Performance, Nutrient Digestibility, and Meat Quality of Bali Cattle Fed a Ration Supplemented with Soybean Oil Calcium Soap and Cashew Fruit Flour

  • A. Bain Haluoleo University
  • D. A. Astuti Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • S. Suharti Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
  • C. Arman Faculty of Animal Sciance, Mataram University
  • K. G. Wiryawan Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
Keywords: calcium soaps, growth, digestibility, blood metabolites, meat’s fatty acid, Bali cattle

Abstract

The study to evaluate growth performance, nutrient digestibility, blood metabolites profile and meat fatty acid of Bali cattle treated with 3 different types of rations were conducted using a completely randomized block design with 4 replications. Ration treatments were R1: 40% native grass (NG) + 60% concentrate, R2: 40% NG + 60% concentrate supplemented with 5% soybean oil calcium soap (SOCS), and R3: (40% NG + 60% concentrate supplemented with 5% SOCS + 10% cashew fruit flour (CFF). Variables measured were growth performance, nutrients digestibility, blood metabolites, and meat fatty acid profile. Data were analyzed using analysis of variance (ANOVA) and the differences between treatment means were examined by Duncan Multiple Range Test. Results of the study showed that the 3 different feed treatments did not have any significant effect on dry matter intake and organic matter intake, daily body weight gain, feed efficiency, crude fiber, ADF and NDF digestibilities, cholesterol, triglycerides, low density lipoprotein (LDL), high density lipoprotein (HDL), total fatty acid contents and content of unsaturated and saturated meat fatty  acids of Bali cattle meat. Different treatment rations also did not affect dry matter digestibility, however the treatments significantly affect the organic matter, crude protein, and fat digestibility (P<0.05). Bali cattle fed 5% SOCS (R2) and 5% SOCS + 10% CFF (R3) had higher organic matter and ether extract digestibilities and linoleic acid content of meat (P<0.05) compared with the control (R1). The Bali cattle fed with R1 and R2 had higher crude protein digestibility (P<0.05) compared with that of R3. It is concluded that the supplementation of 5% SOCS and 10% CFF in the ration improved the digestibility of organic matter, ether extract and linoleic fatty acids content in Bali cattle meat.

Downloads

Download data is not yet available.

References

Adebowale B. A., O. Olubamiwa, & M. A. K. Ogunjobi. 2011. Substitution value of sundried cashew apple bagasse in the diets of Clarias gariepinus. Int. Res. J. Agric.Sci. & Soil Sci. 1: 268-272.

Aguerre M. J., M. C. Capozzolo, P. Lencioni, C. Cabral, & M. A. Wattiaux. 2016. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 99: 1-11. https://doi.org/10.3168/jds.2015-10745

AOAC. 2005. Official Methods of Analysis 18 th. AOAC International, New York.

Apriyantono A., D. Fardiaz, N. L. Puspitasari, Sedarnawaty, & S. Budiyanto. 1989. Analisis Pangan. IPB Press, Bogor (ID).

Block E., W. Chalupa, E. Evans, T. Jenkins, P. Moate, D. Palmquist, & C. Sniffen. 2005. Calcium salts are highly digestible. Feedstuffs. 77: 1-7.

Bunglavan S. J. & N. Dutta. 2013. Use of tannins as organic protectants of proteins in digestion of ruminants. Livest. Sci. 4: 67-77.

da Luz e Silva S., P. R. Leme, S. M. Putrino, A. S. C. Pereira, A. C. Valinote, J. C. M. Nogueira Filho, & D. P. D. Lanna. 2009. Fatty acid composition of intramuscular fat from Nellore steers fed dry or high moisture corn and calcium salts of fatty acids. Livest. Sci. 122: 290-295. https://doi.org/10.1016/j.livsci.2008.09.013

El-Nour H. H., S. M. Nasr, & W. R. Hassan. 2012. Effect of calcium soap of fatty acids supplementation on serum biochemical parameters and ovarian activity during out-of-the-breeding season in crossbred ewes. The Sci.World J. 2012: 1-7. https://doi.org/10.1100/2012/601840

Fiorentini G., I. P. C. Carvalho, J. D. Messana, R. C. Canesin, P. S. Castagnino, J. F. Lage, P. B. Arcuri, & T. T. Berchielli. 2015. Effect of lipid sources with different fatty acid profiles on intake, nutrient digestion and ruminal fermentation of feedlot nellore steers. Asian Australas. J. Anim. Sci. 28: 1583-1591. https://doi.org/10.5713/ajas.15.0130

Hidayah, N., S. Suharti, & K. G. Wiryawan. 2014. In vitro rumen fermentation of ration supplemented with protected vegetable oils. Med.Pet. 37: 129-135. https://doi.org/10.5398/medpet.2014.37.2.129

Hungate, R. E. 1988. Introduction : The Ruminant and the Rumen. In: P. N. Hobson (ed.) The Rumen Microbial Ecosystem. Elsevier Applied Science, London and New York.

Jayanegara, A. & E. Palupi. 2010. Condensed tannin effects on nitrogen digestion in ruminants: A meta-analysis from invitro and in vivo studies. Med.Pet. 33: 176-181. https://doi.org/10.5398/medpet.2010.33.3.176

Jenkins, T. C. & W. C. Bridges. 2007. Protection of fatty acids against ruminal biohydrogenation in cattle. Eur. J. Lipid Sci. Technol. 109: 778-789. https://doi.org/10.1002/ejlt.200700022

Kapourchali, F. R., G. Surendiran, A. Goulet, & M. H. Moghadasian. 2016. The role of dietary cholesterol in lipoprotein metabolism and related metabolic abnormalities: A mini-review. Food Sci. Nut. 56: 1-32. https://doi.org/10.1080/10408398.2013.842887

Kearl, C. L. 1982. Nutrient Requirements of Ruminants in Developing Countries, Utah State University, Utah (US).

Khiaosa-Ard R., S. F. Bryner, M. R. Scheeder, H. R. Wettstein, F. Leiber, M. Kreuzer, & C. R. Soliva. 2009. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 92: 177-188. https://doi.org/10.3168/jds.2008-1117

Kumar, R., K. Sivaiah, Y. R. Reddy, B. Ekambram, T. J. Reddy, & G. V. N. Reddy. 2006. Effect of supplementation of dietary protected lipids on intake and nutrient utilization in Deccani lambs. Trop. Anim. Health Prod. 38: 151-158. https://doi.org/10.1007/s11250-006-4248-0

Lourenco, M., E. Ramos-Morales, & R. J. Wallace. 2010. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation The Animal Consortium. p 1008–1023.

Ludden, P. A., O. Kucuk, D. C. Rule, & B. W. Hess. 2009. Growth and carcass fatty acid composition of beef steers fed soybean oil for increasing duration before slaughter. Meat Sci. 82: 185-92. https://doi.org/10.1016/j.meatsci.2009.01.009

Maia, M. R., L. C. Chaudhary, C. S. Bestwick, A. J. Richardson, N. McKain, T. R. Larson, I. A. Graham, & R. J. Wallace. 2010. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 10: 52. https://doi.org/10.1186/1471-2180-10-52

Manso, T., T. Castro, A. R. Mantecón, & V. Jimeno. 2006. Effects of palm oil and calcium soaps of palm oil fatty acids in fattening diets on digestibility, performance and chemical body composition of lambs. Anim.Feed Sci.Technol. 127: 175-186. https://doi.org/10.1016/j.anifeedsci.2005.08.013

McNiven, M. A., J. L. Duynisveld, T. Turner, & A. W. Mitchell. 2011. Ratio of n-6/n-3 in the diets of beef cattle: Effect on growth, fatty acid composition, and taste of beef. Anim.Feed Sci.Technol. 170: 171-181. https://doi.org/10.1016/j.anifeedsci.2011.09.006

Ramprasath, V. R., D. D. Buckley, J. E. Heubi, P. J. H. Jones, & L. A. Woollett. 2012. Decreased plasma cholesterol concentrations after pufa-rich diets are not due to reduced cholesterol absorption/synthesis. Lipids 47: 1063-1071. https://doi.org/10.1007/s11745-012-3708-8

Rufino, M. d. S. M., J. Pérez-Jiménez, M. Tabernero, R. E. Alves, E. S. De Brito, & F. Saura-Calixto. 2010. Acerola and cashew apple as sources of antioxidants and dietary fibre. Int.J.Food Sci.Technol. 45: 2227-2233. https://doi.org/10.1111/j.1365-2621.2010.02394.x

Salinas, J., R. G. Ramırez, M. M. Domınguez, N. Reyes-Bernal, N. Trinidad-Larraga, & M. F. Montano. 2006. Effect of calcium soaps of tallow on growth performance and carcass characteristics of Pelibuey lambs. Small Rum. Res. 66: 135-139. https://doi.org/10.1016/j.smallrumres.2005.07.058

Silva, R. R., L. B. O. Rodrigues, M. d. M. Lisboa, M. M. S. Pereira, & S. O. d. Souza. 2014. Conjugated linoleic acid (CLA): A review. International Journal of Applied Science and Technology. 4: 154-170.

Smith, S. B., C. A. Gill, D. K. Lunt, & M. A. Brooks. 2009. Regulation of fat and fatty acid composition in beef cattle. Asian-Australas. J. Anim. Sci. 22: 1225-1233. https://doi.org/10.5713/ajas.2009.r.10

Tahuk, P. K. & A. A. Dethan. 2010. Performance of Bali bull in greenlot fattening by farmers when rainy season in Timor island. J. Indon. Trop. Anim. Agric. 35: 257-261. https://doi.org/10.14710/jitaa.35.4.257-261

Voigt, J., S. Kuhla, K. Gaafar, M. Derno, & H. Hagemeister. 2006. Digestibility of rumen protected fat in cattle. Slovak J. Anim. Sci. 39: 16-19.

Wina, E., Y. Widiawaty, B. Tangendjaja, & I. W. R. Susana. 2014. Supplementation of calcium fatty acid to increase milk production and performance of lactating dairy cow. JITV. 19: 287-293.

Wina, E., D. Yulistiani, I. W. R. Susana, & B. Tangendjaja. 2012. Improving microbial protein synthesis in the rumen of sheep fed fresh tofu waste by crude tannin extract of acacia mangium. JITV 17: 207-214.

Published
2016-12-20