Glycerol as an Energy Source for Ruminants: A Meta-Analysis of in Vitro Experiments
Abstract
Glycerol or glycerin is generally recognized as a safe compound to be used in animal feed, especially for ruminants. A number of in vitro studies related to glycerol supplementation in ruminant ration have been published but to date the results have not been summarized. The objective of this study was, therefore, to evaluate in vitro digestibility, ruminal fermentation characteristics, total gas and methane production through the meta-analysis approach. Meta-analysis was applied to 13 experiments and 42 treatments dealing with glycerol supplementation in ruminants. Data were analyzed by general linear model procedure in which the glycerol levels and the different studies were treated as fixed effects. Results revealed that glycerol supplementation did not affect the in vitro digestibility and total VFA production, but significantly decreased molar proportion of acetate and iso-valerate (P<0.05). In contrast, molar proportion of propionate, butyrate, and valerate significantly increased, and thus the ratio of acetate to propionate declined linearly (P<0.05). Methane production decreased linearly and accompanied with an increase of total gas production with increasing levels of glycerol supplementation (P<0.05). It is concluded that the use of glycerol as an energy substitution in animal feed has no detrimental effects in the rumen and environmentally friendly.Downloads
References
Abo El-Nor, S., A. A. AbuGhazaleh, R. B. Potu, D. Hastings, & M. S. A. Khattab. 2010. Effects of differing levels of glycerol on rumen fermentation and bacteria. Anim. Feed Sci. Technol. 162: 99-105. http://dx.doi.org/10.1016/j.anifeedsci.2010.09.012
AbuGhazaleh, A. A., S. Abo El-Nor, & S. A. Ibrahim. 2011. The effect of replacing corn with glycerol on ruminal bacteria in continuous culture fermenters. J. Anim. Phys. Nutr. 95: 313-319. http://dx.doi.org/10.1111/j.1439-0396.2010.01056.x
Andries, J. L., F. X. Buysse, D. L. De Brabander, & B. G. Cottyn. 1987. Isoacids in ruminant nutrition: their role in ruminal and intermediary metabolism and possible influenced on performance – a review. Anim. Feed Sci. Technol. 18: 169-180. http://dx.doi.org/10.1016/0377-8401(87)90069-1
Avila, J. S., A. V. Chaves, M. Hernandez-Calva, K. A. Beauchemin, S. M. McGinn, Y. Wang, O. M. Harstad, & T. A. McAllister. 2011. Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Anim. Feed Sci. Technol. 166-167: 265-268. http://dx.doi.org/10.1016/j.anifeedsci.2011.04.016
Avila-Stagno, J., A. V. Chaves, G. O. Ribeiro Jr, E. M. Ungerfeld, & T. A. McAllister. 2014. Inclusion of glycerol in forage diets increases methane production in a rumen simulation technique system. British J. Nutr. 111: 829-835. http://dx.doi.org/10.1017/S0007114513003206
Beauchemin, K. A., M. Kreuzer, F. O’Mara, & T. A. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Austr. J. Exp. Agric. 48: 21-27. http://dx.doi.org/10.1071/EA07199
Bergner, H., C. Kijora, Z. Ceresnakova, & J. Szakacs. 1995. In vitro studies on glycerol transformation by rumen microorganism. Arch Tierernahr. 48: 245-256.
http://dx.doi.org/10.1080/17450399509381845
Blümmel, M., H. P. S. Makkar, & K. Becker. 1997. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 77: 24–34.
http://dx.doi.org/10.1111/j.1439-0396.1997.tb00734.x
Carvalho, E. R., N. S. Schmelz-Roberts, H. M. White, P. H. Doane, & S. S. Donkin. 2011. Replacing corn with glycerol in diets for transition dairy cows. J. Dairy Sci. 94: 908–916. http://dx.doi.org/10.3168/jds.2010-3581
Chung, Y. H., D. E. Rico, C. M. Martinez, T. W. Cassidy, V. Noirot, A. Ames, & G. A. Varga. 2007. Effects of feeding dry glycerin to early postpartum holstein dairy cows on lactational performance and metabolic profiles. J. Dairy Sci. 90: 5682-5691. http://dx.doi.org/10.3168/jds.2007-0426
Czerkawski, J. W. & G. Breckenridge. 1972. Fermentation of various glycolytic intermediates and other compounds by rumen micro-organisms, with particular reference to methane production. Brit. J. Nutr. 27: 131–146.
http://dx.doi.org/10.1079/BJN19720077
Danielsson, R., A. Werner-Omazic, M. Ramin, A. Schnürer, M. Griinari, J. Dicksved, & J. Bertilsson. 2014. Effects on enteric methane production and bacterial and archaeal communities by the addition of chasew nut shell extract or glycerol-An in vitro evaluation. J. Dairy Sci. 97: 5729-5741. http://dx.doi.org/10.3168/jds.2014-7929
Dasari, M. 2007. Crude glycerol potential described. Feedstuffs. Vol. 79, No. 43, October 15.
[FDA] Food and Drug Administration. 2006. Code of Federal Regulations, 21CFR582.1320, Title 21, Vol. 6, 2006. 21CFR582.1320.
Ferraro, S. M., G. D. Mendoza, L. A. Miranda, & C. G. Gutiérrez. 2009. In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed Sci. Technol. 154: 112-118. http://dx.doi.org/10.1016/j.anifeedsci.2009.07.009
Hungate, R. E. 1966. Quantities of carbohydrate fermentation products. Page 245 in Rumen and Its Microbes. R. E. Hungate, ed. Academic Press, New York, NY.
http://dx.doi.org/10.1016/B978-1-4832-3308-6.50009-7
Jayanegara, A., E. Wina, & J. Takahashi. 2014. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian-Australas. J. Anim. Sci. 27: 1426–1435.
http://dx.doi.org/10.5713/ajas.2014.14086
Jayanegara, A., H. P. S. Makkar, & K. Becker. 2015a. Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Med. Pet. 38: 57–63. http://dx.doi.org/10.5398/medpet.2015.38.1.57
Jayanegara, A., G. Goel, H. P. S. Makkar, & K. Becker. 2015b. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209: 60–68. http://dx.doi.org/10.1016/j.anifeedsci.2015.08.002
Khalili, H., T. Varvikko, V. Toivonen, K. Hissa, & M. Suvitie. 1997. The effects of added glycerol or unprotected free fatty acids or a combination of the two on silage intake, milk production, rumen fermentation and diet digestibility in cows given grass silage based diets. Agr. Food Sci. 6: 349–362.
Krueger, N. A., R. C. Anderson, L. O. Tedeschi, T. R. Callaway, T. S. Edrington, & D. J. Nisbet. 2010. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro. Biores. Technol. 101: 8469-8472. http://dx.doi.org/10.1016/j.biortech.2010.06.010
Lee, S. Y., S. M. Lee, Y. B. Cho, D. K. Kam, S. C. Lee, C. H. Kim, & S. Seo. 2011. Glycerol as a feed supplement for ruminants: In vitro fermentation characteristic and methane production. Anim. Feed Sci. Technol. 166-167: 269-274.
http://dx.doi.org/10.1016/j.anifeedsci.2011.04.070
Meale, S. J., A. V. Chaves, S. Ding, R. D. Bush, & T. A. McAllister. 2013. Effects of crude glycerin supplementation on wool production, feeding behavior, and body condition of Merino ewes. J. Anim. Sci. 91: 878-885.
http://dx.doi.org/10.2527/jas.2012-5791
Moss, A. R., J. P. Jouany, & J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Anales de Zootechnie. 49: 231-253.
http://dx.doi.org/10.1051/animres:2000119
Quispe, C. A. G., C. J. R. Coronado, & J. A. Carvalho Jr. 2013. Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27: 275-293. http://dx.doi.org/10.1016/j.rser.2013.06.017
Ramos, M.H. & M. S. Kerley. 2012. Effect of dietary crude glycerol level on ruminal fermentation in continues culture and growth performance of beef calves. J. Anim. Sci. 90: 892-899. http://dx.doi.org/10.2527/jas.2011-4099
Rémond, B., E. Souday, & J. P. Jouany. 1993. In vitro and in vivo fermentation of glycerol by rumen microbes. Anim. Feed Sci. Technol. 41: 121-132.
http://dx.doi.org/10.1016/0377-8401(93)90118-4
Rico, D. E., Y. H. Chung, C. M. Martinez, T. W. Cassidy, K. S. Heyler, & G. A. Varga. 2012. Effects of partially replacing dietary starch with dry glycerol in a lactating cow diet on ruminal fermentation during continuous culture. J. Dairy Sci. 95: 3310-3317. http://dx.doi.org/10.3168/jds.2011-5059
Sauvant, D., P. Schmidely, J. J. Daudin, & N. R. St-Pierre. 2008. Meta-analyses of experimental data in animal nutrition. Animal 2: 1203-1214.
http://dx.doi.org/10.1017/S1751731108002280
Schröder, A. & K. H. Südekum. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. Paper no. 241 in New Horizons for an Old Crop. Proc. 10th Int. Rapeseed Congr., Canberra, Australia. N. Wratten and P. A. Salisbury, ed. The Regional Institute Ltd., Gosford, New South Wales, Australia.
Silva, V. O., E. Lopes, E. F. Andrade, R. V. Sousa, M. G. Zangeronimo, & L. J. Pereira. 2014. Use of biodiesel co-products (glycerol) as alternative sources of energy in animal nutrition: a systematic review. Arch. Med. Vet. 46: 111-120.
http://dx.doi.org/10.4067/S0301-732X2014000100015
Wang, C., Q. Liu, W. J. Huo, W. Z. Yang, K. H. Dong, Y. X. Huang, & G. Guo. 2009. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livest. Sci. 121: 15–20.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts published are held by Media Peternakan. The statement to release the copyright to Media Peternakan is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.