Partial Sequencing of 16S rRNA Gene of Selected Staphylococcus aureus Isolates and its Antibiotic Resistance
Abstract
The choice of primer used in 16S rRNA sequencing for identification of Staphylococcus species found in food is important. This study aimed to characterize Staphylococcus aureus isolates by partial sequencing based on 16S rRNA gene employing primers 16sF, 63F or 1387R. The isolates were isolated from milk, egg dishes and chicken dishes and selected based on the presence of sea gene that responsible for formation of enterotoxin-A. Antibiotic susceptibility of the isolates towards six antibiotics was also tested. The use of 16sF resulted generally in higher identity percentage and query coverage compared to the sequencing by 63F or 1387R. BLAST results of all isolates, sequenced by 16sF, showed 99% homology to complete genome of four S. aureus strains, with different characteristics on enterotoxin production and antibiotic resistance. Considering that all isolates were carrying sea gene, indicated by the occurence of 120 bp amplicon after PCR amplification using primer SEA1/SEA2, the isolates were most in agreeing to S. aureus subsp. aureus ST288. This study indicated that 4 out of 8 selected isolates were resistant towards streptomycin. The 16S rRNA gene sequencing using 16sF is useful for identification of S. aureus. However, additional analysis such as PCR employing specific gene target, should give a valuable supplementary information, when specific characteristic is expected.Downloads
References
Argudín, M. A., M. C. Mendoza, & M. R. Rodicio. 2010. Food poisoning and Sta-phylococcus aureus enterotoxins. Toxins. 2: 1751-1773. http://dx.doi.org/10.3390/toxins2071751
Becker, K., D. Harmsen, A. Mellmann, M. Christian, P. Schumann, G. Peters, & C. von Eiff. 2004. Development and evaluation of a quality–controlled ribosomal sequence database for 16S ribosomal DNA–based identification of Staphylococcus species. J. Clin. Microbiol. 42: 4988-4995. http://dx.doi.org/10.1128/JCM.42.11.4988-4995.2004
Blanc, D. S., C. Petignat, A. Wenger, G. Kuhn, Y. Vallet, D. Fracheboud, S. Trachsel, M. Reymond, N. Troillet, H. H. Siegrist, S. Oeuvray, M. Bes, J. Etienne, J. Bille, P. Francioli, & G. Zanetti. 2007. Changing molecular epidemiology of methicillin resistant Staphylococcus aureus in a small geographic area over an eight-year period. J. Clin. Microbiol. 45: 3729-3736. http://dx.doi.org/10.1128/JCM.00511-07
Brown, P. D. & C. Ngeno. 2007. Antimicrobial resistance in clinical isolates of Staphylococcus aureus from hospital and community sources in southern Jamaica. Int. J. Infect. Dis. 11: 220-225. http://dx.doi.org/10.1016/j.ijid.2006.04.005
CLSI, Clinical and Laboratory Standards Institute. 2012. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition. CLSI document M02-A11. Wayne, Pennsylvania 19087 USA.
CLSI, Clinical and Laboratory Standards Institute. 2014. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fourth Informational Supplement. CLSI document M100-S24. Wayne, Pennsylvania 19087 USA.
Conceicao, T., M. Aires-de-Sousa, M. Fuzi, A. Toth, J. Paszti, E. Ungvari, W. B. van Leeuwen, A. van Belkum, H. Grundmann, & H. de Lencastre. 2007. Replacement of methicillin-resistant Staphylococcus aureus clones in Hungary over time: a 10-year surveillance study. Clin. Microbiol. Infect. 13: 971–979. http://dx.doi.org/10.1111/j.1469-0691.2007.01794.x
Frank, J. A., C. I. Reich, S. Sharma, J. S. Weisbaum, B. A. Wilson, & G. J. Olsen. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461–2470. http://dx.doi.org/10.1128/AEM.02272-07
Fredriksson, N. J., M. Hermansson, & B. M. Wilén. 2013. The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS ONE 8: e76431. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076431. [20 December 2015]. http://dx.doi.org/10.1371/journal.pone.0076431
Handayani, L., D. N. Faridah, & H. D. Kusumaningrum. 2014. Staphylococcal enterotoxin A gene-carrying Staphylococcus aureus isolated from foods and its control by crude alkaloid from papaya leaves. J. Food Prot. 77: 1992-1997. http://dx.doi.org/10.4315/0362-028X.JFP-13-483
Holden M.T., E. J. Feil, J. A. Lindsay, S. J. Peacock, N. P. Day, M. C. Enright, T. J. Foster, C. E. Moore, L. Hurst, R. Atkin, et al. 2004. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. PNAS. 101: 9786-9791. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC470752/pdf/019786.pdf. [20 October 2015]. http://dx.doi.org/10.1073/pnas.0402521101
Huang, I. Y., J. L. Hughes, M. S. Bergdoll, & E. J. Schantz. 1987. Complete amino acid sequence of staphylococcal enterotoxin A. J. Biol. Chem. 262: 7006-7013.
Huong, B. T. M., Z. H. Mahmud, S. B. Neogi, A. Kassu, N. V. Nhien, A. Mohammad, M. Yamato, F. Ota, N. T. Lam, H. T. A. Dao, & N. C. Khan. 2010. Toxigenicity and genetic diversity of Staphylococcus aureus isolated from Vietnamese ready-to-eat foods. Food Cont. 21: 166–171. http://dx.doi.org/10.1016/j.foodcont.2009.05.001
Jamali, H., M. Paydar, B. Radmehr, S. Ismail, & A. Dadrasnia. 2015. Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Cont. 54: 383-388. http://dx.doi.org/10.1016/j.foodcont.2015.02.013
Janda, J. M. & S. L. Abott. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 2761–2764. http://dx.doi.org/10.1128/JCM.01228-07
Kérouanton, A., J. A. Hennekinne, C. Letertre, L. Petit, O. Chesneau, A. Brisabois, & M. L. D. Buyser. 2007. Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks in France. Int. J. Food Microbiol. 115: 369-375. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.10.050
Kim B., H. Yi, J. Chun, & C. Cha. 2014. Genome sequence of type strain of Staphylococcus aureus subsp. aureus. Gut Pathogens 6:6. http://gutpathogens.biomedcentral.com/articles/10.1186/1757-4749-6-6. [20 December 2015]. http://dx.doi.org/10.1186/1757-4749-6-6
Lee, Y. D., B. Y. Moon, J. H. Park, H. I. Chang, & W. J. Kim. 2007. Expression of enterotoxin genes in Staphylococcus aureus isolates based on mRNA analysis. J. Microbiol. Biotechnol. 17: 461-467.
Lee Y. D. & J. H. Park. 2016. Phage conversion for β-lactam antibiotic resistance of Staphylococcus aureus from foods. J. Microbiol. Biotechnol. 26: 263–269. http://dx.doi.org/10.4014/jmb.1508.08042
Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, & W. G. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799.
Mason, W. J., J. S. Blevins, K. Beenken, N. Wibowo, N. Ojha, & M. S. Smeltzer. 2001. Multiplex PCR protocol for the diagnosis of staphylococcal infection. J. Clin. Microbiol. 39: 3332-3338. http://dx.doi.org/10.1128/JCM.39.9.3332-3338.2001
NCBI. 2016. National Center for Biotechnology Information. http://www.ncbi.nlm.nih. gov. [5 March 2016].
Onwubiko, N. E. & N. M. Sadiq. 2011. Antibiotic sensitivity pattern of Staphylococcus aureus from clinical isolates in a tertiary health institution in Kano, Northwestern Nigeria. Pan. Afr. Med. J. 8: 4. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201603/pdf/pamj-8-4.pdf. [20 January 2016]. http://dx.doi.org/10.4314/pamj.v8i1.71050
Pearson, W. R. 2014. BLAST and FASTA similarity searching for multiple sequence alignment. Methods Mol. Biol. 1079:75-101. http://dx.doi.org/10.1007/978-1-62703-646-7_5
Rall, V. L. M., F. P. Vieira, R. Rall, R. L. Vieitis, A. Fernandes Jr., J. M. G. Candeias, K. F. G. Cardoso, & J. P. Araujo Jr. 2008. PCR detection of staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Vet. Microbiol. 132: 408-414. http://dx.doi.org/10.1016/j.vetmic.2008.05.011
Rohinishree, Y. S. & P. S. Negi. 2011. Detection, identification and characterization of staphylococci in street vend foods. Food Nutr. Sci. 2: 304-313. http://dx.doi.org/10.4236/fns.2011.24044
Roussel, S., B. Felix, N. Vingadassalon, J. Grout, J. Hennekinne, L. Guillier, A. Brisabois, & F. Auvray. 2015. Staphylococcus aureus strains associated with food poisoning outbreaks in France: comparison of different molecular typing methods, including MLVA. Front Microbiol. 6: 882. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566840. [2 February 2016]. http://dx.doi.org/10.3389/fmicb.2015.00882
Salasia, S. I. O., S. Tato, N. Sugiyono, D. Ariyanti, & F. Prabawati. 2011. Genotypic characterization of Staphylococcus aureus isolated from bovines, humans, and food in Indonesia. J. Vet. Sci. 12: 353-361. http://dx.doi.org/10.4142/jvs.2011.12.4.353
Santosaningsih, D., S. Santoso, N. S. Budayanti, K. Kuntaman, E.S. Lestari, H. Farida, R. Hapsari, P. Hadi, W. Winarto, C. Milheiric, K. et al. 2014. Epidemiology of Staphylococcus aureus harboring the mecA or Panton-Valentine leukocidin genes in hospitals in Java and Bali, Indonesia. Am. J. Trop. Med. Hyg. 90: 728–734. http://dx.doi.org/10.4269/ajtmh.13-0734
Schelin J., N. Wallin-Carlquist, M. T. Cohn, R. Lindqvist, G. C. Barker, & P. Radstrom. 2011. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence. 2: 580-592. http://dx.doi.org/10.4161/viru.2.6.18122
Schmitz, F. J., A. C. Fluit, M. Gondolf, R. Beyrau, E. Lindenlauf, J. Verhoef, H. Heinz, & M. E. Jones. 1999. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J. Antimicrob. Chemother. 43: 253-259. http://dx.doi.org/10.1093/jac/43.2.253
SenGupta, D. J. & B. T. Cookson. 2010. A general approach for improving cycle-sequencing that facilitates a robust one-step combined amplification and sequencing method. J. Mol. Diagn. 12: 272-277. http://dx.doi.org/10.2353/jmoldx.2010.090134
Steinig, E. J., P. Andersson, S. R. Harris, D. S. Sarovich, A. Manoharan, P. Coupland, M. T. G. Holden, J. Parkhill, S. D. Bentley, D. A. Robinson, & S. Y. C. Tong. 2015. Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus. BMC Genomics. 16:388. http://bmcgenomics.biomedcentral.com/articles/ 10.1186/ s12864-015-1599-9. [5 January, 2016].
Teramoto, H., S. Salaheen, & D. Biswas. 2016. Contamination of post-harvest poultry products with multidrug resistant Staphylococcus aureus in Maryland-Washington DC metro area. Food Cont. 65: 132–135. http://dx.doi.org/10.1016/j.foodcont.2016.01.024
Thompson J. M., A. Gundogdu, H. M. Stratton, & M. Katouli. 2012. Antibiotic resistant Staphylococcus aureus in hospital wastewaters and sewage treatment plants with special reference to methicillin-resistant Staphylococcus aureus (MRSA). J. Appl. Microbiol. 114: 44-54. http://dx.doi.org/10.1111/jam.12037
Vogel V., L. Falquet, S. P. Calderon-Copete, P. Basset, & D. S. Blanc. 2012. Short term evolution of a highly transmissible methicillin-resistant Staphylococcus aureus clone (ST228) in a tertiary care hospital. PLoS One. 7: e38969. http://journals.plos.org/plosone/article/citation?id=10.1371%2Fjournal.pone. 0038969. [20 January 2016].
Xie Y, Y. He, A. Gehring, Y. Hu, Q. Li, S. Tu. 2011. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS ONE. 6: e28276. http://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0028276. [15 February 2016].
Xing, X., Y. Zhang, Q. Wu, X. Wang, W. Ge, & C. Wu. 2016. Prevalence and characterization of Staphylococcus aureus isolated from goat milk powder processing plants. Food Cont. 59: 644–650. http://dx.doi.org/10.1016/j.foodcont.2015.06.042
Copyright (c) 2016 Media Peternakan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts published are held by Media Peternakan. The statement to release the copyright to Media Peternakan is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.