Rapid Prediction of Moisture and Ash Content in Sungkai Leaves Herbal Tea (Peronema canescens Jack.) using NIR Spectroscopy
Abstract
It is imperative to measure the chemical composition of Sungkai leaf herbal tea in order to produce high-quality goods that promote human health. The moisture and ash content of Sungkai leaf herbal tea are critical parameters for assessing the quality of herbal tea. This study aimed to evaluate an NIR spectroscopy method for quickly determining the moisture and ash content of Sungkai leaf herbal tea. Sungkai leaf herbal tea has a moisture content between 3.93% and 7.59%, and an ash content between 3.94% and 5.51%. We developed a calibration model using partial least squares (PLS) with several pretreatment methods. We split the data into calibration and prediction sets and performed an internal random cross-validation. A PLS calibration model with Rp2 = 0.86, a root means square error of prediction (RMSEP) of 0.30 (%), and a residual predictive deviation (RPD) of 2.76, performed exceptionally well at predicting the moisture content when the standard normal variate (SNV) pre-treatment was applied to the NIR spectra. The Savitzky-Golay derivative (a 9-point smoothing window, second-order polynomial, dg2) pre-treatment method also generated the best PLS calibration model for ash content determination, with Rp2 = 0.70, RMSEP = 0.16 (%), and RPD = 1.86. NIR spectroscopy can quickly determine the moisture and ash content of Sungkai leaf herbal tea, as suggested by these findings.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.