Risk Factors Influencing Conception Rate in Holstein Heifers before Artificial Insemination or Embryo Transfer

  • M. Yusuf Laboratory of Animal Reproduction, Faculty of Animal Science, Hasanuddin University
  • T. Nakao Department of Veterinary Medicine, Faculty of Agriculture, Yamaguchi University
  • S. T. Long Department of Veterinary Medicine, Faculty of Agriculture, Yamaguchi University
  • S. Fujita Department of Veterinary Medicine, Faculty of Agriculture, Yamaguchi University
Keywords: risk factors, conception rate, Holstein Heifers, induced estrus


The objective of this study was to show the risk factors affecting the conception rate in Holstein heifers after synchronization of estrus. A total of 275 Holstein heifers housed in a free barn were used for the experiment. The herd was visited regularly at four week intervals for synchronization of estrus using Heatsynch and CIDR-Heatsynch protocols. A group of four to 14 animals, depending on the availability, were referred to the experiment at each visit. Estrus induction rates in the two protocols were 93.9% and 94.9%, respectively. There was no difference in the conception rate between the two protocols. Conception rate after artificial insemination (AI) or embryo transfer (ET) were 46.3% and 51.4%, respectively. The risk factors affecting conception rate in heifers were daily weight gain (odds ratio [OR]= 4.673; P= 0.036) and body condition score (BCS) (OR= 3.642; P= 0.018). Furthermore, estrus synchronization protocol (OR= 1.774; P= 0.083) and the absence of corpus luteum (CL) at the initiation of treatment (OR= 0.512; P= 0.061) had a tendency to affect the conception rate, while age (OR= 0.715; P= 0.008) was a protective factor to conception rate.  In conclusion, positive daily weight gain before AI or ET, higher BCS, younger age, and the presence of CL at the initiation of estrus synchronization in dairy heifers increased the likelihood to conceive.


Download data is not yet available.


Atanasov, B., J. De Koster, L. Bommelé, T. Dovenski, & G. Opsomer. 2015. Pathways of the dominant follicle after exposure to sub-luteal circulating progesterone concentrations are different in lactating dairy cows versus non-lactating heifers. Anim. Reprod. Sci. 154: 8-15. http://dx.doi.org/10.1016/j.anireprosci.2015.01.002

Bishop, B. E., J. M. Thomas, J. M. Abel, S. E. Poock, M. R. Ellersieck, M. F. Smith, & D. J. Patterson. 2016. Split-time artificial insemination in beef cattle: I–Using estrous response to determine the optimal time(s) at which to administer GnRH in beef heifers and postpartum cows. Theriogenology 86:1102-1110. http://dx.doi.org/10.1016/j.theriogenology.2016.03.043

Brickell, J. S., N. Bourne, M. M. McGowan, & D. C. Wathes. 2009. Effect of growth and development during the rearing period on the subsequent fertility of nulliparous Holstein-Friesian heifers. Theriogenology 72:408-416. http://dx.doi.org/10.1016/j.theriogenology.2009.03.015

Bridges, G. A. & S. L. Lake. 2011. Comparison of the CIDR Select and 5-day Select Synch + CIDR protocols that included limited estrus detection and timed insemination for synchronizing estrus in beef heifers. The Professional Animal Scientist 27: 141-146. http://dx.doi.org/10.15232/S1080-7446(15)30461-7

Butler, W. R. 2003. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livest. Prod. Sci. 83:211-218. http://dx.doi.org/10.1016/S0301-6226(03)00112-X

Cavalieri, J., G. Hepworth, V. M. Smart, M. Ryan, & K. L. Macmillan. 2007. Reproductive performance of lactating dairy cows and heifers resynchronized for a second insemination with an intravaginal progesterone-releasing device for 7 or 8 d with estradiol benzoate injected at the time of device insertion and 24 h after removal. Theriogenology 67:824-834. http://dx.doi.org/10.1016/j.theriogenology.2006.10.016

Chebel, R. C., F.A. Fernando, & J. C. Dalton. 2007. Factors affecting reproductive performance of Holstein heifers. Anim. Reprod. Sci. 101:208-224. http://dx.doi.org/10.1016/j.anireprosci.2006.09.010

Chebel, R. C., J. E. P. Santos, R. L. A. Cerri, H. M. Rutigliano, & R. G. S. Bruno. 2006. Reproduction in dairy cows following progesterone insert presynchronization and resynchronization protocols. J. Dairy Sci. 89:4205-4219. http://dx.doi.org/10.3168/jds.S0022-0302(06)72466-3

Dorsey, B. R., R. Kasimanickam, W. D. Whittier, R. L. Nebel, M. L. Wahlberg, & J. B. Hall. 2011. Effect of time from estrus to AI on pregnancy rates in estrous synchronized beef heifers. Anim. Reprod. Sci. 127:1-6. http://dx.doi.org/10.1016/j.anireprosci.2011.07.014

Edmonson, A. J., I. J. Lean, L. D. Weaver, T. Farver, & G. Webster. 1989. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 72:68-78. http://dx.doi.org/10.3168/jds.S0022-0302(89)79081-0

Imron, M., I. Supriatna, Amrozi, & M. A. Setiadi. 2015. Ovarian dynamic in ongole grade cattle after GnRH injection in ovsynch protocol based on progesterone device. Med. Pet. 38:82-88. http://dx.doi.org/10.5398/medpet.2015.38.2.82

Isobe, N. & T. Nakao. 2003. Direct enzyme immunoassay of progesterone in bovine plasma. Anim. Sci. J. 74:369-373. http://dx.doi.org/10.1046/j.1344-3941.2003.00128.x

Kuhn, M. T., J. L. Hutchison, & G. R. Wiggans. 2006. Characterization of Holstein heifer fertility in the United States. J. Dairy Sci. 89:4907-4920. http://dx.doi.org/10.3168/jds.S0022-0302(06)72541-3

Leitman, N. R., D. C. Busch, D. A. Mallory, D. J. Wilson, M. R. Ellersieck, M. F. Smith, & D. J. Patterson. 2009. Comparison of long-term CIDR-based protocols to synchronize estrus in beef heifers. Anim. Reprod. Sci. 114:345-355. http://dx.doi.org/10.1016/j.anireprosci.2008.10.014

Palomares, R. A., H. J. Fishman, A. L. Jones, M. S. Ferrer, M. Jenerette, & A. Vaughn. 2015. Comparison of 4- versus 5-day Co-Synch + controlled internal drug release (CIDR) + timed artificial insemination protocols in dairy heifers. Theriogenology 84: 868-874. http://dx.doi.org/10.1016/j.theriogenology.2015.05.021

Pereira, M. H. C., M. C. Wiltbank, & J. L. M. Vasconcelos. 2016. Expression of estrus improves fertility and decreases pregnancy losses in lactating dairy cows that receive artificial insemination or embryo transfer. J. Dairy Sci. 99 2237-2247. http://dx.doi.org/10.3168/jds.2015-9903

Pryce, J. E., M. D. Royal, P. C. Garnsworthy, & I. L. Mao. 2004. Fertility in the high-producing dairy cow. Livest. Prod. Sci. 86:125-135. http://dx.doi.org/10.1016/S0301-6226(03)00145-3

Rabaglino, M. B., C. A. Risco, M. J. Thatcher, I. H. Kim, J. E. P. Santos, & W. W. Thatcher. 2010. Application of one injection of prostaglandin F2α in the five-day Co-Synch + CIDR protocol for estrous synchronization and resynchronization of dairy heifers. J. Dairy Sci. 93:1050-1058. http://dx.doi.org/10.3168/jds.2009-2675

Richardson, B. N., S. L. Hill, J. S. Stevenson, G. D. Djira, & G. A. Perry. 2016. Expression of estrus before fixed-time AI affects conception rates and factors that impact expression of estrus and the repeatability of expression of estrus in sequential breeding seasons. Anim. Reprod. Sci. 166:133-140. http://dx.doi.org/10.1016/j.anireprosci.2016.01.013

Royal, M. D., A. O. Darwash, A. P. F. Flint, R. Webb, J. A. Woolliams, & J. E. Lamming. 2000. Declining fertility in dairy cattle: changes in traditional and endocrine parameters of fertility. Anim. Sci. 70:487-501. http://dx.doi.org/10.1017/S1357729800051845

Sahu, S. K., J. F., Cockrem, T. J. Parkinson, & R. A. Laven. 2014. The effects of exclusion of progesterone or Day 0 GnRH from a GnRH, prostaglandin, GnRH + progesterone program on synchronization of ovulation in pasture-based dairy heifers. Theriogenology 82:643-651. http://dx.doi.org/10.1016/j.theriogenology.2014.06.004

Say, E., S. Çoban, Y. Nak, D. Nak, U. Kara, S. White, V. Kasimanickam, & R. Kasimanickam. 2016. Fertility of Holstein heifers after two doses of PGF2α in 5-day CO-Synch progesterone-based synchronization protocol. Theriogenology 86:988-993. http://dx.doi.org/10.1016/j.theriogenology.2016.03.026

Silva, T. V., F. S. Lima, W. W. Thatcher, & J. E. P. Santos. 2015. Synchronized ovulation for first insemination improves reproductive performance and reduces cost per pregnancy in dairy heifers. J. Dairy Sci. 98:7810-7822. http://dx.doi.org/10.3168/jds.2015-9704

Thomas, J. M., B. E. Bishop, J. M. Abel., M. R. Ellersieck, M. F. Smith, & D. J. Patterson. 2016. The 9-day CIDR-PG protocol: Incorporation of PGF2α pretreatment into a long-term progestin-based estrus synchronization protocol for postpartum beef cows. Theriogenology 85:1555-1561. http://dx.doi.org/10.1016/j.theriogenology.2016.01.010

Wheaton, J. E. & G. C. Lamb. 2007. Induction of cyclicity in postpartum anestrous beef cows using progesterone, GnRH and estradiol cypionate (ECP). Anim. Reprod. Sci. 102:208-216. http://dx.doi.org/10.1016/j.anireprosci.2006.11.006

Yusuf, M., T. Nakao, C. Yoshida, S. T. Long, S. Fujita, Y. Inayoshi, & Y. Furuya. 2010. Comparison in effect of Heatsynch with heat detection aids and CIDR-Heatsynch in dairy heifers. Reprod. Dom. Anim. 45:500-504. http://dx.doi.org/10.1111/j.1439-0531.2008.01277.x