Main Article Content
Abstract
Abstract
Limited land for agricultural cultivation, especially in urban areas, makes it difficult to provide healthy and sustainable food. This research is part of the development of the Smart Mini Plant Factory (SMIPY), a household scale mini plant factory used for vegetable production using hydroponic technology to support urban farming. SMIPY is equipped with sensors for monitoring environmental conditions, automatic nutrition control systems, and artificial lighting using Light Emitting Diode (LED). In particular, this research
aims to simulate airflow and analyze its effects on temperature and relative humidity inside SMIPY using Computational Fluid Dynamics (CFD). Data validation were done by collecting temperature and relative humidity inside SMIPY with air velocity 0 m/s, 1 m/s, 1.5 m/s and 1.8 m/s. The error obtained from the
data in temperature and relative humidity were 1.69+1.47% and 2.94+1.57% respectively. Thus, the result showed that the CFD simulation was reliable to predict temperature and humidity inside SMIPY. The airflow moved vertically, but an air turbulance occured between two opposite air inlets. The higher the air velocity, the lower the temperature and the higher the relative humidity.
Abstrak
Terbatasnya lahan untuk kegiatan budidaya pertanian terutama di wilayah perkotaan menyebabkan sulitnya penyediaan pangan sehat dan berkelanjutan. Penelitian ini merupakan bagian dari pengembangan
Smart Mini Plant Factory (SMIPY) yaitu mini plant factory skala rumah tangga yang digunakan untuk produksi sayuran menggunakan teknologi hidroponik untuk mendukung urban farming. SMIPY dilengkapi dengan
sensor untuk monitoring kondisi lingkungan, sistem kendali nutrisi otomatis, serta pencahayaan buatan (artificial lighting) menggunakan Light Emitting Diode (LED). Secara khusus penelitian ini bertujuan untuk
melakukan simulasi Computational Fluid Dynamics (CFD) untuk menganalisis pola dan pengaruh aliran udara terhadap keadaan lingkungan pada SMIPY. Validasi data dilakukan dengan mengambil data suhu dan kelembaban relatif pada kecepatan udara 0 m/dt, 1 m/dt, 1.5 m/dt dan 1.8 m/dt. Dari data didapatkan bahwa rata-rata error yang dihasilkan dari simulasi adalah 1.69+1.47% untuk suhu dan 2.94+1.57% untuk kelembaban relatif, sehingga simulasi baik untuk digunakan dalam memprediksi keadaan lingkungan dalam SMIPY. Pola aliran udara secara umum adalah bergerak secara vertikal, namun terjadi turbulensi
di titik pertemuan kedua aliran udara dari kipas yang berhadapan. Semakin besar kecepatan udara, maka suhu menjadi semakin rendah dan kelembaban relatif menjadi semakin tinggi.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
References
- Albertsson, P.A., 2001. A quantitative model of
- the domain structure of the photosynthetic
- membrane. Trends Plant Sci, 6: 349–354.
- Apriliani, B. 2006. Analisa temperatur udara dalam
- single-span greenhouse, kebun percobaan
- Cikabayan, IPB dengan menggunakan atap
- ganda (double layer) [Skripsi]. Bogor (ID): Institut
- Pertanian Bogor
- Campbell. 1999. Biologi Jilid 1 Edisi V. Jakarta (ID):
- Erlangga
- Saleh, S.M, dan Wardah. 2010. Perkecambahan
- benih aren dalam kondisi terang dan gelap pada
- berbagai konsentrasi GA3. J. Agrivigor 10(1): 18-
- 25
- Kitaya, Y. 2005. Importance of air movement for
- promoting gas and heat exchanges between
- plants and atmosphere under controlled
- environments. In K. Omasa, I Nouchi, & L. J. De
- Kok (Eds.), Plant response to air pollution and
- global change (185-193. Tokyo (JP): Springer-
- Verlag.
- Lim, T.G. dan Y.H. Kim. 2014. Analysis of Airflow
- Pattern in Plant Factory with Different Inlet and
- Outlet Locations using Computational Fluid
- Dynamics. J. of Biosystems Eng. 39(4):310-317
- Moon, S.M., S.Y. Kwon, dan J.H. Lim, S.M. Moon,
- S.Y. Kwon, and J.H. Lim. (2014). Minimization of
- Temperature Ranges between the Top and Bottom
- of an Air Flow Controlling Device through Hybrid
- Control in a Plant Factory. The Scientific World
- Journal, 2014, 1–7. doi:10.1155/2014/801590
- Niam, A.G., T.R. Muharam, S. Widodo, M. Solahudin,
- dan L. Sucahyo. 2019. CFD simulation approach
- in determining air conditioners position in the
- mini plant factory for shallot seed production. AIP
- Conference Proceedings 2062 (1), 020017
- Shibata, T., K. Iwao, dan T. Takano. 1995. Effect of
- vertical air flowing on lettuce growing in a plant
- factory. Acta Horticulturae. 399: 175-183
- Shimizu, H., Y. Saito, H. Nakashima, J. Miyasaka, dan
- K. Ohdoi. 2011. Light Environment Optimization
- for Lettuce Growth in Plant factory. Preprints of
- the 18th International Federations of Automatic
- Control (IFAC) World Congress Vol 18. 605-609.
- Kyoto University, Japan. Page 605.
- Versteeg, H.K. dan W. Malalasekera. 1995. An
- Introduction to Computational Fluid Dynamics:
- The Finite Volume Method. New York (US):
- Longman Scientific and TechnicList
- Zhang, Y., M. Kacira, dan L. An. 2016. A CFD
- study on improving air flow uniformity in indoor
- plant factory system. Biosystem Engineering.
- 147(2016):193-205