RESEARCH ARTICLE

Single Nucleotide Polymorphism of LDLR Gene as Atherogenesis Markers on *Macaca fascicularis* and *Macaca nemestrina*

Nenden Shanazvira Azizah¹, Bella Fatima Dora Zaelani², Yuliana², Ellis Dwi Ayuningsih², Dyah Perwitasari Farajallah^{2,3}, Huda Shalahudin Darusman^{2,4}, Uus Saepuloh^{2*}

¹Undergraduate Program of Department of Biology, Faculty of Mathematic and Natural Sciences, IPB University, Jalan Meranti, Kampus IPB Dramaga, Bogor 16680, Indonesia

²Primate Research Center, IPB University, Jalan Lodaya II No.5 Bogor, Indonesia

³Department of Biology, Faculty of Mathematic and Natural Sciences, IPB University, Jalan Meranti, Kampus IPB Dramaga, Bogor 16680, Indonesia

⁴School of Veterinary Medicine and Biomedical Sciences, IPB University, Jalan Agatis IPB Dramaga, Bogor 16680, Indonesia

Abstract

Long-tailed macaques (*Macaca fascicularis*) and pig-tailed macaques (*Macaca nemestrina*) are non-human primate species most commonly used as animal models in atherosclerosis. Genetic variation in the low-density lipoprotein receptor gene (LDLR) has been associated with normal variations in plasma lipid profile and the risk of coronary heart disease (CAD) in humans. In this study, the screening of nucleotide polymorphisms on LDLR genes as molecular markers of atherogenesis in *M. fascicularis* and *M. nemestrina* was performed. The LDLR gene of exon region 6 is amplified with specific primers. The sequencing technique determines the nucleotide sequences of the amplicons, and the results were bioinformatically analyzed. Analysis of the exon 6 region LDLR gene in *M. fascicularis* and *M. nemestrina* revealed no SNP in this exon. Based on the alignment results, the entire sample has a type of haplotype I. The type of haplotype owned by the six animals relates to the hyper-response. Both species are the potential for animal models to study atherosclerotic disease. The animal selection of hypo- from hyper-responder is more efficient using exon 6 as a genetic marker of *M. fascicularis* and *M. nemestrina* on a fat cholesterol diet.

Key words: atherosclerosis, LDLR gene, Macaca fascicularis, Macaca nemestrina, single nucleotide polymorphism

1. Introduction

Long-tailed monkeys (*Macaca fascicularis*) and pig-tailed macaques (Macaca nemestrina) are non-human primates often used as animal models in biomedical research. Macaca fascicularis has been used as an animal model to study human atherosclerosis because it is responsive and sensitive to dietary cholesterol and fat (Clarkson 1998). There are three animal groupings in the analysis of plasma cholesterol diet responses. Hyper-responder individuals are sensitive to dietary cholesterol and fat and show a marked progression of atherosclerosis. Hypo-responder individuals are less or insensitive to dietary cholesterol and fat, so they do not experience hypercholesterolemia (Beynen et al. 1987). Hyporesponder individuals do not show an obvious progression of atherosclerosis (Clarkson 1998).

*Coresponding author Email Address : <u>uussaepuloh@yahoo.com</u> The low-density lipoprotein receptor (LDLR) is a protein on the cell surface that mediates the endocytosis of LDL and other cholesterol-carrying particles. The human LDLR gene on chromosome 19p13.2 consists of 18 exons and 17 introns spanning 45 kilobases (kb) (Südhof *et al.* 1985). Mutations in the LDLR gene cause familial hypercholesterolemia, resulting in changes in the structure and function of the receptors that bind plasma low-density lipoprotein cholesterol (LDL cholesterol). These results lead to an increase in LDL cholesterol levels that can provide a wide range of the clinical spectrum, from the accumulation of cholesterol in the skin and connective tissue to atherosclerosis in coronary arteries that will cause death (Goldstein *et al.* 2001).

Atherosclerosis is a vascular disease characterized by the formation of an atheroma that

narrows the lumen of the artery and causes lumen obstruction. This impaired blood flow can lead to ischemia and tissue death, especially in areas of arterial flow in organs with very few collaterals, such as the heart and brain (Suryohudoyo 2000). *M. fascicularis* has similar symptoms of atherosclerosis to humans. In addition, *M. fascicularis* fed an experimental diet also showed a progression corresponding to the disease's clinical stages, including ischemia with coronary artery stenosis and sudden death resulting from occlusive thrombosis and myocardial infarction (Shelton *et al.* 2012).

A single nucleotide polymorphism (SNP) in the LDLR gene is reported to affect normal variation in plasma lipid profiles. Polymorphism studies in the LDLR gene are commonly conducted in humans to identify associations between SNPs and normal blood lipid profiles or susceptibility to hypercholesterolemia (Knoblauch et al. 2002). Most of the SNPs identified were non-functional, indicating they were in linkage disequilibrium with other functional SNPs. The first functional SNP in the human LDLR gene associated with a normal blood lipid profile was the 1773T allele (rs688) in exon 12 (Zhu et al. 2007). This SNP is functional as it causes transcription without exon 12. Transcription without exon 12 changes the reading frame and early termination proteins, increasing total cholesterol and LDL-C levels. The presence of SNPs in genes involved in lipid metabolism affects susceptibility to coronary heart disease (CHD) (Kathiresan et al. 2008). The LDLR gene region of exon 6 can be used as a molecular marker for atherogenesis in M. fascicularis (Taher et al. 2016).

Based on this issue, this study aimed to screen single nucleotide polymorphisms (SNP) in the exon 6 region of the LDLR gene as a molecular marker of atherogenesis in *M. fascicularis* and *M. nemestrina*. The screening was carried out by analyzing haplotypes based on SNPs in the exon 6 region of the LDLR gene and analyzing the relationships by constructing a phylogenetic tree based on sample groups according to their response to dietary fat cholesterol (hyperresponder, hypo-responder, extreme).

2. Materials and Methods

2.1 Sample Collection and Genomic DNA Extraction

Whole blood was obtained from the archives samples of the Primate Research Center, IPB University, Bogor, Indonesia, referring to the research of Taher *et al.* (2016) (Table 1).

Table 1. List of Individuals and reference samplesof Macaca fascicularis and M. nemenstrinaused in the analysis of SNP LDLR gene

No	Species	Gender	Number of Individuals	Group
1	M. fascicularis	Male	J200110A	In group
2	M. fascicularis	Male	J210110A	
3	M. fascicularis	Female	J090909A	
4	M. nemestrina	Male	B140401	
5	M. nemestrina	Female	B140531	
67	<i>M. nemestrina</i> <i>M. fascicularis</i> (Taher <i>et al.</i> 2016)	Female	B131025 T4927, FC8501, 9695, C0631, T3049, T3536, T3700, C4939, T4278, T3303, Fc9015, FE7777, T3307, T3300, FG7909, C0750, FG7908, C2480, FC9113, T3707, K30, T3535	
8	Homo sapiens, Pan paniscus, Gorilla gorilla, Pongo pygmaeus			Out group

According to the manufacturer's instructions, genomic DNA was extracted from blood samples using a QiaAmpTM DNA blood mini kit (Qiagen, Hilden, Germany).

2.2 Amplification, Visualization, and Sequencing

The primers used for amplification of exon 6 of the LDLR gene were as follows: F: 5'-CCTTCCTCCTCTCTCT-3', R: 5-'ACTCTGCAAGCCGCCTGCAC-3' (Taher et al. 2016). The size of the amplification product was 184 bp. The reaction was carried out in a volume of 25 μ L and contained 5 μ L genomic DNA [400–1000 ng/ μ L], 1 µL each of forward and reverse primers [10 pmol/ μL], 12.5 μL Gotaq Green Mastermix (buffer solution, dNTPs and Taq polymerase enzyme) and 5.5 µL of nuclease-free water. Amplification was performed using a GeneAmp® PCR System 9700 machine under the following conditions: Pre-PCR at 94°C for 5 minutes followed by 40 cycles. Denaturation at 94°C for 30 seconds, annealing at 56°C for 30 seconds, and extension at 72°C for 7 minutes. The PCR products were run on 1.8% agarose gel electrophoresis. The results of agarose gel electrophoresis were observed under UV Gel Doc 2000. Band size was calculated using a 100 bp DNA ladder (Biorad). The amplification results were determined by sequencing techniques at First BASE Laboratories Sdh Bhd (Malaysia).

2.3 Data Analysis

The nucleotide base sequences were edited using Bioedit version 7.2.6 (Hall 1999). Nucleotide sequence alignment was performed using the ClustalW program on GenomeNet (Thompson *et al.* 1994). The results of the DNA sequence alignment of the LDLR gene in the exon 6 region were analyzed for homology through the NCBI website (https:// blast.ncbi.nlm.nih.gov) by selecting the BLAST-N option. Phylogenetic tree analysis was performed using the Mega-6 program (Tamura *et al.* 2013). The phylogenetic tree was formed based on Neighbourjoining by bootstrapping 1000 repetitions and adding outgroup sequences. Outgroup sequences were obtained from the BLAT website (Kent 2002). These sequences are the *Homo sapiens*, *Pan paniscus*, *Gorilla gorilla*, and *Pongo pygmaeus sequences*.

3. Results

3.1 Amplification and Sequencing of the Exon 6 Region

Genomic DNA amplicons from *M. fascicularis* and *M. nemestrina* blood produced a single clear band product with an amplicons band size of approximately 184 bp (Figure 1). The LDLR gene exon 6 amplicons showed a high DNA concentration (Table 2). Alignment of the consensus sequence with the reference *M. fascicularis* sequence (accession number XM_005587996.2) showed that the amplification product contained not only the nucleotide bases of exon 6 (125 bp) but also several nucleotide bases of the exon-clamping introns (30 bp in introns 5 and 29 bp on introns 6).

Figure 1. Visualization of exon 6 LDLR gene PCR amplification product resulted in 184 bp DNA bands indicated by white rectangle, run in 1.8% agarose gel electrophoresis stained with ethidium bromide and observed under UV Gel Doc 2000. M is 100 bp DNA marker, 1-3 are *M. fascicularis* samples and 4-6 are *M. nemestrina* samples.

Table 2. Quantification of DNA concentration
extracted from *M. fascicularis* and *M*
.nemestrina blood samples using Nanodrop
spectrophotometer at $\lambda 260/280$ nm

Animals ID	DNA Concentration (ng/µL)
J200110A	257.0
J210110A	167.3
J090909A	120.4
B140531	75.6
B131025	112.0
B140401	70.6

3.2 Haplotypes and Response to Dietary Cholesterol

All samples' LDLR gene sequences in the exon 6 region were edited using BioEdit software (Hall 1999). Homology analysis of the LDLR gene DNA sequence in the exon 6 region of *M. fascicularis* and *M. nemestrina* was performed using BLAST-N.

3.3 Phylogenetic Tree Construction

Phylogenetic tree construction of the LDLR gene exon from *M. fasicularis* and *M. nemestrina*, divided into three clusters (Hyper-response, Hypo-response, Extreme). The number on the branch indicates the bootstrap value. The entire individual sample of *M. fascicularis* and *M. nemestrina* was compared with the reference sequences, divided into three major clusters: the hyper-responder individual group with a bootstrap value of 99, and the hypo-responder and extreme individual group with bootstrap values of 66 and 31, respectively (Figure 2). The other samples using comparators from BLAT were contained in one group.

4. Discussion

4.1 Haplotypes and Response to Dietary Cholesterol

Alignment analysis aims to determine the level of homology of the DNA base sequences being analyzed (Kemena and Notredame 2009). The alignment results showed a high level of homology among the studied samples (Figure 3). The existence of homology is indicated by the number of regions with the same sequence (conserved). The alignment results showed three different types of haplotypes (Figure 4). A haplotype is a group of markers (polymorphisms) on a single chromosome to be inherited together. Haplotypes refer to a combination of alleles or a single set of nucleotide polymorphisms (SNPs). The grouping of individuals by haplotype type is shown in Table 3.

The CDS region is part of a nucleotide sequence composed of exons that code for a protein. A 125 bp CDS region sequence of LDLR gene exon 6 in hyperresponder, hypo-responder, and extreme individuals was translated into amino acids. The translated results in the three groups were the same, totalling 40 amino acids (Figure 5). Two single nucleotide polymorphisms (SNP), 25C>G and 39C>G (in exon 6), were identified in the nucleotide base sequence of the amplification product (184 bp) of 22 M. fascicularis (Taher et al. 2016). Different types of haplotypes in the exon 6 region of the LDLR gene sequences can be used as a reference in identifying animal responses to dietary cholesterol and fat. The more diverse types of haplotypes in a population, the higher level of genetic diversity and vice versa. The haplotype type in hypo-responder individuals has a polymorphism in the nucleotide base sequence, which is G (guanine) at position 25. Extreme individuals also have a polymorphism in the nucleotide base sequence: G (guanine) at position 25 and G (guanine) at base 39. These differences in nucleotide positions were not found in the hyper-responder individual haplotype types.

The polymorphic site 39 in the nucleotide sequence of exon 6 of the LDLR gene is located at the third position of the codon triplet and does not cause a change in the encoded amino acid. Similarly, SNP 25C > G is located in the intron region (Figure 5). Nucleotide changes that cause amino acid

Hiper-responder																						
CDS: Putative 1	1									-			т	L	C	E	G	₽	31	x	F	
Query	1	CCT	rcc	TCC	TTO	CTO	TC	CTG	GC1	CTO	CACA	GTO	ACA	CT	TGC	GAG	660	200	320	CAR	TTC	60
Sbjet	19906	CCT	rcc	TCC	TTO	CTO	TC	CTO	GCT	Ċ	CACA	GTO	ACA	CT	TGC	GAG	GGA	cee	22		TTC	
CD3:low density lipo	273		~ ~ ~		****						****	·~v	т	L	с	E	G	p	N	к	r	
CDS: Putative 1	10	R	с	н	8	G	ε	с	I	8	L	D	к	v	с	N	м	λ	R	D	с	
Query	61	AAG	TGT	CAC	AGO	990	GA	TGO	ATC	AGO	CTG	GAG	AAA	GTO	TGC	380	ATG	GCT	AGI	AGAC	TGC	120
3bjet 20025	19966	AAG	TGT	CAC	AGO	660	GAJ	TGC	ATC	àco	CTO	GAC	AAA	GTC	TGC	AAC	ATO	GCT	ÅGI	GAC	TGC	
CDS:low density lipo	283	ĸ	с	н	3	Ģ	E	C	I	۳	L	D	ĸ	٧	С	N	М	λ	R	D	С	
CDS: Putative 1	30	R	D	W	8	D	Ε	р	I	ĸ	E	с										
Query	121	CGGG	GAC	TGG	TCA	GAT	GA	LCCC	TAT	:220	SGA0	TGT	991	GAG	TCA	1000	TGC	:AGG	CGG	PCT1	GCA	180
3bjct 20085	20026	CGG	GAC	TGG	TCA	GAT	GA	lecc	TAT	:222	GAG	TGC	GGT	GAG	TCT	cee	TGC	AGO	ĊĠ	CTT	GCA	
CDS:low density lipo	303	R	D	w	3	D	Ε	P	I	ĸ	Ε	С	~~	~~~~	~~~~	~~~	***			****		
Query	181	GAG	T I	184								į										
Sbjet CDS:low density lipo	20086	GAG	ŗ	200	89						(A)										

Miporesponder																						
CDS: Putative 1	1									_			т	L	C	E	G	P	ы	R	F	
Query	1	CCT	reer	reet	rrc	CTC	TCT	CTG	GCT	pro	:ACA	GTO	y'ca	CTC	100	GAG	1000	icco	CAM	AA.	TTC	60
		111	1111	111	111	111	111	111	111		111	111	1 H	110	111	111	11	111	111	111	1111	
Sbjet	19906	CCT	reet	reet	TTC	CTC	TCT	CTG	GCT	CEC	ACA	GTG	ACA	CTC	rac	GAG	993	LCCC	CAA	AA	TTC	
19965										-												
CDS:low density lipo	273	~~~	****		***	~~~	~~~	****		~~~		-7	т	L	С	Е	G	P	ы	R	r	
CDS: Putative 1	10	R	с	н	8	G	Е	с	Ξ	8	L	D	R	v	с	N	м	λ	R	D	С	
Query	61	AAG:	TOTO	CJAC1	rec.	GGC	GAN	TGC	ATC	2,00	CTG	GAC	273	GTC	TGC	CAAC	ATO	1601	CV01	(GA)	TOC	120
		111	1111	1111	111	111	111	111	111	1.1	111	111	111	111	111	111	111	111	111	111	1111	
Shjet	19966	AAG	TGTO	CACI	LGC	GGC	GAA	TGC	ATC	ACC	CTG	GAC	333	GTC	TGC	CAAC	ATO	GCT	CAG)	GAO	TGC	
20025																						
CDS:low density lipo	283	R	С	н	5	6	E	С	Ι	т	L	D	R	v	С	ы	м	λ	R	D	С	
CDS: Putative 1	20	R	D	w	8	D	Е	p	I	R	Ε	с										
Query	121	C96	SACT	1001	rca	GAT	GAN	000	ATC	3.3.0	GAO	TOT	667	GAG	TCA	1990	TOO	28.00	9000	CTT	IGCA	180
		111	1111	1111	111	111	111	111	111	LL.	111	11	111	111	11	11	111	111	111	111	1111	
Shjet	20026	CGG	GACT	1997	rca	GAT	GAA	000	ATC	333	GAG	TGC	667	GAG	TCI	1099	TGO	:3.60	2000	CTT	IGCA	
20085																						
CDS:low density lipo	303	R	D	м	3	D	E	p	Ι	R	Ε	С	~		***		- No - No - N		-			
Query	181	GAG		184																		
		111	1																			
Sbjet	20086	GAG	r :	2005	9						- (B)										
CDS:low density lipo			~								`	-										

Ekstrem																						
CDS: Putative 1	1									-			T	L	C	Ε	G	P	ы	8	F	
Query	1	cer	TCC	TCC	TTO	CTO	TCI	CTG	GCT		CACA	GTG	AC2	CTD	EGC	GAG	GGG	111	244	288	TTC	60
Sbjet 19965	19906	CCT	TCO	TCC	TTC	CTO	TCT	CTO	act	P	aca.	GTO	a.ca	CTC	rge	GAG	GGA	000	AAC	AAG	TTC	
CDS:low density lips	273		****									-7	Τ	L	С	E	G	P	N	R	r	
CDS: Putative 1	10	R	с	н	3	G	Ε	с	Ξ	з	L	D	x	v	с	ы	м	λ	R	D	с	
Query	61	AAG	TG	CAC	3.60	2000	CA.	TGC	ATC	2042	CT0	GAC	333	GTC	TGC	AAC	ATO	GCT	AGA	63.0	TGC	120
3bjct 20025	19966	ANG	TGI	CAC	AGO	GGG	GAR	TGC	ATC	ACC	CTO	GAC	2.2.2	GTC	TGC	AAC	ATG	GCT	AGA	GAC	TGC	
CDS:low density lips	283	R	С	н	8	Ģ	E	С	I	т	L	D	x	v	С	ы	м	λ	R	D	с	
CDS: Putative 1	30	R	D	ж	3	D	Е	Р	I	R	Ε	С										
Query	121	CGG	GAO	TGG	TCH	LGA3	GAR	1000	ATC	CARC	GAG	TGT	665	GAG	TCA	000	TGC	LIII	000	CTI	GCA	180
3bjet 20085	20026	CGG	GAC	TGG	TCA	GAT	GAR	000	ATC		GRG	TGC	GGT	GAG	TCT	CGG	TGC	AGG	CGG	CTI	GCA	
CDS:low density lips	303	R	D	ж	8	D	E	P	I	R	Ε	С	**		***	***	~ ~ ~		***	***		

Figure 2. Two single nucleotide polymorphisms (SNP) of 25C>G and 39C>G in exon 6 of the LDLR gene of *M. fascicularis* were identified in the nucleotide base sequence of the amplification product (184 bp) grouped as hyper-responder (A), hypo-responder (B), and extreme (C). Translation of these three groups using the Blast-N program through NCBI resulted from the same amino acid sequences

T2101103	COTTOCTOCTOCTOCTOCTOCTOCTOCTOCTOCTOCTOCT	60
VALUELOA		60
K3535	CUITCUICUICUICUIGCUIGUALAGIGACACIGIGUGAGGGGCCCAACAAGITC	60
EETTIT	CETTEETCETETETETETEGETETEACAGIGACACTETGEGAGGGGGCCCAACAAGITE	60
CD613	CCTTCCTCCTCTCTCTCIGGCTCTCACAGTGACACTCTGCGAGGGGGCCCAACAAGTTC	60
FC9015	CCITCCICCICCICICIGGCICTCACAGIGACACICIGCGAGGGGCCCAACAAGIIC	60
C0750	CCITCCICCICCICICIGGCICTCACAGIGACACICIGCGAGGGGCCCAACAAGIIC	60
C4927	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
T3300	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
FG7909	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGGCCCAACAAGTTC	60
T3303	CCTTCCTCCTCCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
C2480	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
T3536	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
C4939	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
9695	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
FC9113	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
T3278	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
T3700	COTTOCTCOTTCTCTCTCTCGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
T3307	CCTTCCTCCTCTCTCTCTCGCCCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
FG7998	COTTOCTOCTOCTOTOTOTOTOTOTOTOTOTOTOTOTOT	60
T3049	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
FC8501	CCTTCCTCCTCTCTCTCTCGCTCTCACAGTGACACTCTGCGAGGGGGCCCAACAAGTTC	60
B140531	COTTOCTCOTTOCTCTCTCCCCCCCCCCCCCCCCCCCCC	60
B140331	COTTCCTCCTCTCTCTCTCTCTCTCTCTCTCTCTCTCCCCCC	60
D140401	COTTOCTOCTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	60
J101025	CONTROL CONTRO	60
TOODOCOD		
0090909A	CUTICUTURI CICICICICICALAGICACACICICCCAGOGOCCAACAAGIIC	00
13/07	CUITCUICUICUICUICUIGUIGUIGICALAGIGACACICUGUGAGGGGUUCAACAGIIC COTTOCTOCTOCTOTOTOTOTOTOTOTOTOTOTOTOTO	60
K30	CONCONCIDENTICION CALAGIGACACICIGORAGOGOCCARCARDIN	00
J210110A	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
1/3535	COTTOCTTOCTTOTOTOTOTOTOTOTOTOTOTOTOTOTO	60
8877777	COTTOCTOCTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	60
EL////	CUTICUTURITICITURI CALAGIGACCURACACITURICACIONACOCURACACITU	00
C0613	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
FC9015	CCIICCICCICCICICIGGCICICACAGIGACACICIGCGAGGGGCCCAACAAGIIC	60
C0750	CCIICCICCICCICICIGGCICICACAGIGACACICIGCGAGGGGCCCAACAAGIIC	60
C4927	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGGCCCAACAAGTTC	60
T3300	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGGCCCAACAAGTTC	60
FG7909	COTTOCTCOTCTCTCTCTCSCSGTGSC2CTCTGCGSGGGGCCCSSC32GTTC	60
T3303	COTTOCTCOTTCCTCTCTCCCCCCCCCCCCCCCCCCCCC	60
10000	COTTOCTOCTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	00
0248V	CUTICUTCUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUT	00
T3536	CUTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
C4939	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
9695	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGGCCCAACAAGTTC	60
FC9113	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
T3278	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
T3700	COTTOCTCOTTCOTCTCTCCCCCCCCCCCCCCCCCCCC	60
13700	COTTOCTOCTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	60
13307	CUTICUTURITICITURISCUTURIS	00
FG7998	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
T3049	CCTTCCTCCTCTCTCTCGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
FC8501	CCTTCCTCCTCCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
B140531	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCCAACAAGTTC	60
B140401	CCTTCCTCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
B131025	CCTTCCTCCTCTCTCTCTCGCTCTCLCLATCLCLCTCTCCCLACALCACCCCLLCLACALCATCC	60
T2001103	COTTOCTCOTTCTCTCTCTCTCTCTCTCTCTCTCTCTCCCAACAACAAC	60
TOOCOCCE	COTTOCTOCTOCTOCTOCTOCTOCTOCTOCTOCTOCTOCT	00
A606060	CONTROLLED CICICICICICALAGIGACACICIGCGAGGGGGGGGCCAACAAGIIG	00
13707	CUTTCUTCTUTCTCTGGCTGTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60
K30	CCTTCCTCCTCTCTCTGGCTGTCACAGTGACACTCTGCGAGGGGCCCAACAAGTTC	60

J210110A	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
K3535	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
FE7777	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
C0613	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
FC9015	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
C0750	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
C4927	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
T3300	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
FG7909	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
T3303	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
C2480	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
T3536	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
C4939	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
9695	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
FC9113	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
T3278	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
T3700	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
T3307	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
FG7998	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
T3049	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
FC8501	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
B140531	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
B140401	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
B131025	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
J200110A	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
J090909A	ARGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
T3707	ARGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120
K30	AAGTGTCACAGCGGCGAATGCATCAGCCTGGACAAAGTCTGCAACATGGCTAGAGACTGC	120

GAGT	184
GAGT	184

	GAGT GAGT GAGT GAGT GAGT GAGT GAGT GAGT

Figure 3. The alignment of LDR gene sequences in exon 6 of Macaca *fascicula-ris* (J210110A, J200110A, J090909A) and *Macaca nemestrina* (B140531, B140401, B131025) compared to other sequences samples showed a high level of homology (conserved region indicated by stars symbol).

Figure 4. The alignment result of the exon 6 LDL-R gene of *M.fascicularis* and *M.nemestrina* compared to references sequencing (Taher *et al.* 2016) showed that the sequences in this study clustered together as hyper-responder. The different haplotypes (Two single nucleotide polymorphisms of 25C>G and 39C>G) are indicated by a red rectangle column highlighting the nucleotide bases in yellow. The nucleotide sequence alignment was conducted using the ClustalW program (https://www.genome.jp/tools-bin/clustalw).

	De altre e CN				(
Hanlotyne -	Position of N	ucleotide	Number of	Species	Source	Responsiveness
парютурс	25	39	Individuals	species	Source	Responsiveness
Ref	С	С				
Ι	С	С	J210110A, J200110A, J090909A	M. fascicularis	This Study	Hyper-respons
Ι	С	С	B140401, B140531, B131025	M. nemestrina	This Study	Hyper-respons
Ι	С	С	T4927, FC8501, 9695, C0613, T3049, T3536, T3700, C4939, T3278, T3303, FC 9015, FE7777, T3307, T3300, FG7909, C0750, FG7998, C2480, FC9113	M. fascicularis	Taher <i>et al.</i> 2016	Hyper-respons
II	G	С	Т3707, К30	M. fascicularis	Taher <i>et al.</i> 2016	Hypo-respons
III	G	G	T3535	M. fascicularis	Taher <i>et al</i> . 2016	Extreme

Table 3. Types of haplotypes and polymorphic sites in the exon 6 region of the LDLR gene, and aligned to the *M. fascicularis* reference in GenBank (accession number XM 005587996.2) (Taher *et al.* 2016)

Figure 5. Phylogenetic tree construction based on exon 6 LDLR gene sequences constructed by the neighbour-joining method with bootstrap 1000 times. The numbers on the tree branches indicate the bootstrap value. The Mf and Mn sequences in this study were compared with reference sequences (Taher *et al.* 2016) and clustered as hyper-response groups.

changes usually occur when the nucleotide changes are located in the first and second nucleotides that make up the triplet codon. Meanwhile, changes in the third nucleotide of the triplet codon are likely cause synonymous mutations. According to Nei (1987), the chance of synonymous mutations on the first and third codons is 5% and 72%, while nucleotide changes in the second codon will always cause amino acid changes (100%). The responsiveness possessed by the animals is related to genetic variation (Friedlander *et al.* 1999). The similarity of the grouping based on haplotype type makes the identified SNPs capable of showing the relationship between the haplotypes and the animals' responsiveness (Taher *et al.* 2016).

This study used 3 samples of *M. fascicularis* (J200110A, J210110A, J090909A) and 3 of *M. nemestrina* (B140401, B140531, B131025). Based on alignment results, all of the samples had haplotype I. The haplotype type possessed by the six animals was related to hyper-response. Previous studies have

analyzed the response of plasma cholesterol levels after dietary cholesterol and fat interventions. The analysis grouped the animals into three categories, which are hypo-responsive, hyper-responsive, and extreme. Twenty-two reference sequences with three haplotypes (I, II, and III) were used to compare animals based on their responsiveness. Haplotype II (GC) is a haplotype of animals with hypo-response properties, that are T3707 and K30. Haplotype III (GG) is a haplotype with extreme responsiveness, which is possessed by the animal with individuals number K3535, and Haplotype I is possessed by 19 samples of M. fascicularis with hyperresponder characteristics (Taher et al. 2016). In M. fascicularis and M. nemestrina, although the animal's responsiveness is confirmed to be related to haplotype type, the molecular mechanisms underlying this relationship are still unknown.

4.2 Phylogenetic Tree Construction

Phylogenetic tree construction in M. fascicularis and *M. nemestrina* is supported by bootstrap values. Bootstrap is a value that describes the confidence level from a branch point in a topology using a computer. If the bootstrap value is between 95-100%, it can be concluded that the branch has high confidence (Ubaidilah and Sutrisno 2009). A total of six individuals of M. fascicularis and M. nemestrina were analyzed in the same cluster. The result shows the same response to dietary cholesterol and fat in all six samples: hyper-response. The grouping of hyperresponder, hypo-responder, and extreme individuals is due to differences in the nucleotide bases found in the exon 6 region of the LDLR gene. Hyper-responders and hypo-responders differ in one nucleotide base, while hyper-responders and extreme differences in two nucleotide bases.

The SNP analysis of the LDLR gene in exon 6 indicated a high similarity between the exon 6

regions of the LDLR gene in the *M. fascicularis* and *M. nemestrina* samples studied. All samples of *M. fascicularis* and *M. nemestrina* had identical sequences of exon 6 regions of the LDLR gene. This result showed the absence of SNPs in all six sequences. Both individual samples can potentially be used as animal models for atherosclerotic research. The exon 6 regions of the LDLR gene can be used as a molecular marker for atherogenesis in *M. fascicularis* and *M. nemestrina*. Selection of animals based on their sensitivity to dietary cholesterol and fat becomes faster and more efficient and supports the ethical principles of animal welfare 3R (reduction, refinement, and replacement).

Exon 6 can be used as a molecular marker of hyper- and hypo-response of *M. fascicularis* and *M. nemestrina* to dietary cholesterol and fat. All of the study samples had haplotype I. The haplotypes possessed by the six animals were related to hyper-responsiveness. The six individuals of *M. fascicularis* and *M. nemestrina* were analyzed in the same group. Using exon 6 as a genetic marker makes the selection of hypo- from hyper-responder animals faster and more efficient.

Acknowledgements

This research was fully supported by Primate Research Center (PRC) at IPB University. All activities were conducted in the Laboratory of Biotechnology PRC IPB University. The authors thank Dr. Ahmad Taher from the University of Papua for sharing the data.

References

Beynen, A. C., Katan, M. B., Van Zutphen. 1987. Hypo- and hyperresponder: individual differences in response of serum cholesterol concentration to change in diet. *Adv Lipid Res*, 22,115-71.

- Clarkson, T. B. 1998. Non-human Primate Models of Atherosclerosis. *Comparative Medicine*, 48(6), 569-572.
- Friedlander, Y., Leitersdors, E., Vecsler, R., Funke, H., Kark, J. 1999. The contribution of candidate genes to the response of plasma lipids and lipoproteins to dietary challenge. *Atherosclerosi*, 152,239-248.
- Goldstein, J. L., Hobbs, H. H., Brown, M. S. 2001.
 Familial hypercholesterolemia. In: *The Metabolic and Molecular Bases of Inherited Disease*. Sciver CR, Beaudet AL, Sly WS, Valle D. Childs B, Kinder KW, editors. 8th ed. New York: Mc Graw-Hill. pp 2863-2914.
- Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser, 41,95-98.
- Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N. P., *et al.* 2008. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. *Nat Genet*, 40, 189-197.
- Kemena, C., Notredame, C. 2009. Upcoming Challenges for Multiple Sequence Alignment Methods in The High-Throughput Era. *Bioinformatics*, 25(19), 2455-2465
- Kent, W.J. BLAT the BLAST-like alignment tool. Genome Res. 2002 Apr; 12(4), 656-64.
- Knoblauch, H., Bauerfeind, A., Krahenbuhl, C., Daury, A., Rohde, K., Bejanin, S., Essioux, L., Schuster, H., Luft, F.C., Reich, J. G. 2002. Common haplotypes in five genes influence genetic variance of LDL and HDL cholesterol in the general population. *Hum Mol Genet*, 11,1477-85.

- Nei, M. 1987. *Molecular evolutionary genetics*. New York (US): Columbia University Press.
- Ong, P., Richardson, M. 2008. Macaca fascicularis. Di dalam: IUCN Red List of Threatened Species. Version 2009.1. www.iucnredlist. org [Date accessed: 18 April 2018]
- Shelton, K. A., Clarckson, T. B., Kaplan, J. R. 2012. Non-human Primate Models of Atherosclerosis. In: *Non-human Primate in Biomedichal Research: Diseases*. Aben CR, Mansfield K, Tardif S, Morris T, editors. Sec ed. London: Elsevier Press. pp 385-411.
- Südhof, T. C., Goldstein, J. L., Brown, M. S., Russell, D. W. 1985. The LDL receptor gene: a mosaic of exons shared with different proteins. *Science*, 228 (4701), 815–22
- Suryohudoyo, P. 2000. Kapita Selekta Ilmu Kedokteran Molekuler. Jakarta: CV Sagung Seto.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA 5: Molecular Evolutionary Genetics Analysis using maximum likelihood. Evolusionary distance, and maximum parsimony methods. *J Mol Biol Evol*, 10, 2731 – 2739.
- Taher, A., Solihin, D. D., Sulistiyani., Sajuthi, D., Astuti, D. A. 2016. Single nucleotide polymorphism within the *LDLR* gene and responsiveness of cynomolgus macaque (*Macaca fascicularis*) to atherogenic diet. *Biodiversitas*, 17(2), 430-434.
- Thompson, J. D., Higgins, D. G., Gibson, T. J. 1994.
 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res*, 22(22), 4673-80.

- Ubaidilah. R., Sutrisno, H. 2009. *Pengantar Biosistematik: Teori dan Praktek*. Jakarta (ID): LIPI Press.
- Zhu, H., Tucker, H. M., Grear, K. E., Simpson, J. F., Manning, A. K., Cupples, L. A., & Estus, S. 2007. A common polymorphism decreases low-density lipoprotein receptor exon 12 splicing efficiency and associates with increased cholesterol. *Human molecular* genetics, 16(14), 1765–1772. https://doi. org/10.1093/hmg/ddm124