Potential of Lactic Acid Bacteria Isolated from Dangke and Indonesian Beef as Hypocholesterolaemic Agent

  • H. Burhan Study Program of Animal Production and Technology, Faculty of Animal Science, Graduate School, Bogor Agricultural University
  • S. A. Priyambada Laboratory of Applied Microbiology, International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan
  • E. Taufik Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
  • I. I. Arief Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
Keywords: lactic acid bacteria, bile salt hydrolase, assimilation, cholesterol, dangke

Abstract

Lactobacillus fermentum strains were successfully isolated from dangke which was a fresh cheese-like product originating from Enrekang, South Sulawesi Province, Indonesia. In addition, Lactobacillus plantarum and Lactobacillus acidophillus were isolated from beef. This study aimed to investigate the ability of those 8 LAB strains from dangke and beef in lowering cholesterol level by using in vitro study. Strain of Lactic acid bacteria used were L. fermentum strains (A323L, B111K, B323K, C113L, C212L), L. plantarum strains (IIA-1A5 and IIA-2C12), and L. acidophillus IIA-2B4. Variables observed were identification of Bile Salt Hydrolase (BSH) gene by Polymerase Chain Reaction (PCR), BSH activity and cholesterol assimilation. Phylogenetic tree indicated homology of L. plantarum IIA-IA5 was 98% to BSH gene of L. plantarum Lp529 with access code of FJ439771 and FJ439775 obtained from GenBank. The results demonstrated that eight strains of LAB isolated from dangke and beef that potentially showed cholesterol-lowering effects were L. fermentum B111K and L. plantarum IIA-1A5. L. fermentum B111K was able to assimilate cholesterol by 4.10% with assimilated cholesterol of 0.13 mg in 1010 cells. In addition, L. plantarum IIA-1A5 had BSH gene and BSH activity, as well as the ability to assimilate cholesterol by 8.10% with assimilated cholesterol of 0.06 mg in 1010 cells. It is concluded that L. fermentum B111K and L. plantarum IIA-1A5 were strains that showed cholesterol-lowering effects.

Downloads

Download data is not yet available.

Author Biographies

H. Burhan, Study Program of Animal Production and Technology, Faculty of Animal Science, Graduate School, Bogor Agricultural University
Study Program of Animal Production and Technology, Faculty of Animal Science
E. Taufik, Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
Departement Program of Animal Production and Technology, Faculty of Animal Science
I. I. Arief, Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
Departement Program of Animal Production and Technology, Faculty of Animal Science

References

Arief, I.I., B. S. L. Jenie, T. Suryati, G. Ayuningtyas, & A. Fujiawan. 2012. Antimicrobial activity of bacteriocin from indigenous Lactobacillus platarum 2C12 and its application on beef meatball as biopreservative. J. Indonesian Trop. Anim. Agric. 37: 90-96. https://doi.org/10.14710/jitaa.37.2.90-96

Arief, I. I., Jakaria, T. Suryati, Z. Wulandari, & E. Andreas. 2013. Isolation and characterization of plantaricin produced by Lactobacillus plantarum Strains (IIA-1A5, IIA-1B1, IIA-2B2). Med. Pet. 36: 91-100. http://dx.doi.org/10.5398/ medpet.2013.36.2.91.

Arief, I. I., B. S. L. Jenie, M. Astawan, K. Fujiyama, & A. B. Witarto. 2015a. Identification and probiotic characteristics of lactic acid bacteria isolated from Indonesian local beef. Asian J. Anim. Sci. 9: 25-36. https://doi.org/10.3923/ajas.2015.25.36

Arief, I. I., B. S. L. Jenie, E. Andreas, & A. Yuneni. 2015b.Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphilucoccus aureus. Benef. microbes. 6: 603-613. https://doi.org/10.3920/BM2014.0064

Begley, M., C. Hill, & C. G. M. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006

Bin, L. & J. Yujun. 2011. Cloning of Bile salt hydrolase gene and its expression in lactic acid bacteria. J. Northeast Agric. Univ. (English edition) 18: 48-53. https://doi.org/10.1016/S1006-8104(12)60009-9

Chang-qing, Y., & L. Rong. 2015. Cloning and Expression of Bile Salt Hydrolase Gene from Lactobacillus plantarum M1-UVS29. J. Northeast Agric. Univ. (English Edition) 22: 60-66. https://doi.org/10.1016/S1006-8104(15)30033-7

FAO/WHO. 2012. WHO working group report on drafting guidelines for the evaluation of probiotics in food. London Ontario, Canada 30.

Hae-Keun, O., J. Y. Lee, S. J. Lim, M. J. Kim, G.-B. Kim, J. H. Kim, et al., 2008. Molecular cloning and characterization of a bile salt hydrolase from Lactobacillus acidophilus PF01. J. Microbiol. Biotechnol. 18: 449-456.

Horiike, T., D. Miyata, K. Hamada, S. Saruhashi, T. Shinozawa, S. Kumar, et al., 2009. Phylogenetic construction of 17 bacterial phyla by new method and carefully selected orthologs. Gene 429: 59-64. https://doi.org/10.1016/j.gene.2008.10.006

Kim, G.-B., C. M. Miyamoto, E. A. Meighen, & B. H. Lee. 2004. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl Environ. Microbiol. 70: 5603-5612. https://doi.org/10.1128/AEM.70.9.5603-5612.2004

Kimoto-Nira, H., K. Mizumachi, M. Nomura, M. Kobayashi, t. l. Y. Fujita, T. Okamoto, et al., 2007. Lactococcus sp. as potential probiotic lactic acid bacteria. Jpn. Agric. Res. Q. 41: 181-189. https://doi.org/10.6090/jarq.41.181

Kumar, M., R. Nagpal, R. Kumar, R.Hemalatha, V. Verma, A. Kumar, et al., 2012. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp. Diabetes Res. 2012: 902917. https://doi.org/10.1155/2012/902917

Liévin-Le Moal, V., & A. L. Servin. 2014. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 27: 167-199. https://doi.org/10.1128/CMR.00080-13

Liong, M. & N. Shah. 2005. Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. J. Dairy Sci. 88: 55-66.

Lye, Huey-Shi, Rahmat-Ali, G. Rusul, Liong, & Min-Tze. 2010. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int. Dairy J. 20: 169-175. https://doi.org/10.1016/j.idairyj.2009.10.003

Mahrous, H. 2011. Probiotics bacteria from Egyptian infants cause cholesterol removal in media and survive in yoghurt. Food Nutr. Sci. 02: 150-155. https://doi.org/10.4236/fns.2011.22021

Mattjik, A. A. & Sumertajaya, M. 2013. Perancangan Percobaan dengan Aplikasi SAS dan Minitab Jilid 1. Bogor (ID): IPB Pr.

Nuraida, L., S. Winarti, Hana, & E. Prangdimurti. 2011. Evaluasi in vitro terhadap kemampuan isolat bakteri asam laktat asal air susu ibu untuk mengasimilasi kolesterol dan mendekonjugasi. J. Teknologi dan Industri Pangan. 22:46-46

Sedlackova, P., S. Horackova, T. Shi, M. Kosova, & M. Plockova. 2015. Two Different Methods for Screening of Bile Salt Hydrolase Activity in Lactobacillus Strains. Czech J. Food Sci. 33: 13-18. https://doi.org/10.17221/299/2014-CJFS

Surono, I. S. 2004. Probiotik Susu Fermentasi dan Kesehatan. YAPMMI, Jakarta.

Syah, S. P., C. Sumantri, I. I. Arief, & E. Taufik. 2017. Isolation and identification of indigenious lactic acid bacteria by squencing the 16SrRNA from dangke, a traditional cheese from Enrekang, South Sulawesi. Pakistan Journal of Nutrition: 16: 384-392. https://doi.org/10.3923/pjn.2017.384.392

Tomaro-Duchesneau, C., M. L. Jones, D. Shah, P. Jain, S. Saha, & S. Prakash. 2014. Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. Biomed. Res. Int. 2014: 380316. https://doi.org/10.1155/2014/380316

Published
2017-08-22