QUANTIFICATION OF SEABED ACOUSTIC BACKSCATTER STRENGTH USING SCIENTIFIC SINGLE BEAM ECHOSOUNDER

  • La Elson Bogor Agricultural University
  • Henry Munandar Manik IPB University
  • Totok Hestirianoto IPB University
  • Sri Pujiyati IPB University
Keywords: acoustic backscatter, Lancang Island waters, quantification, substrate

Abstract

Hydroacoustic technology was able to quantify the seabed substrate and can be estimated accurately and near real time on the acoustic characters of each substrate. The purpose of research is to quantify the acoustic backscatters of the seabed substrate in an effort to devolop marine information technology. Data acquisition was using the Simrad EK-15 Single Beam Echosounder acoustic instrument set at a frequency of 200 kHz. Data processing and analysis includes acoustic backscatter strength, sediment type, acoustic bottom backscattering computation of seabed substrate and spatial analysis of seabed acoustic backscatter in the Lancang Island waters. The results of this study indicate that the acoustic backscatter values of the seabed substrate based on the SS value and particle size at each sampling station are -21.08 to -24.55 dB for type of substrate sands, fine sands are -25.67 to -26.67 dB, and very fine sands ranging from -27.42 to -28.03 dB. Based on the range of acoustic backscatter values ​​obtained from the sampling stations, type of seabed substrates along the survey line are very coarse sand, coarse sand, medium sand, fine sand, very fine sand, coarse silt, medium silt, fine silt, coarse clay and fine clay in the range values ​​of -47.85 to -17.07 dB. Sand substrates were dominant over silt and cly at the study site. Acoustic backscatter strength is strongly influenced by particle size, morphology and seabed relief.

Downloads

Download data is not yet available.

References

Anderson, J.T., D.V. Holliday, R. Kloser, D.G. Reid, & Y. Simrad. 2008. Acoustic seabed classification: Current practice and future directions. ICES J. of Marine Science, 65(6): 1004-1011. https://doi.org/10.1093/icesjms/fsn061

Brown, J.C., J. Beaudoin, M. Brissette, & V. Gazzola. 2019. Multispectral multibeam echosounder backscatter as a tool for improved seafloor characterization. J. of MDPI Geoscience, 9(3): 126-143. https://doi.org/10.3390/geosciences9030126

Burczynski, J. 1979. Introduction to the use of sonar system for estimating fish biomass. FAO Fisheries Technical Paper. (191). 89p.

Buscombe, D. & E.P. Brams. 2018. Probabilistic substrate classification with multispectral acoustic backscatter: a comparison of discriminative and generative models. J. of MDPI Geosciences, 8(11): 395-415. https://doi.org/10.3390/geosciences8110395

Chakraborty, B., V. Mahale, G. Navelkar, B.R. Rao, R.G.P. Desai, B.S. Ingole, & G. Janakirinam. 2007. Acoustic characterization of seafloor habitats on the western continental shelf of India. ICES J. of Marine Science, 64(3): 551-558. https://doi.org/10.1093/icesjms/fsl043

Chotiros, N.P. 2017. Acoustics of the seabed as a poroelastic medium. Springer Briefs in Oceanography. New York. USA. 76p. https://doi.org/10.1007/978-3-319-14277-7

Cly, C.S. & H. Madwin. 1977. Acoustical oceanography. New York. USA. 712p. https://doi.org/10.1016/B978-0-12-487570-8.X5000-4

Diaz, J.V.M. 2000. Analysis of multibeam sonar data for the characterization of seafloor habitats. Thesis. Graduate Academic Unit of Geodesy and Geomatics Engineering. The University of New Brunswick. Canada. 153p.

Hamuna, B., S. Pujiyati, N.M.N. Natih, & L. Dimara. 2018. Analisis hambur balik akustik untuk klasifikasi dan pemetaan substrat dasar perairan di Teluk Yos Sudarso, Kota Jayapura. J. Ilmu dan Teknologi Kelautan Tropis, 10(2): 291-300. https://doi.org/10.29244/jitkt.v10i2.24045

Jackson, D.R. & M.D. Richardson. 2007. High frequency seafloor acoustics. Springer Science Business Media. New York. USA. 616p.

Lurton, X. 2002. An introduction to underwater acoustics: Principles and applications. Praxis Publ. France. 347p.

Manik, M.H., M. Furusawa, & K. Amakasu. 2006. Measurement of sea bottom surface backscattering strength by quantitative echosounder. J. of Fisheries Science, 72(3): 503–512. https://doi.org/10.1111/j.1444-2906.2006.01178.x

Manik, M.H. 2012. Seabed identification and characterization using sonar. Advances in Acoustics and Vibration. Hindawi Publishing Corporation: 532458. 5p. https://doi.org/10.1155/2012/532458

Manik, M.H. 2015. Shallow water acoustics investigation for underwater detection and seabed imaging. International J. of Applied Engineering Research, 10(17): 38302-38307. https://doi.org/10.37622/000000

Pujiyati, S. 2008. Pendekatan metode hidroakustik untuk analisis keterkaitan antara tipe substrat dasar perairan dengan komunitas ikan demersal. Disertasi. Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor. Bogor. 185 p.

Pujiyati, S., S. Hartati, & W. Priyono. 2010. Efek ukuran butiran, kekasaran, dan kekerasan dasar perairan terhadap nilai hambur balik hasil deteksi hidroakustik. J. Ilmu dan Teknologi Kelautan Tropis, 2(1): 59–67. https://doi.org/10.29244/jitkt.v2i1.7863

Standar Nasional Indonesia (SNI). 2010. Survei hidrografi menggunakan single beam echosounder. 7646. 21p.

Urick, R.J. 1983. Principles of underwater sound. Thrid Edition. Mc Graw Hill. New York. USA. 423p.

Published
2022-04-25
How to Cite
ElsonL., ManikH. M., Totok Hestirianoto, & Sri Pujiyati. (2022). QUANTIFICATION OF SEABED ACOUSTIC BACKSCATTER STRENGTH USING SCIENTIFIC SINGLE BEAM ECHOSOUNDER. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 14(1), 15-29. https://doi.org/10.29244/jitkt.v14i1.37184