PENGARUH PEMBERIAN SILASE IKAN-TAPE DALAM RANSUM TERHADAP PENAMPILAN ITIK LOKAL

Ridla, M.1, Rukmiastih2, A. Purnama1
1Jurusan Nutrisi dan Makanan Ternak, Fakultas Peternakan IPB
2Jurusan Teknologi Produksi Ternak, Fakultas Peternakan IPB

ABSTRACT

The objective of this experiment was to study the effect of fish-tape silage in diet on local duck performance. The experiment was conducted in research field of Poultry Nutrition Laboratory, Faculty of Animal Science, Bogor Agricultural University, from July until September 2000. Ninety local ducks, six months old, were used and randomly housed into 9 pens in a litter system, each consist of 10 ducks. Random Complete Design was applied to determine 3 levels of fish-tape silage in the diets i.e., RA (0 % of fish-tape silage), RB (25% of fish-tape silage) and RC (40% of fish-tape silage) on feed consumption, feed conversion, duck-day, egg mass, mortality, and income over feed cost (IOFC). The results of experiment showed that fish-tape silage significantly (P<0.01) decreased feed consumption, duck-day, and egg mass and significantly (P<0.05) increased feed conversion, RA consumption was higher (P<0.01) than RB and RC, but there were no differences between RB and RC. RA produced more duck-day (P<0.05) than RB and RC, but between RB and RC there were no differences. RA egg mass was higher (P<0.05) than RC, but RG egg mass was similar to RA dan RC. RA mortality was 1.11 % and 0 % in other treatment. IOFC value for RA, RB and RC were Rp 425.688, Rp 156.108 and Rp 24.228 respectively. As conclusion, fish-tape silage in the diets could not improve the performance of local duck.

PENDAHULUAN

Ternak itik sudah lama dikenal dan dibudidayakan di Indonesia terutama jenis petelur seperti itik Tegal, itik Mojosari, itik Alabio dan itik Bali. Itik petelur menduduki peringkat kedua penghasil telur konsumsi setelah ayam ras.

Perkembangan usaha dan pemeliharaan itik di Indonesia sampai saat ini telah mengalami kemajuan, meskipun pada umumnya masih dilakukan secara tradisional. Peranannya dalam kohidupan masyarakat mumpung menonjol, baik dalam rangka usaha memenuhi kebutuhan protein hewani maupun dalam rangka meningkatkan pendapatan dan taraf hidup jatimnya.

Dalam usaha peternakan, pakan merupakan komponen biaya yang paling besar (70%), sehingga tingkat keuntungan usaha tersebut sangat ditentukan oleh ekonomis tidaknya pakan yang digunakan. Usaha untuk mencukupi biaya pakan yang tinggi antara lain dengan memanfaatkan bahan-bahan yang potensial dan harganya relatif murah serta kurang bersaing dengan kebutuhan konsumsi manusia, namun mempunyai nilai nutrisi yang tinggi.

Penelitian untuk mencari alternatif bahan makanan lain yang dapat mensubsitusi sumber energi dan sumber protein telah banyak dilakukan. Salah satu upaya yang dapat ditempuh adalah dengan memanfaatkan limbah ikan dan singkong fermentasi (tape). Pemilihan bahan ini didasarkan atas kandungan zat makanan yang cukup unggul dan ketersediaannya yang cukup banyak.

Pada saat ini ilmu masyarakat (ikan yang mutunya telah menurun sedemikian rupa, sehingga tidak bisa diolah lagi untuk makanan manusia) jumlahnya cukup banyak, yaitu diperkirakan 5.000-10.000 ton/tahun. Jumlah yang cukup besar ini perlu ditangani dengan baik agar semaksimal mungkin dapat digunakan untuk makanan ternak (Kompiang, 1982).

Penggunaan silase ikan-tape dalam ransum itik diharapkan dapat mengurangi pemakaian bahan baku sumber protein terutama tepung ikan dan bahan baku sumber energi terutama jagung, sehingga biaya pakan dapat ditekan yang akhirnya akan meningkatkan keuntungan bagi peternak itik.
Penelitian ini bertujuan untuk mengetahui taraf penggunaan silase ikan-tape yang optimal dalam ransum itik lokal yang ditunjukkan dengan konsumsi ransum, produksi telur (Duck-Day), konversi ransum, bobot telur, mortalitas, dan Income Over Feed Cost (IOFC).

MATERI DAN METODE

Waktu dan Tempat

Ternak
Ternak yang digunakan dalam penelitian ini adalah itik lokal yang berumur 6 bulan sebanyak 90 ekor, dengan rataan bobot badan 1,444 kg ± 0,0537.

Tabel 1. Susunan dan komposisi nutrisi ransum perlakuan itik lokal penelitian

<table>
<thead>
<tr>
<th>Bahan Makanan</th>
<th>RA</th>
<th>RB</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jagung Kuning (%)</td>
<td>30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Dedak Halus (%)</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
</tr>
<tr>
<td>Bungkil Kedel (%)</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Bungkil Kelapa (%)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Tepung Ikan (%)</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Silase Ikan-Tape (%)</td>
<td>0</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Tape (%)</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minyak (%)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CaCO₃ (%)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tepung Tulang (%)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Premix (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Total (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Komposisi nutrisi ransum berdasarkan perhitungan:

Protein Kasar (%)	21,1315	21,6205	21,5705
Energi Metabolis (Kkal/Kg)	2837,7	2862,2	2801,7
Ca (%)	0,99	0,73	0,46
Phosphor (%)	0,42	0,26	0,1

Kandang dan Peralatan
Kandang yang digunakan sebanyak 9 buah masing-masing berukuran 4x2 m². Didinding kandang terbuat dari kawat, sedangkan lantai kandang berupa tanah yang dipadatkan, dilapisi batu, kemudian bagian atas ditaburkan kapur dan terakhir sekam.

Peralatan yang digunakan adalah bakom plastik yang dipakai sebagai tempat makan dan minum, timbangan, ember plastik, kertas label dan kantong plastik.
<table>
<thead>
<tr>
<th>Bahan</th>
<th>Silase Ikan-Tape</th>
<th>Ikan</th>
<th>Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKE (%)</td>
<td>86,30</td>
<td>21,60</td>
<td>76,73</td>
</tr>
<tr>
<td>DCE (%)</td>
<td>7,59</td>
<td>13,49</td>
<td>1,85</td>
</tr>
<tr>
<td>PK (%)</td>
<td>15</td>
<td>55,90</td>
<td>3,11</td>
</tr>
<tr>
<td>SE (%)</td>
<td>2,50</td>
<td>0,73</td>
<td>2,67</td>
</tr>
<tr>
<td>LEMAK (%)</td>
<td>0,73</td>
<td>8,57</td>
<td>0,91</td>
</tr>
<tr>
<td>KOHUN</td>
<td>64,66</td>
<td>0,21</td>
<td>68,14</td>
</tr>
<tr>
<td>GROSS ENERGI (Kkal/Kg)</td>
<td>5484</td>
<td>4201</td>
<td>3604</td>
</tr>
<tr>
<td>Ca</td>
<td>1,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>1,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>4,505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangan (Mmol)</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

\[
Y_{ij} = \mu + \alpha_i + \beta_j
\]

- \(Y_{ij}\) = Nilai pengamatan perlakuan ke-i dan ulangan ke-j
- \(\mu\) = Nilai rataan umum
- \(\alpha_i\) = Pengaruh perlakuan ke-\(i\) (\(i = 1, 2, 3\))
- \(\beta_j\) = Pengaruh galat perlakuan ke-\(j\) dan ulangan ke-\(j\) (\(j = 1, 2, 3\))

Analisis Data

Data yang diperoleh dari penelitian ini dilakukan dengan menggunakan sidik ragam dan dilanjutkan dengan uji jarak Duncan (Steel & Torrie, 1993).

HASIL DAN PEMBAHASAN

Ransum Penelitian

Kandungan nutrisi ransum berdasarkan hasil analisis Laboratorium Ilmu Maknan Ternak Fakultas Peternakan IPB dapat dilihat pada Tabel 3. Hasil analisis protein kasar dan energi metabolis menunjukkan nilai yang lebih rendah jika dibandingkan dengan hasil perhitungan. Hal ini disebabkan oleh adanya variasi kandungan nutrisi dari bahan pakan yang digunakan dalam penyusunan ransum dan rendahnya kandungan protein kasar dari silase ikan-tape.

Konsumsi Ransum, Produksi Telur (Duck-Day), Bobot Telur dan Konversi Ransum

Data tentang nilai rataan konsumsi ransum, produksi telur (duck-day), bobot telur, dan konversi ransum hasil penelitian dapat dilihat pada Tabel 4.
Tabel 3. Kandungan nutrisi ransum penelitian

<table>
<thead>
<tr>
<th>Jenis Nutrisi Pakan</th>
<th>RA</th>
<th>RB</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahan Kering (%)</td>
<td>86,75</td>
<td>85,36</td>
<td>85,09</td>
</tr>
<tr>
<td>Protein Kasar (%)</td>
<td>17,67</td>
<td>17,48</td>
<td>14,25</td>
</tr>
<tr>
<td>Serat Kasar (%)</td>
<td>5,12</td>
<td>4,84</td>
<td>7,18</td>
</tr>
<tr>
<td>Energi Bruto (Kkal/Kg)</td>
<td>4166</td>
<td>3410</td>
<td>3745</td>
</tr>
<tr>
<td>Energi Metabolis (Kkal/Kg)*</td>
<td>2916,2</td>
<td>2387</td>
<td>2621,5</td>
</tr>
</tbody>
</table>

Hasil Analisis: Laboratorium Ilmu Makanan Ternak Fakultas Peternakan IPB (2001)
*) : Perhitungan berdasarkan NRC (1994)

Konsumsi Ransum

Tabel 4. Rataan konsumsi ransum, produksi telur (duck-day), bobot telur, dan konversi ransum selama penelitian

<table>
<thead>
<tr>
<th>Peubah</th>
<th>RA</th>
<th>RB</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsumsi Ransum (g/ekor/hari)</td>
<td>138,8</td>
<td>134,2</td>
<td>132,1</td>
</tr>
<tr>
<td>Konsumsi Protein (g/ekor/hari)</td>
<td>24,5</td>
<td>23,5</td>
<td>18,8</td>
</tr>
<tr>
<td>Produksi Telur Duck-Day (%)</td>
<td>65,06</td>
<td>37,26</td>
<td>23,59</td>
</tr>
<tr>
<td>Berat Telur (gram/butir)</td>
<td>60,6</td>
<td>56,1</td>
<td>54,3</td>
</tr>
<tr>
<td>Konversi Ransum Berdasarkan Egg Mass</td>
<td>5,4</td>
<td>8,7</td>
<td>14,7</td>
</tr>
<tr>
<td>Konversi Ransum Berdasarkan Butiran</td>
<td>296,6</td>
<td>454,7</td>
<td>660,1</td>
</tr>
</tbody>
</table>

Produksi Telur (Duck-Day)

Penambahan silase ikan-tape nyata (P<0,05) menurunkan produksi telur (duck-day), dan berdasarkan uji jarak Duncan produksi telur (duck-day) RA nyata (P<0.05) lebih tinggi dibandingkan RB dan RC, tetapi antara RB dan RC tidak menunjukkan perbedaan (Table 4). Hal ini disebabkan rendahnya konsumsi protein dan konsumsi ransum yang mengandung silase ikan-tape, sehingga jumlah protein dan asam amino yang dikonsumsi tidak mencukupi kebutuhan untuk menghasilkan produksi telur yang optimal. Pendapat ini didukung oleh Suharno & Amri (1996) yang menyatakan bahwa kebutuhan protein itik pada masa produksi berkisar antara 16-18%.

Selanjutnya Shen (2000) melaporkan bahwa untuk memperoleh produksi telur yang optimal maka iti membutuhkan ransum dengan kandungan protein 18,7% dan energi metabolis sebesar 2,730 Kkal/Kg.

Bobot Telur

Bobot telur nyata (P<0,05) menurun dengan bertambahnya penggunaan silase ikan-tape dalam ransum, dan berdasarkan uji jarak Duncan RA nyata (P<0,05) lebih tinggi dibandingkan RC, tetapi RB tidak menunjukkan perbedaan dengan RA dan RC (Table 4). Hal ini disebabkan protein dalam ransum RC lebih kecil dari ransum RA dan RB. Selanjutnya Hardjosworo (1989) melaporkan bahwa denga
meningkatnya kadar protein dalam ransum maka
menurut terlalu juga akan semakin besar.

Menurut Wahju (1985), bobot telur dipengaruhi
oleh kadar protein dalam ransum. Semakin besar
kandungan protein ransum maka terlur yang dihasil-
kan akan semakin besar pula. Pendapat ini didukung
oleh Anggoro (1985) yang menyatakan bahwa zat
masalannya terpenting yang mempengaruhi besarnya
telur adalah protein, asam amino yang cukup dalam
dalam serta asam linoleat, karena kurang lebih 50%
dari bahan kering terlur adalah protein. Adapun
dihabiskan yang berlebihan terhadap protein akan
mengakibatkan besar terlur menurun dan produksi
murni ransum sekali terhenti.

Konversi Ransum

Pengetahuan silase ikan-tape nyata (P< 0.05)
meningkatkan konversi ransum, baik konversi ransum
maupun asasakan egg mass maupun konversi ransum yang
meningkatkan butiran, dan uji jarak Duncan untuk
konversi ransum menunjukkan bahwa RA
murni (P<0.05) lebih rendah dibandingkan RC, tetapi
RA murni menunjukkan perbedaan dengan RA dan RC
(Tabel 4). Hal ini dibedakan kejadiana penurunan
konsumsi ransum yang mengan-dung silase
ikan-tape. Penurunan jumlah konsumsi ransum ini
mengakibatkan produksi telur itik menurun, sehingga
mata-ikan yang konversinyaapun menurun dengan semakin
meningkatnya taraf pemberian silase ikan-tape dalam
ransum. Keshavarz & Jackson (1992) melaporkan
bahwa ayam petelur yang mendapat protein 14, 13
dan 12% mempunyai produksi telur, bobot telur dan
konsumsi ransum yang lebih rendah dibandingkan
yang mendapat ransum dengan kadar protein 18; 16,5;
dan 15%, sehingga konversi ransum pada ayam yang
mendapat protein tinggi (18; 16,5; dan 15%) akan lebih
rendah dari ayam yang mencapai kadar protein 14;
13; dan 12%.

Mortalitas

Selama penelitian berlangsung kematian ter-
dapat pada perlakuan RA sebanyak 1 ekor atau 1,11%
dari jumlah populasi awal penelitian. Tingkat ke-
matian yang terjadi pada penelitian ini bukan
dipengaruhi oleh faktor nutrisi dari ransum per-
lakuan, tetapi disebabkan itik tersebut memamakan
potongan kawat kandang yang sudah berkarat
sehingga mengakibatkan rusaknya alat pencernaan
dari itik tersebut. Siregar et al. (1980), menyatakan
bahwa angka kematian (mortalitas) sampai 5% pada
pemeliharaan ayam broiler masih dalam batas yang
wajar secara ekonomis.

Income Over Feed Cost (IOFC)

Rataan pendapatan selama penelitian dapat
dilihat pada Tabel 5. Dari tabel tersebut dapat dilihat
bahwa keuntungan tertinggi diperoleh dari pemberian
ransum RA.

Tabel 5. Rataan IOFC selama penelitian

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Penerimaan (Rp)</th>
<th>Pengeluaran (Rp)</th>
<th>Pendapatan (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rk</td>
<td>641,400</td>
<td>215,712</td>
<td>425,688</td>
</tr>
<tr>
<td>RkI</td>
<td>375,600</td>
<td>219,492</td>
<td>156,108</td>
</tr>
<tr>
<td>RkC</td>
<td>241,200</td>
<td>216,972</td>
<td>24,228</td>
</tr>
</tbody>
</table>

Dari tabel di atas diperoleh hasil bahwa RA
44,48% lebih tinggi dari RB dan 94,31% lebih tinggi
dibandingkan RC. Begitu pula dengan ransum
penerimaan RA 84,48 lebih tinggi dibandingkan RC.

Faktor yang mempengaruhi IOFC adalah
penerimaan dan pengeluaran yang didapat. Penerima-
naan meliputi penjualan dari produksi telur yang
dilakukan, sedangkan pengeluaran meliputi semua
dahaya yang dikeluarkan untuk menghasilkan output
itik. Data di atas baru memasukkan biaya ransum
uang dan belum mencakup komponen biaya lain
septi kandang, listrik, air dan peralatan sehingga
walauun nilainya positif belum bisa memberikan
saran apakah ransum dengan penambahan silase ikan-
tape ini layak atau tidak jika ditinjau secara ekonomis
untuk dikembangkan.

KESIMPULAN DAN SARAN

Penggunaan silase ikan-tape dalam ransum
sebanyak 20% dan 40% belum menghasilkan penamp-
pilan yang optimal bagi itik lokal, jika ditinjau dari
konsumsi ransum, produksi telur (duck-day), bobot telur, konversi ransum, dan Income Over Feed Cost.
Perlu penelitian lebih lanjut untuk mengetahui taraf penambahan silase ikan-tape yang optimal dalam ransum.

UCAPAN TERIMAKASIH
Penelitian ini sepenuhnya dibayai oleh Dr. Tan Chuan Cheng dari PT. RIMBA GROUP, untuk hal tersebut penulis ucapkan terimakasih.

DAFTAR PUSTAKA