PEMODELAN KALIBRASI PEUBAH GANDA DENGAN PENDEKATAN REGRESI SINYAL P-SPLINE
Abstract
Model kalibrasi peubah ganda merupakan suatu fungsi hubungan antara satuan pengukuran yang dapat diperoleh melalui proses yang relatif mudah atau murah dengan satuan pengukuran yang memerlukan waktu lama dan biaya mahal. Secara umum data kalibrasi memiliki multikolinearitas yang tinggi antar peubah penjelas dan dimensinya jauh lebih besar daripada banyaknya contoh yang dimiliki. Oleh karena itu, sebagian besar pendekatan model kalibrasi memerlukan pereduksian data terlebih dulu. Solusi alternatif bagi pemodelan kalibrasi adalah regresi sinyal P-spline (RSP). RSP merupakan salah satu pendekatan nonparametrik yang mensyaratkan bahwa koefisien regresi berada dalam ruang fungsi mulus. Hal ini dilakukan dengan cara merepresentasikan koefisien regresi sebagai kombinasi linear dari basis B-spline. Penambahan penalti dilakukan untuk mengatasi multikolinearitas pada model serta meningkatkan kemulusan koefisien regresi. Indeks dari bilangan gelombang yang terukur oleh FTIR digunakan sebagai domain B-spline. Spektra gingerol diidentifikasi memiliki pengaruh pencaran multiplikatif, sehingga perlu dilakukan koreksi pencaran. Model RSP dengan koreksi pencaran multiplikatif pada senyawa aktif gingerol memberikan hasil prediksi yang lebih baik. Hal ini ditunjukkan oleh nilai RMSEP dan R2y vs ŷ masing-masing sebesar 0.06867 dan 95.73 %. Nilai-nilai tersebut jauh lebih kecil dari hasil yang diberikan oleh model regresi komponen utama dengan pra-pemrosesan koreksi pencaran maupun transformasi wavelet.