The Associations of GH and GHR Genes with Carcass Components in Indonesian Kampung and Broiler Chicken Cross
Abstract
The chicken growth hormone (GH) and its receptor (growth hormone receptor, GHR) play important roles in chicken performances due to their crucial functions in growth. The variations of GH and GHR genes were then thought to be associated with the variations of the performances. This experiment was designed to identify the g.2248G>A GH and the g.565G>A GHR loci polymorphisms and to evaluate their associations with carcass components in Kampung and broiler chicken cross. A total of 215 chickens including 4 chicken populations (Kampung, Cobb broiler, F1, and F2 Kampung x broiler chicken cross) were screened to identify polymorphism using PCR-RFLP technique with EcoRV and Eco72I restriction enzyme for GH and GHR loci, respectively. The carcass components were recorded at 26 weeks of age on F2 Kampung and broiler chicken cross (42 chickens) for association study. Both the g.2248G>A GH and the g.565G>A GHR loci were polymorphic with two alleles (G and A) and three genotypes (GG, AG, and AA). The GG genotype and the G allele of GH locus were predominant in all chicken populations. While in GHR locus, the AA genotype and the A allele were found to be higher in all chicken populations. The association study showed that the g.565G>A GHR locus polymorphism had significant effect on carcass components, including live weight, carcass weight, breast weight, thighs weight, breast muscle weight, and thighs muscle weight. There was no significant association was found between the g.2248G>A GH genotype and carcass components. It could be concluded that the g.2248G>A GH and the g.565G>A GHR loci were polymorphic in Kampung and broiler chicken cross and the g.565G>A GHR locus was accosiated with carcass components. This g.565G>A GHR SNP might be an important candidate marker for chicken growth and muscle mass improvement.
Downloads
References
Abdurrahman, Z. H, Y. B. Pramono, & N. Suthama. 2016. Meat characteristic of crossbred local chicken fed inulin of dahlia tuber and Lactobacillus sp. Med. Pet. 39:112-118. https://doi.org/10.5398/medpet.2016.39.2.112
Al-Khatib, B. G. M. & D. H. H. Al-Hassani. 2016. Effect of G1705A SNP in growth hormone gene on the productive and physiological performance in broiler chicken. Iraqi J. Biotech. 15:33-45.
Allendorf, F. W., G. Luikart, & S. N. Aitken. 2013. Conservation and the Genetics of Population 2nd Ed. Wiley-Blackwell Publishing, UK.
Anh, N. T. L., S. Kunhareang, & M. Duangjinda. 2015. Association of chicken growth hormones and insulin-like growth factor gene polymorphisms with growth performance and carcass traits in Thai broilers. Asian-Australas. J. Anim. Sci. 28:1686-1695. http://dx.doi.org/10.5713/ajas.15.0028.
An, X., L. Wang, J. Hou, G. Li, Y. Song, J. Wang, M. Yang, Y. Cui, & B. Cao. 2011. Novel polymorphisms of goat growth hormone and growth hormone receptor genes and their effects on growth traits. Mol. Biol. Rep. 38: 4037. http://dx.doi.org/10.1007/s11033-010-0522-3.
Arai, N., & M. Iigo. 2010. Duplicated growth hormone genes in a passerine bird, the jungle crow (Corvus macrorhynchos). Biochem. Biophys. Res. Commun. 397: 553-558. http://dx.doi.org/10.1016/j.bbrc.2010.05.156
Ashok, S. K., Y. Kuwabara, S. Abe, & E. H. Morita. 2014. Polymorphism in growth hormone gene sequence from microminipig (MMP) with direct sequencing PCR. IJSTR. 3:83-92.
Çiftci, H. B. 2013. Estrogen and growth hormone and their roles in reproductive function. Int. J. Anim. Vet. Adv. 5: 21-28.
Dolmatova, I. Y. &. I. G. Ilyasov. 2011. Association of cattle growth hormone gene polymorphism with milk productivity. Russ. J. Genet. 47:720-725. https://doi.org/10.1134/S1022795411060081
FAO. 2008. Local chicken genetic resources and production systems in Indonesia. Prepared by Muladno Muladno. GCP/RAS/228/GER Working Paper No. 6. Rome.
Fulton, J. E. 2008. Molecular genetics in a modern poultry breeding organization. World’s Poult. Sci. J. 64:171-176. https://doi.org/10.1017/S0043933907001778
Gosney, E. S., A. Jara, A. Basu, & J. J. Kopchick. 2012. GH in the central nervous system: lessons from the growth hormone receptor knockout mouse. Open Endocrinol. J. 6:34-41. http://dx.doi.org/10.2174/1874216501206010034.
Hall, T. 2011. BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences 2:60-61.
Harvey, S. 2013. Growth hormone and growth? Gen. Comp. Endocrinol. 190:3–9. http://dx.doi.org/10.1016/j.ygcen.2013.01.008.
Hrabia, A., H. E. Paczoska-Eliasiewicz, L. R. Berghman, S. Harvey, & J. Rząsa. 2008. Expression and localization of growth hormone and its receptors in the chicken ovary during sexual maturation. Cell Tissue Res. 332:317–328. http://dx.doi.org/10.1007/s00441-008-0595-7
Hull, K. L. & S. Harvey. 2014. Growth hormone and reproduction: a review of endocrine and autocrine/paracrine interactions. Int. J. Endocrinol. 2014. http://dx.doi.org/10.1155/2014/234014
Jia, J. L., L.P. Zhang, J. P. Wu, Z. J. Ha, & W. W. Li. 2014. Study of the correlation between GH gene polymorphism and growth traits in sheep. Genet. Mol. Res. 13: 7190-7200. https://doi.org/10.4238/2014.September.5.5
Johari, S., N. Setiati, J.H.P. Sidadolog, T. Hartatik, & T. Yuwanta. 2013. The gene effect of growth hormone on body weight and egg production in divergent selection for five generation of Japanese quail (Coturnix coturnix japonica). Intl. J. Poult. Sci. 12:489-494. https://doi.org/10.3923/ijps.2013.489.494
Kamenskaya, D. N., M. V. Pankova, D. M. Atopkin, & V. A. Brykov. 2015. Fish growth-hormone genes: Evidence of functionality of paralogous genes in Levanidov’s charr Salvelinus levanidovi. Mol. Biol. 49: 687. https://doi.org/10.1134/S002689331505009X
Kansaku, N., G. Hiyama, T. Sasanami, & D. Zadworny. 2008. Prolactin and growth hormone in birds: protein structure, gene structure and genetic variation. J. Poult. Sci. 45:1-6. http://dx.doi.org/10.2141/jpsa.45.1
Khoa, D. V. A., N. T. K. Khang, N. T. Ngu, J. Matey, H. T. P. Loan, & N. T. D. Thuy. 2013. Single nucleotide polymorphisms in GH, GHR, GHSR and insulin candidate genes in chicken breeds of Vietnam. Greener J. Agr. Sci. 3:716-724.
Kim, J. W. 2010. The endocrine regulation of chicken growth. Asian-Aust. J. Anim. Sci. 23:1668–1676. http://dx.doi.org/10.5713/ajas.2010.10329
Knízetová, H., J. Hyánek, B. Kníze, & J. Roubícek. 1995. Comparative study of growth curves in poultry. Genet. Sel. Evol. 27:365-375. https://doi.org/10.1186/1297-9686-27-4-365
Kopchick, J. J. 2016. Lessons learned from studies with the growth hormone receptor. Growth Horm. IGF Res. 28:21-25. http://dx.doi.org/10.1016/j.ghir.2015.06.003
Kopchick, J. J., E. O. List, B. Kelder, E. S. Gosney, & D. E. Berryman. 2014. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol. Cell Endocrinol. 386: 34–45. http://dx.doi.org/10.1016/j.mce.2013.09.004
Kuhn, E. R., L. Vleurick, M. Edery, E. Decuypere, & V. M. Darras. 2002. Internalization of the chicken growth hormone receptor complex and its effect on biological functions. Comp. Biochem. Physiol., B: Comp. Biochem. 132:299–308. http://dx.doi.org/10.1016/S1096-4959(02)00037-4
Lei, M., C. Luo, X. Peng, Q. Nie, D. Zhang, G. Yang, & X. Zhang. 2007. Polymorphism of growth-correlated genes associated with fatness and muscle fiber traits in chickens. Poult. Sci. 86:835–842. http://dx.doi.org/10.1093/ps/86.5.835
Lin, S., H. Li, H. Mu, W. Luo, Y. Li, X. Jia, S. Wang, X. Jia, Q. Nie, Y. Li, & X. Zhang. 2012. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens. Genomics 13:306. http://dx.doi.org/10.1186/1471-2164-13-306
List, E. O., D. E. Berryman, K. Funk, E. S. Gosney, A. Jara, B. Kelder, X. Wang, L. Kutz, K. Troike, N. Lozier, V. Mikula, E. R. Lubbers, H. Zhang, C. Vesel, R. K. Junnila, S. J. Frank, M. M. Masternak, A. Bartke, J. J. Kopchick. 2013. The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice. Mol. Endocrinol. 27: 524–535. http://dx.doi.org/10.1210/me.2012-1330
Moharrery, A. & M. Mirzaei. 2014. Growth characteristics of commercial broiler and native chickens as predicted by different growth functions. J. Anim. Feed Sci. 23:82–89. http://dx.doi.org/10.22358/jafs/65720/2014
Nataamijaya, A. G. 2010. Pengembangan potensi ayam lokal untuk menunjang peningkatan kesejahteraan petani. Jurnal Litbang Pertanian 29:131-138.
Nei, M. & S. Kumar. 2000. Molecular Evolution and Phylogenetic. Oxford University Press, New York.
Nie, Q., B. Sun, D. Zhang, C. Luo, N. A. Ishag, M. Lei, G. Yang, & X. Zhang. 2005. High diversity of the chicken growth hormone gene and effects on growth and carcass traits. J. Heredity 96:698–703. http://dx.doi.org/10.1093/jhered/esi114
Ouyang, J. H., L. Xie, Q. Nie, C. Luo, Y. Liang, H. Zeng, & X. Zhang. 2008. Single nucleotide polymorphism (SNP) at the GHR gene and its associations with chicken growth and fat deposition traits. Br. Poult. Sci. 49:87-95. http://dx.doi.org/10.1080/00071660801938817
Padhi, M. K. 2016. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016. http://dx.doi.org/10.1155/2016/2604685.
Sambrook, J. & D. Russell. 2001. Molecular Cloning: A Laboratory Manual 3rd Ed. Cold Spring Harbor Laboratory Press, USA.
SAS Institute. 2008. SAS/STAT® 9.2 User’s Guide The GLM Procedure (Book Excerpt). SAS Institute Inc. Cary, NC, USA.
Sedek, M., L. M. van der Velden, & G. J. Strous. 2014. Multimeric growth hormone receptor complexes serve as signaling platforms. J. Biol. Chem. 289:65–73. http://dx.doi.org/10.1074/jbc.M113.523373
Shawki, I., M. Mourad, M. A. Rashed, & I. M. Ismail. 2015. Molecular characterization of camel growth hormone gene in maghraby camel breed. Animal Science Reporter 9: 50-55.
Sheng, Z., M. E. Pettersson, X. Hu, C. Luo, H. Qu, D. Shu, X. Shen, Ö. Carlborg, & N. Li. 2013. Genetic dissection of growth traits in a Chinese indigenous × commercial broiler chicken cross. Genomics 14:151. http://dx.doi.org/10.1186/1471-2164-14-151.
Stephen, C. Y. I., X. Zhang, & F. C. Leung. 2001. Genomic growth hormone gene polymorphisms in native Chinese chickens. Exp. Biol. Med. 226: 458. https://doi.org/10.1177/153537020122600511
Su, Y. J., J. T. Shu, M. Zhang, X. Y. Zhang, Y. J. Shan, G. H. Li, J. M. Yin, W. T. Song, H. F. Li, & G. P. Zhao. 2014. Association of chicken growth hormone polymorphisms with egg production. Genet. Mol. Res. 13: 4893-4903. https://doi.org/10.4238/2014.July.4.3
Tamura, K., G. Stecher, D. Peterson, A. Filipski, & S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30:2725–2729. https://doi.org/10.1093/molbev/mst197
van den Eijnden, M. J. & G. J. Strous. 2007. Autocrine growth hormone: effects on growth hormone receptor trafficking and signaling. Mol. Endocrinol. 21:2832–2846. http://dx.doi.org/10.1210/me.2007-0092
Vu, C. T., & N. T. Ngu. 2016. Single nucleotide polymorphisms in candidate genes associated with egg production traits in native noi chicken of Vietnam. IJPAES. 6:162-169.
Xu, Z., Q. Nie, & X. Zhang. 2013. Overview of genomic insights into chicken growth traits based on genome-wide association study and microRNA regulation. Curr. Genomics 14:137-146. http://dx.doi.org/10.2174/1389202911314020006.
Yurnalis, Husmaini, & Sabrina. 2017. Polymorphisms of growth hormone gene exon 1 and their associations with body weight in Pitalah and Kumbang Janti ducks. Intl. J. Poult. Sci. 16:203-208. https://doi.org/10.3923/ijps.2017.203.208
Yuwanta, T. & N. Fujihara. 2000. Indonesian native chickens: Production and reproduction potentials and future development. British Poul. Sci. 41:25-25. https://doi.org/10.1080/00071660050148624
Zein, M. S. A. & S. Sulandari. 2012. Genetic diversity and haplogroups distributions of Kampung chickens using hypervariable-I mitochondrial DNA control region. JITV 17: 120-131.
Zhang, X. L., X. Jiang, Y. P. Liu, H. R. Du, & Q. Zhu. 2007. Identification of AvaI polymorphisms in the third intron of GH gene and their associations with abdominal fat in chickens. Poult. Sci. 86:1079–1083. http://dx.doi.org/10.1093/ps/86.6.1079
Zhang, Y, Z. Zhu, Q. Xu, & G. Chen. 2014. Association of polymorphisms of exon 2 of the growth hormone gene with production performance in Huoyan goose. Int. J. Mol. Sci. 15:670-683. https://doi.org/10.3390/ijms15010670
Copyright (c) 2017 Media Peternakan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts published are held by Media Peternakan. The statement to release the copyright to Media Peternakan is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.