Main Article Content
Abstract
Abstract
Chili production in Indonesia is very unstable because most of chili production areas are open field that are quite influenced by weather. Therefore, it is important to develop hydroponic technology for chili cultivation under greenhouse. As energy-efficient cooling system for tropical greenhouses, root zone cooling could be applied by flowing cooled water in pipes that are burried in the root zone. Determining the space between the pipes for flowing the cooled water requires temperature distribution in the root zone. The objective of this research were to find out the temperature distribution in the root zone, to simulate temperature distribution with based on computational fluid dynamics, and to validate the simulated root zone temperature. The results showed that an uniform horizontal temperature distribution during the day time and night time. Uniform vertical
temperature distribution were also noted during the night time. There were quite wide temperature variation in the root zone during the day time, vertically. The validation results showed that temperature distribution in the root zone could be predicted accurately by computational fluid dynamics as indicated by the value of R2 obtained at 0.84 and the linear equation is y axis approaches the value of x axis. Therefore, the predicted temperature distribution would be very useful in determining zone cooling system for chili cultivation in hydroponic system under tropical greenhouse.
Abstrak
Produksi cabai di Indonesia sangat tidak stabil karena sebagian besar areal budidaya tanaman cabai dilakukan di lahan terbuka yang sangat dipengaruhi oleh cuaca. Oleh karena itu, penting untuk mengembangkan teknologi hidroponik untuk budidaya tanaman cabai di dalam rumah tanaman. Metode pendinginan yang efisien dari segi konsumsi energi untuk rumah tanaman di daerah tropika salah
satunya adalah pendinginan daerah perakaran. Pendinginan daerah perakaran dapat diterapkan dengan mengalirkan air dingin di dalam pipa yang dibenamkan dalam daerah perakaran tersebut. Penentuan jarak antar pipa pendingin tersebut memerlukan sebaran suhu di daerah perakaran tersebut. Tujuan dari
penelitian ini adalah untuk memprediksi sebaran suhu daerah perakaran, melakukan simulasi suhu daerah perakaran menggunakan computational fluid dynamics, dan melakukan validasi hasil simulasi sebaran suhu daerah perakaran. Hasil penelitian menunjukkan bahwa sebaran suhu daerah perakaran secara horizontal ternyata seragam pada waktu siang maupun malam hari. Data sebaran suhu daerah perakaran yang seragam secara vertikal juga diperoleh pada waktu malam hari. Sebaran suhu daerah perakaran secara vertikal pada siang hari ternyata cukup bervariasi. Validasi menunjukkan bahwa sebaran suhu daerah perakaran dapat diprediksi dengan baik menggunakan computational fluid dynamics yang ditunjukkan dengan nilai R2 yang diperoleh sebesar 0.84 dan diperoleh persamaan y yang mendekati nilai x. Oleh karena itu, suhu daerah perakaran hasil prediksi dapat digunakan untuk perancangan zone cooling system budidaya tanaman cabai secara hidroponik di dalam rumah tanaman.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
References
- Anisum, N. Bintoro, dan S. Goenadi. 2016. Analisis
- distribusi suhu dan kelembaban udara dalam
- rumah jamur (kumbung) menggunakan
- computational fluid dynamics (CFD). J. Agritech
- 36(1): 64 – 70.
- Farid, M. dan N.A. Subekti. 2012. Tinjauan
- terhadap produksi, konsumsi, distribusi, dan
- dinamika harga cabai di Indonesia. Buletin
- Ilmiah Litbang Perdagangan 6(2): 211-233.
- He, J. and S.K. Lee. 1998. Growth and photosynthetic
- characteristics of lettuce (Lactuca sativa L.) under
- fluctuating hot ambient temperatures with the
- manipulation of cool root-zone temperature. Journal
- of Plant Physiology (152): 387-391.
- Hernisa, A. 2015. Penentuan jarak tanam optimum
- antar pipa pendingin untuk pendingian terbatas
- daerah perakaran pada sistem hidroponik
- substrat (skripsi). Departemen Teknik Pertanian
- Fakultas Teknologi Pertanian, IPB. Bogor.
- Klock, K.A., H.G. Taber, and W.R. Graves. 1997. Root
- respiration and phosphorus nutrition of tomato plant
- grown at 36 ˚C root-zone temperature. J. Amer. Soc.
- Hort. Sci. 122(2): 175-178.
- Kwack, Y., D.S. Kim, and C. Chun. 2014. Rootzone
- cooling affect growth and development of
- paprika transplants grown in rockwool cubes.
- Hort. Environ. Biotechnol. 55 (1): 14-18. doi
- 10.1007/s13580-014-0117-3.
- Matsuoka, T. dan H. Suhardiyanto. 1992. Thermal
- and flowing aspects of growing petty tomato in
- cooled NFT solution during summer.
- Enviroment Control in Biology 30 (3): 199-125.
- Moekasan, T.K. dan L. Prabaningrum. 2012.
- Penggunaan rumah kasa untuk mengatasi
- serangan organisme pengganggu tumbuhan
- pada tanaman cabai merah di dataran rendah.
- J. Hort 22(1): 66-76.
- Nauli, D. 2016. Fluktuasi dan disparitas harga cabai
- di Indonesia. Jurnal Agrosains dan Teknologi 1
- (1): 56-69.
- Niam, A.G. 2011. Simulasi distribusi suhu dan pola
- pergerakan udara pada rumah tanaman tipe
- standard peak berventilasi mekanis
- menggunakan CFD (tesis). Departemen Teknik
- Pertanian Fakultas Teknologi Pertanian, IPB.
- Bogor.
- Niam, A.G., H. Suhardiyanto, K.B. Seminar, and A.
- Maddu. 2017. CFD simulation of cooling pipes
- distance in the growing medium for hydroponics
- substrate in tropical lowland. International
- Journal of Engineering Research and
- Development (15): 56-63.
- Nkansah, G.O. and T. Ito. 1995. Effect of air and
- root-zone temperatures on physiological
- characteristics and yield of heat-tolerant and
- non heat-tolerant tomato cultivar. J. Japan.
- Soc. Hort. Sci. 64(2): 315-320.
- Pangestika, H.W. 2015. Evaluasi pendahuluan
- galur cabai keriting (Capsicum annuum L.) IPB
- (skripsi). Departemen Agronomi dan
- Hortikultura Fakultas Pertanian, IPB. Bogor.
- Romdhonah, Y., H. Suhardiyanto, Erizal dan S.K.
- Saptomo. 2015. Analisis ventilasi alamiah pada
- greenhouse tipe standard peak menggunakan
- computational fluid dynamics. J. Ilmiah Rekayasa
- Pertanian dan Biosistem 3(2): 170 – 178.
- Rusono, N., A. Suanri, A. Candradijaya, A.
- Muharam, I. Martino, Tejaningsing, P.U. Hadi,
- S.H. Susilowati, dan M. Maulana. 2013. Studi
- Pendahuluan: Rencana Pembangunan Jangka
- Menengah Nasional (RPJMN) Bidang Pangan
- dan Pertanian 2015-2019. Direktorat Pangan
- dan Pertanian, Kementerian Perencanaan
- Pembanganunan Nasional. Jakarta.
- Siemonsma, J.S. and K. Piluek. 1994. Plant
- Resources of South-East Asia, No.8,
- Vegetables. Prosea Foundation. Bogor.
- Suhardiyanto, H. 2009. Teknologi Rumah Tanaman
- untuk Iklim Tropika Basah: Pemodelan dan
- Pengendalian Lingkungan. IPB Press. Bogor.
- Tindall, J.A., H.A. Mills and D.E. Radcliffe. 1990.
- The effect of root zone temperature on nutrient
- uptake of tomato. J. Plant. Nutr. 13(8): 939-956.
- Doi: 10.1080/019041690093644127.
- Umeno, Y., D.V. Hung, F. Tanaka and D. Hamanaka.
- 2015. The use of CFD to simulate temperature
- distribution in refrigerated containers. Journal of
- Engineering in Agriculture, Environment and Food
- 8: 257–263. Doi: http://dx.doi.org/10.1016/j.
- eaef.2015.03.002