Nutrient Changes and in Vitro Digestibility in Generative Stage of M10-BMR Sorghum Mutant Lines

  • R. Sriagtula Department of Nutrition and Feed Science, Faculty of Animal Science, Andalas University
  • P.D.M.H. Karti Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • L. Abdullah Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • Supriyanto Supriyanto Department of Silviculture, Faculty of Forestry, Bogor Agricultural University
  • D. A. Astuti Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
Keywords: brown midrib sorghum, in vitro digestibility, generative stage, sorghum mutant lines

Abstract

The objective of this research was to investigate the influences of generative stage on crude protein, crude fiber, ash, and crude fat contents as well as in-vitro dry matter and organic matter digestibilities of M-10 BMR sorghum mutant lines. This research was arranged into a randomized block design with 2 factors. The first factor was M-10 BMR sorghum mutant lines (Patir 3.1, Patir 3.2 and Patir 3.7) and the second factor was generative stages (flowering, soft dough and hard dough phase). The observed variables were proximate contents of stem, leaves and panicle of sorghum plant and in-vitro digestibility of whole plant. The results showed that leaves crude protein (CP) was more influenced by M-10 BMR sorghum mutant lines. Stems and panicles CP were influenced by the interaction between M-10 BMR sorghum mutant lines and generative stages. Further generative stage reduced stems CP but increased panicles CP. Crude fiber (CF), ash, and ether extract (EE) in leaves were not influenced by generative stages. Stems CF was influenced by M-10 BMR sorghum mutant lines and generative stages, while stems EE was more influenced by generative stages. Stems ash content was influenced by the interaction between M-10 BMR sorghum mutant lines and generative stages while panicles ash content was more influenced by generative stages. M-10 BMR sorghum mutant lines and hard dough phase increased in-vitro dry matter and organic matter digestibilities. Based on those findings, it can be concluded that the increased maturity reduces CP and CF contents so it increases in-vitro digestibilities.

Downloads

Download data is not yet available.

References

Abdelhadi L. O, & J. M. Tricarico. 2009. Effects of stage of maturity and microbial inoculation at harvest on nutritive quality and degradability of grain sorghum whole-plant and head-chop silages. Anim. Feed Sci. Tech. 152:175–185. https://doi.org/10.1016/j.anifeedsci.2009.04.014

Almodares, A., M.R. Hadi., M. Ranjbar, & R. Taheri. 2007. The effects of nitrogen treatments, cultivars and harvest stages on stlak yield and sugar content in sweet sorghum. Asian J. Plant Sci. 6: 423-426. https://doi.org/10.3923/ajps.2007.423.426

AOAC. 1980. Official Methods of Analysis. 13th Edition. Association of Official Analytical Chemist, Washington DC.

Astigarraga, L., A. Bianco., R. Mello, & D. Montedónico. 2014. Comparison of brown midrib sorghum with conventional sorghum forage for grazing dairy cows. Am. J. Plant Sci. 5: 955-962. https://doi.org/10.4236/ajps.2014.57108

Atis, I., O. Konuskan., M. Duru., H. Gozubenli, & S. Yilmaz. 2012. Effect of harvesting time on yield, composition and forage quality of some forage sorghum cultivars. Int. J. Agric. Biol. 14: 879‒886.

Baloyi, B.M., V. I. Ayodele, & A. Addo-Bediako. 2013. Effects of leaf harvest on crude protein and mineral contents of selected early maturing lines of lablab (Lablab purpureus). Afr. J. Agric. Res.Vol. 8: 449-453.

Beck, P., K. Poe., B. Stewart, P. Capps, & H. Gray. 2013. Effect of brown midrib gene and maturity at harvest on forage yield and nutritive quality of sudangrass. Grassland Science 59: 52–58. https://doi.org/10.1111/grs.12007

Buschhaus, C., & R. Jetter. 2012. Composition and physiological function of the wax layers coating arabidopsis leaves: b-Amyrin negatively affects the intracuticular water barrier. Plant Physiol. 160: 449-453. https://doi.org/10.1104/pp.112.198473

Carmi, A., Y. Aharoni, M. Edelstein, N. Umiel., A. Hagiladi, E. Yosef, M. Nikbachat, A. Zenou, & J. Miron. 2006. Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Anim. Feed Sci. Technol. 131: 120–132. https://doi.org/10.1016/j.anifeedsci.2006.02.005

Dann, H.M., R. J. Grant, K. W. Cotanch, E. D. Thomas, C. S. Ballard, & R. Rice. 2008. Comparison of brown midrib sorghum-sudangrass with corn silage on lactational performance and nutrient digestibility in Holstein Dairy Cows. J. Dairy Sci. 91:663–672. https://doi.org/10.3168/jds.2007-0521

Dahir, M., K. X. Zhu., X. N. Guo., W. Aboshora, & W. Peng. 2015. Possibility to Utilize Sorghum Flour in a Modern Bread Making Industry. JAIR 4:128-135.

de Aguilar, P.B., D. A de Assis Pires, B. C. B. Frota, J. A. S. Rodrigues, S. T dos Reis, & V. R. R. Júnior. 2014. Nutritional characteristics of BMR mutant and normal sorghum genotypes used for cutting and grazing. Acta Scientiarum, Anim. Sci. Maringá 36:259-264. https://doi.org/10.4025/actascianimsci.v36i3.21284

Fernandes, G., T. G. Braga, J. Fischer, R. A. C. Parrella., M. M. de Resende, & V. L. Cardoso. 2014. Evaluation of potential ethanol production and nutrients for four varieties of sweet sorghum during maturation. Renewable Energy 71: 518-524. https://doi.org/10.1016/j.renene.2014.05.033

Gressel, J. 2008. Transgenics are imperative for biofuel crops (Review). Plant Sci. 174: 246 –263. https://doi.org/10.1016/j.plantsci.2007.11.009

Koten, B. B., R. D. Soetrisno., N. Ngadiyono, & B Soewignyo. 2014. Perubahan nilai nutrient tanaman sorgum (Sorghum bicolor (L.) Moench) varietas lokal rote sebagai hijauan pakan ruminansia pada berbagai umur panen dan dosis pupuk urea. Pastura 3: 55 – 60.

Ledgerwood, D. N., E. J. DePeters., P. H. Robinson., S. J. Taylor, & J. M. Heguy. 2009. Assessment of a brown midrib (BMR) mutant gene on the nutritive value of sudangrass using in vitro and in vivo techniques. Anim. Feed Sci. Tech. 150:207–222. https://doi.org/10.1016/j.anifeedsci.2008.10.001

Long, B. Y., Y. Seiji, I. Maiko, & C. H. Wei. 2006. QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agricultural Sciences in China 5: 736-744. https://doi.org/10.1016/S1671-2927(06)60118-1

Marsalis, M. A., S. Angadi., F. E. Contreras-Govea, & R. E. Kirksey. 2009. Harvest timing and by product addition effects on corn and forage Sorghum silage grown under water stress. Bull. 799. NMSU Agric. Exp. Stn., Las Cruces, NM.

Puteri, R.E., P. D. M. H. Karti., L. Abdullah, & Supriyanto. 2015. Productivity and nutrient quality of some sorghum mutant lines at different cutting ages. Med Pet. 38:132-137. https://doi.org/10.5398/medpet.2015.38.2.132

Qu, H., X. Bao Liu., C.F Dong., X. Y Lu, & Y. X. Shen. 2014. Field performance and nutritive value of sweet sorghum in eastern China. Field Crops Res. 157: 84–88. https://doi.org/10.1016/j.fcr.2013.12.010

Rao, P. S., S. Deshpande., M. Blümmel., B. V. S. Reddy, & T. Hash. 2012. Characterization of Brown Midrib Mutants of Sorghum (Sorghum bicolor (L.) Moench). The European J. Plant Sci. Biotech. 6:71-75.

Rosser, C. L., P. Gorka., A. D. Beattie., H. C. Block., J. J. Mckinnon., H. A. Lardner, & G. B. Penner. 2013. Effect of maturity at harvest on yield, chemical composition, and in situ degradability for annual cereals used for swath grazing. J. Anim. Sci. 91:3815-3826. https://doi.org/10.2527/jas.2012-5677

Sari, M., A.Ferret, & S. Calsamiglia. 2015. Effect of pH on in vitro microbial fermentation and nutrient flow indiets containing barley straw or non-forage fiber sources. Anim. Feed Sci. Tech. 200:17–24. https://doi.org/10.1016/j.anifeedsci.2014.11.011

Sattler, SE., A. Saballos, Z. Xin, D. L. F. Harris, W. Vermerris, & J. F. Pedersen. 2014. Characterization of novel sorghum brown midrib mutants from an EMS-mutagenized population. G3 (Bethesda) 4: 2115–2124. https://doi.org/10.1534/g3.114.014001

Scully, E.D., T. Gries, D. L. Funnell-Harris, Z. Xin, F. A. Kovacs, W. Vermerris, & S.E. Sattler. 2016. Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J. Integr. Plant Biol. 58:136-49. https://doi.org/10.1111/jipb.12375

Steel, R. G. D., & J. H. Torri. 1997. Prinsip dan Prosedur Statistika: Suatu Pendekatan Biometrik. Edisi II. Terjemahan: B. Sumantri. PT. gramedia Pustaka Utama Jakarta.

Sriagtula, R., P. D. M. H. Karti, L. Abdullah, Supriyanto, & D. A. Astuti. 2016a. Dynamics of fiber fraction in generative stage of M10-BMR sorghum mutant lines. IJSBAR 25: 58-69.

Sriagtula, R., P. D. M. H. Karti, L. Abdullah, Supriyanto, & D. A. Astuti. 2016b. Growth, biomass and nutrient production of brown midrib sorghum mutant lines at different harvest times. Pak. J. Nutr. 15: 524-531. https://doi.org/10.3923/pjn.2016.524.531

Sucipto. 2010. Efektivitas cara pemupukan terhadap pertumbuhan dan hasil beberapa varietas sorgum manis (Sorghum bicolor L.Moench). Embryo 7:67-74.

Tang, M. C. & L. Copeland. 2007. Analysis of complexes between lipids and wheat starch. Carbohydr. Polym. 67:80-85. https://doi.org/10.1016/j.carbpol.2006.04.016

Tesso, T., & G. Ejeta. 2011. Stalk strength and reaction to infection by Macrophomina phaseolina of brown midrib maize (Zea mays) and sorghum (Sorghum bicolor). Field Crops Res. 120:271–275. https://doi.org/10.1016/j.fcr.2010.10.015

Tilley, J. M. A. & R. A. Terry. 1963. A two stage technique for the in vitro digestion of forage crop. Grass Forage Sci. 18: 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Tillman, A. D., H. Hartadi., S. Prawirokusumo, & Lebdosoekodjo. 1998. Ilmu Makanan Ternak Dasar. Cetakan V. Gadjah Mada University Press, Yogyakarta.

Published
2017-08-22