Simulasi Tungku Gasifikasi Tipe Natural Draft Berbasis Model Efek Cerobong dan Keseimbangan Termokimia
Abstract
Abstract
This study was aimed to simulate a novel configuration of gasification stove with the natural draft principles (natural draft gasification or called as NDG stove) based on chimney effect and thermochemical equilibrium modeling. The thermochemical equilbrium model used general stoichiometric gasification,
methanation and water-gas shift equations and their equilibrium constant equations as well as the general energy balance equation. Those equations were coupled with the chimney effect equation and then solved to obtain the reaction coefficients, equilibrium constants, reaction temperature as well as the mass flow rate of air. Simulation was performed by using VBA programming codes in Excel. Subsequently, a stove was built in order to obtain the charcoal consumption rate data which is required to validate the model. The test results showed that the combustion rate was constant i.e. 8.8 g/min and the quality of the flame of the stove was visually good. The calculation result showed that the model could succesfully predict the product gases including CO, CH4, CO2, O2, N2 and other gases. The simulation showed that by using lower stove
height (0.5 and 0.4 m) the combustible gases (CO, H2 and CH4) compositions were increased in such a way that with same combustion rate the potential heat of gas increased from 2.33 kW at stove height of 0.6 m to 2.63 kW at 0.4 m.
Abstrak
Penelitian ini bertujuan untuk mensimulasi tungku gasifikasi dengan konfigurasi baru yang menggunakan prinsip natural draft (tungku natural draft gasification atau disebut sebagai tungku NDG) didasarkan pada
pemodelan efek cerobong dan keseimbangan termokimia. Model keseimbangan termokimia menerapkan persamaan stoikiometri untuk gasifikasi, methanation dan water-gas shift, persamaan-persamaan konstanta keseimbangannya serta persamaan neraca energi umum. Persamaan-persamaan tersebut digabungkan dengan persamaan efek cerbong dan dipecahkan untuk memperoleh koefisien reaksi, konstanta keseimbangan, suhu reaksi dan laju aliran massa udara. Selanjutnya tungku tersebut dikonstruksi dan diuji untuk memperoleh data laju konsumsi arang yang dibutuhkan untuk validasi model. Hasil pengujian
kinerja menunjukkan bahwa penggunaan tungku untuk arang kayu memiliki laju pembakaran yang konstan 8.8 g/menit dan kualitas nyala api tungku ini cukup baik secara visual. Hasil perhitungan menunjukkan
bahwa model yang diterapkan telah dapat memprediksi konsentrasi gas-gas produk yang mencakup CO, CH4, CO2, O2 serta gas N2 dan gas-gas lainnya. Hasil simulasi menunjukkan bahwa tinggi tungku yang lebih rendah (0.5 dan 0.4 m) memberikan konsentrasi gas-gas mampu bakar yang lebih tinggi sedemikian hingga dengan laju konsumsi arang yang sama daya gas potensialnya meningkat dari 2.33 kW pada tinggi
0.6 m menjadi 2.63 kW pada tinggi 0.4 m.
References
Nigerian Journal of Technology (NIJOTECH) Vol. 35, No. 1, (2016): 48 – 53. http://dx.doi.org/10.4314/njt.v35i1.8
Agenbroad, J., M. DeFoort, A. Kirkpatrick, C. Kreutzer. 2011a. A simplified model for understanding natural convection driven biomass cooking
stoves—Part 1: Setup and baseline validation. Energy for Sustainable Development 15 (2011)160–168. doi:10.1016/j.esd.2011.04.004
Agenbroad, J., M. DeFoort, A. Kirkpatrick, C. Kreutzer. 2011b. A simplified model for understanding natural convection driven biomass cooking
stoves—Part 2: With cook piece operation and the dimensionless form. Energy for Sustainable Development 15 (2011) 169–175.doi:10.1016/j.
esd.2011.04.002
Field, J. 2012. Gasifying Cookstoves Database. Colorado State University.
Gautam, G. 2010. Parametric Study of a Commercial-Scale Biomass Downdraft Gasifier: Experiments andEquilibrium Modeling. Thesis.
Auburn University.
Jarungthammachote, S., A. Dutta. 2006. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy. 32(9): 1660 – 1669. doi: 10.1016/j. energy.2007.01.010
Jetter, J., Y. Zhao, K.R. Smith, B. Khan, T. Yelverton, P. DeCarlo, and M. D. Hays. 2012. Pollutant Emissions and Energy Efficiency under Controlled
Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards. Environmental
Science & Technology. 2012;46(19):10827-34.
MacCarty, N., and K.M. Bryden. 2015. Modeling of household biomass cookstoves: A review. Energy for Sustainable Development 26 (2015) 1–13. http://dx.doi.org/10.1016/j.esd.2015.02.001
Nelwan, L.O., S.E. Agustina, dan E. Hartulistiyoso. 2013. Pengembangan Disain Tungku Masak Gasifikasi Biomassa Berbasis Pemodelan Pindah
Panas Dan Ekuilibrium. Laporan Penelitian Unggulan Penelitian Perguruan Tinggi. LPPM.IPB.
Pane, E.A., L.O. Nelwan dan D. Wulandani. 2014. Pengembangan Tungku Gasifikasi Arang Biomassa Tipe Natural Draft Gasification Berdasarkan Analisis Computational Fluid Dynamics (CFD). Jurnal Keteknikan Pertanian 28(2): 117-124
Syed, S., I. Janajreh, C. Ghenai. 2012. Thermodynamics equilibrium analysis within the entrained flow gasifier environment.International
Journal of Thermal & Environmental Engineering.4(1): 47 – 54.
Tryner, J., B.D. Willson, A.J. Marchese. 2014. The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier
biomass cookstoves. Energy for Sustainable Development 23 (2014) 99–109. http://dx.doi.org/10.1016/j.esd.2014.07.009
Zhang J., K.R. Smith, R. Uma, Y. Ma, V.V.N. Kishore, K. Lata, M.A.K. Khalil, R.A. Rasmussen, S.T. Thorneloe. 2011. Carbon monoxide from cookstoves in developing countries: 1. Emission factors. Chemosphere: Global Change Science 1 (1999) 353-366. http://ehsdiv.sph.berkeley.edu/
krsmith/publications/99_zhang_2.pdf.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.