Plant Growth Pattern, Forage Yield, and Quality of Indigofera zollingeriana Influenced by Row Spacing
Abstract
Indigofera zollingeriana is one of legumes has a great potential to be used as an animal feed having high quality nutrients and is tolerant to different environmental conditions. The objective of this experiment was to study the effect of different row spacings between individual plants on growth pattern, forage yield, and quality of I. zollingeriana. Field experiment was conducted at Field Laboratory of Agrostology, Faculty of Animal Science Bogor Agricultural University, during the growing season of 2015/2016. The 4 spacings levels used were 1 x 1.5 m; 1 x 1 m; 1 x 0.75 m; and 1 x 0.5 m. The treatment was arranged in a completely randomized block design, with 4 replicates. Variables in this research were plant height, number of leaves, number of branches, plant population for each plot, fresh and dry matter yields, and forage quality. The results showed that narrow plant spacing increased plant height, plant population, fresh and dry weights, dry matter yields, as well as NDF and β-carotene contents. The wider the plant spacing the greater the number of branches and leaves per plant. It was concluded that increasing plant population by narrowing plant spacing remained the most effective way to increase Indigofera forage yield without negative effects of it on nutritive values, i.e., crude protein, crude fat, crude fiber, ADF, and TDN.Downloads
References
Abdullah, L. 2010. Herbage production and quality of shrub Indigofera treated by different concentration of foliar fertilizer. Med. Pet. 33: 169-175. https://doi.org/10.5398/medpet.2010.33.3.169
Abdullah, L. & Suharlina. 2010. Herbage yield and quality of two vegetative parts of Indigofera at different time of first regrowth defoliation. Med. Pet. 33:44-49.
Agele, S. O., I. O. Maraiyesa, & I. A. Adeniji. 2007. Effects of variety and row spacing on radiation interception, partitioning of dry matter and seed set efficiency in late season sunflower (Helianthus annuus L.) in a humid zone of Nigeria. Afr. J. Agric. Res. 2: 080-088.
Ali, A., L. Abdullah, P. D. M. H. Karti, M. A. Chozin, & D. A. Astuti. 2014. Production and nutritive value of Indigofera zollingeriana and Leucaena leucocephala in peatland. Animal Production. 16: 156-164
Baron, V. S., H. G. Nadja, & F. C. Stevenson. 2006. Influence of population density, row spacing and hybrid on forage corn yield and nutritive value in a cool-season environment. Can. J. Plant Sci. 86: 1131–1138. https://doi.org/10.4141/P05-136
Baskoro, D. P. T. & S. D. Tarigan. 2007. Soil moisture characteristics on several soil types. Jurnal Tanah dan Lingkungan. 9: 77-81.
Chauhan, B. S. & J. L. Opeña. 2013. Effect of plant spacing on growth and grain yield of soybean. Am. J. Plant Sci. 4: 2011-2014. https://doi.org/10.4236/ajps.2013.410251
Craine, J. M. & R. Dybzinski. 2013. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 27: 833–840. https://doi.org/10.1111/1365-2435.12081
Elgersma, A., K. Søegaard, & S. K. Jensen. 2012. Vitamin contents in forage herbs. Asp. Appl. Biol. 115: 75-80
Faradillah, F., R. Mutia, & L. Abdullah. 2015. Substitution of soybean meal with Indigofera zollingeriana top leaf meal on egg quality of Cortunix cortunix japonica. Med. Pet. 38: 192-197. https://doi.org/10.5398/medpet.2015.38.3.192
Ginting, S. P., R. Krisnan, J. Sirait, & Antonius. 2010. The utilization of Indigofera sp as the sole foliage in goat diets supplemented with high carbohydrate or high protein concentrates. JITV. 15: 261-268
Grosbach, J. 2008. The effect of row spacing on the yield and plant growth of popcorn (Zea mays). Cantaurus. 16: 9-12
Hassen, A., N. F. G. Rethman, W. A. Z. Apostolides, & Van Niekerk. 2008. Forage production and potential nutritive value of 24 shrubby indigofera accessions under fields conditions in South Africa. Tropical Grasslands. 42: 96–103
Iptas, S. & A. A. Acar. 2006. Effects of hybrid and row spacing on maize forage yield and quality. Plant Soil Environ. 52: 515–522
Kuai, J., Y. Sun, Q. Zuo, H. Huang, Q. Liao, C. Wu, J. Lu, J. Wu, & G. Zhoua. 2015. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Science Report. 5: 18835. https://doi.org/10.1038/srep18835
Murányi, E. 2015. Effect of plant density and row spacing on maize (Zea mays l.) grain yield in different crop year. Columella-Journal of Agricultural and Environmental Sciences. 2: 57-63. https://doi.org/10.18380/SZIE.COLUM.2015.1.57.
Ndiaye, A., M. Diop, E. H. G. Diouf, & S. Traore. 2016. Dosage of some chemical substances in two plant species: Alysicarpus ovalifolius (Sch. and Th.) and Indigofera pilosa (Poir). J. Biosci. Med. 4: 80-86
Palupi, R., L. Abdullah, D. A. Astuti, & Sumiati. 2014. Potential and utilization of Indigofera sp. shoot leaf meal as soybean meal substitution in laying hen diets. Indonesian Journal of Animal and Veterinary Sciences (JITV). 19: 210-219
Pedersen, P. 2008. Row spacing in soybean. Department of Agronomy. Iowa State University.
Stevovic, V., R. Stanisavljevic, D. Djukic, & D. Djurovic. 2012. Effect of row spacing on seed and forage yield in sainfoin (Onobrychis viciifolia Scop.) cultivars. Turk. J. Agric. For. 36: 35-44. https://doi.org/10.3906/tar-1006-1018
Streck, N. A., D. G. Pinheiro, A. J. Zanon, L. F. Gabriel, T. S. M. Rocha, A. T. de Souza, & M.R. da Silva. 2014. Effect of plant spacing on growth, development and yield of cassava in a subtropical environment. Bragantia, Campinas. 73: 407-415. https://doi.org/10.1590/1678-4499.0159
Copyright (c) 2017 Media Peternakan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts published are held by Media Peternakan. The statement to release the copyright to Media Peternakan is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.