074677
https://doi.org/10.1371/journal.pone.0074677
https://doi.org/10.3390/ani10081317
https://doi.org/10.3390/ani10081317
http://www.dpi.nsw.gov.au/_data/assets/pdf_file/0008/
http://www.dpi.nsw.gov.au/_data/assets/pdf_file/0008/
https://doi.org/10.1007/978-1-4939-7717-8_1
https://doi.org/10.1007/978-1-4939-7717-8_1
https://doi.org/10.5713/ajas.2011.11347
https://doi.org/10.1080/1828051X.2021.1991240
https://doi.org/10.3389/fvets.2022.819605
https://doi.org/10.3389/fvets.2022.819605

DAIROH ET AL. / Tropical Animal Science Journal 46(4):428-438

relationships analysis of buffalo population in MOA island
of South-East West Maluku regency of Maluku Province.
J. Indones. Trop. Anim. Agric. 35:75-82. https://doi.
org/10.14710/jitaa.35.2.75-82

Siachos, N., G. Oikonomou, N. Panousis, G. Banos, G. Arsenos,
& G. E. Valergakis. 2021. Association of body condition
score with ultrasound measurements of backfat and lon-
gissimus dorsi muscle thickness in periparturient Holstein
cows. Animals 11:818. https://doi.org/10.3390/ani11030818

Silva, S. L., J. U. Tarouco, J. B. S. Ferraz, R. C. Gomes, P. R.
Leme, & E. A. Navajas. 2012. Prediction of retail beef yield,
trim fat and proportion of high-valued cuts in Nellore
cattle using ultrasound live measurements. Revista
Brasileira Zootecnia 41:2025-2031. https://doi.org/10.1590/
51516-35982012000900009

Schumacher, M., H. DelCurto-Wyffels, J. Thomson, & J.
Boles. 2022. Fat deposition and fat effects on meat qual-
ity - a review. Animals 12:1550. https://doi.org/10.3390/
anil2121550

Shramko, V. S., Y. V. Polonskaya, E. V. Kashtanova, E. M.
Stakhneva, & Y. I. Ragino. 2020. The short overview on
the relevance of fatty acids for human cardiovascular
disorders. Biomolecules 20:1127. https://doi.org/10.3390/
biom10081127

Stachowiak, M., J. Nowacka-Woszuk, M. Szydlowsky, & M.
Switonski. 2013. The ACAC and SREBF1 genes are prom-
ising markers for pig carcass and performance traits, but
not for fatty acid content in the longissimus dorsi and adi-
pose tissue. Meat. Sci. 95:64-71. https://doi.org/10.1016/j.
meatsci.2013.04.021

Suryanto, E., B. Bulkaini, A. Ashari, & I. W. Karda. 2014.
Carcass quality, marbling, and cholesterol content of

438  December 2023

male Bali cattle fed fermented cocoa shell. J. Indones.
Trop. Anim. Agric. 39:249-255. https://doi.org/10.14710/
jitaa.39.4.249-255

Sutarno, & A. D. Setyawan. 2016. The diversity of local cattle
in Indonesia and the effort to develop superior indig-
enous cattle breeds. Biodiversitas 17:275-295. https://doi.
0rg/10.13057/biodiv/d170139

Sutikno, S., R. Priyanto, C. Sumantri, & J. Jakaria. 2018.
Polymorphism of ADIPOQ and EDG1 genes in Indonesian
beef cattle. ]. Indones. Trop. Agric. 43:323-332. https://doi.
org/10.14710/jitaa.43.4.323-332

Tahuk, P. K., S. P. S. Budhi, P. Panjono, & E. Baliarti. 2018.
Carcass and meat characteristics of male Bali cattle in
Indonesian smallholder farms fed ration with different
protein levels. Trop. Anim. Sci. J. 41:215-223. https://doi.
0rg/10.5398/tasj.2018.41.3.215

Talib, C. 2022. Bali cattle in the breeding stock areas and their
future development. Wartazoa. 12:100-107.

Waples, R. S. 2015. Testing for hardy-weinberg proportions:
Have we lost the plot? J. Hered. 106:1-19. https://doi.
org/10.1093/jhered/esu062

Webb, A., J. Knolblauch, N. Sabankar, A. S. Kallur, J. Hey, &
A. Sethuraman. 2021. The popgen pipeline platform: A
software platform for population genomic analyses. Mol
Biol. Evol. 38:3478-3485. https://doi.org/10.1093/molbev/
msab113

Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen,
& T. L. Madden. 2012. Primer-BLAST: A tool to de-
sign target-specific primers for polymerase chain
reaction. BMC Bioinformatics 13:134. https://doi.
org/10.1186/1471-2105-13-134


https://doi.org/10.14710/jitaa.35.2.75-82
https://doi.org/10.14710/jitaa.35.2.75-82
https://doi.org/10.3390/ani11030818
https://doi.org/10.1590/S1516-35982012000900009
https://doi.org/10.1590/S1516-35982012000900009
https://doi.org/10.3390/ani12121550
https://doi.org/10.3390/ani12121550
https://doi.org/10.3390/biom10081127
https://doi.org/10.3390/biom10081127
https://doi.org/10.1016/j.meatsci.2013.04.021
https://doi.org/10.1016/j.meatsci.2013.04.021
https://doi.org/10.14710/jitaa.39.4.249-255
https://doi.org/10.14710/jitaa.39.4.249-255
https://doi.org/10.13057/biodiv/d170139
https://doi.org/10.13057/biodiv/d170139
https://doi.org/10.14710/jitaa.43.4.323-332
https://doi.org/10.14710/jitaa.43.4.323-332
https://doi.org/10.5398/tasj.2018.41.3.215
https://doi.org/10.5398/tasj.2018.41.3.215
https://doi.org/10.1093/jhered/esu062
https://doi.org/10.1093/jhered/esu062
https://doi.org/10.1093/molbev/msab113
https://doi.org/10.1093/molbev/msab113
https://doi.org/10.1186/1471-2105-13-134
https://doi.org/10.1186/1471-2105-13-134

