Main Article Content

Abstract

Abstract
The present work aimed to develop mathematical model of grain filling of rice from primary and secondary branches within a panicle with increment to their weight (dry basis)-time after anthesis relationships. Three growth models for grain filling of rice were developed follow the exponential, the logistic and Gompertz functions. The grain filling models are expressed with parameters of mass at time zero, mass at time infinity and a measure for relative grain filling rate. Application of all models using data of thousand grain mass (dry basis) of rice from different branches within a panicle for Sintanur and IPB-4S variety were collected every 4 days during 14-30 days after anthesis. Model selection was conducted using Coefficient determination (R2), Root mean square error (RMSE) and Aikake’s Information Criterion (AIC). R2, RMSE and AIC values for the Gompertz models were 0.999, 0.224, -9.949 (rice from primary branch for Sintanur); 0.997, 0.353, -4.512 (rice from secondary branch for Sintanur); 1.000, 0.131, -16.376 (rice from primary branch for IPB-4S) and 0.999, 0.266, -7.877 (rice from secondary branch for IPB-4S) respectively which revealed that the
Gompertz model was considered best to described the increment thousand grain mass (dry basis) of rice from different branches within a panicle for all two varieties.

Abstrak
Penelitian yang dilakukan bertujuan mengembangkan model pengisian gabah dari tingkat malai yang berbeda, terkait dengan terjadinya peningkatan bobot gabah dalam bentuk basis kering dan bertambahnya
waktu pengisian gabah setelah anthesis (pembungaan). Penelitian ini mengembangkan model berdasarkan tiga fungsi pertumbuhan yaitu fungsi eksponensial, logistik dan fungsi Gompertz dalam pengisian gabah.
Persamaan yang diperoleh memiliki parameter bobot gabah awal, bobot gabah akhir dan laju pengisian gabah relatif. Penelitian ini menggunakan data primer berat 1000 butir gabah dalam bentuk basis kering (bk) dari malai primer dan sekunder di kedua varietas Sintanur dan IPB-4S, dari hari ke-14 sampai hari ke-30 setelah pembungaan dengan interval waktu 4 hari. Pemilihan model dilakukan dengan uji kesesuaian menggunakan koefisien determinasi (R2), Root mean square error (RMSE) dan Aikake’s Information Criterion (AIC). Nilai R2, RMSE, AIC pada model Gompertz untuk masing-masing berat kering gabah dari malai primer dan sekunder secara berturut-turut adalah 0.999, 0.224, -9.949 dan 0.997, 0.353, -4.512 (varietas Sintanur), 1.000, 0.131, -16.376 dan 0.999, 0.266, -7.877 (varietas IPB-4S), sehingga dari nilai yang dihasilkan menunjukkan bahwa model Gompertz merupakan model yang terbaik untuk pengisian
bobot 1000 butir gabah (bk) dari malai primer dan sekunder di kedua varietas Sintanur dan IPB-4S.

Keywords

Matematical models grain filling rice branches

Article Details

Author Biographies

Rizky Tirta Adhiguna, 1. Institut Pertanian Bogor 2. Universitas Sriwijaya

Mahasiswa Program Studi Ilmu Keteknikan Pertanian Sekolah Pascasarjana
Institut Pertanian Bogor & Dosen Universitas Sriwijaya

Sutrisno Sutrisno, Institut Pertanian Bogor

Departemen Teknik Mesin dan Biosistem

Sugiyono Sugiyono, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan

References

  1. Adhiguna, R.T., Sutrisno. Sugiyono, R. Thahir. 2016. Comparison of physical properties,proximate composition and milling quality of rice grains from different branches within a panicle. International Journal of Scientific & Engineering Research. Vol. 7 (9): 1647- 1652.
  2. Del Rosario, A.R., V.P. Briones, A.J. Vidal, B.O. Yuliano. 1968. Composition and endosperm structure of developing and mature rice kernel. Cereal Chemistry. Vol. 45: 225-235.
  3. Dong, M.H., P.F. Chen, L.Y. Qiaozhong, X.Z. Wu, B.H. Zhao, Y.Y. Jiang, J.C. Yang. 2011. Quality response of grain in different spikelets positions
  4. to temperature stress during grain filling of rice. Acta Agronomika Sinica. Vol. 37(3): 506-513.
  5. Fujita, D., K.R. Trijatmiko, A.G. Tagle, M.V. Sapasap, Y. Koide, K. Sasaki. 2013. NAL1 allele from a rice landrace greatly increases yield inmodern indica cultivars. Proceedings of the National Academy of Science. USA 110: 20431–20436.
  6. France, J., J.H.M. Thornley. 1984. Mathematical models in Agriculture: a quantitative approach to problem in agriculture and related science. 1nd
  7. Ed. Butterworths. Michigan.
  8. Ishimaru, T., T. Hirose, T. Matsuda, A. Goto, K. Takahashi, H. Sasaki. 2005. Expression patterns of genes encoding carbohydrate-metabolizing
  9. enzymes and their relationship to grain filling in rice (Oryza sativa L.):comparison of caryopses located at different positions in a panicle. Plant Cell Physiology. Vol. 46: 620–628.
  10. Koesmarno, H.K. 1995. Modelling and simulation of barley kernel growth. Journal of Environmetrics. Vol 6: 515–516.
  11. Loss, S.P., E.J.M. Kirby, K.H.M. Siddique, M.W. Perry. 1989. Grain growth and development of old and modern australian wheats. Field Crops
  12. Research. Vol. 21:131-146.
  13. Makarim, A.K dan E. Suhartatik. 2009. Morfologi dan Fisiologi Tanaman Padi. Dalam Suyamto,Widiarta, Satoto (ed) Buku 1 Padi: Inovasiteknologi dan ketahanan Pangan. Badan Penelitian dan Pengembangan Pertanian.
  14. Murtiningrum, A.P. Willy, D.L. Sewandan, W. Wishnu. 2011. Model matematika pertumbuhan jumlah anakan dan tinggi tanaman yang ditanam dengan metode SRI. Jurnal Agroteknologi. Vol. 5(2): 92-
  15. 107.
  16. Ohsumi, A., T. Takai, M. Ida, T. Yamamoto, Y. Arai- Sanoh, M. Yano. 2011. Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crops Research. Vol. 120: 68–75.
  17. Seki, M., F.G. Feugier, X.J. Song, M. Ashikari, H. Nakamura, K. Ishiyama, T. Yamaya, M. Inari- Ikeda, H Kitano. 2015. A mathematical model
  18. of phloem sucrose transport as a new tool for designing rice panicle structure for high grain yield. Plant and Cell Physiology. Vol. 56(4): 605-
  19. 619.
  20. Tang, T., X. Hong, X. Yu, L. Bing, S. Jian. 2009. The effect of sucrose andabscisic acid interaction on sucrose synthase and its relationship to
  21. grain fillingof rice (Oryza sativa L.). Journal of Experimental Botany. Vol. 60: 2641–2652.
  22. Tashiro, T., I.F. Wardlaw. 1990. The effect of high temperature at different stages of ripening on grain set, grain weight and grain dimensions in
  23. the semi-dwarf wheat ‘ banks’. Annals of Botany. Vol. 65: 51–61.
  24. Terao, T., K. Nagata, K. Morino, T. Hirose. 2010. A gene controllingthe number of primary rachis branches also controls the vascular bundle
  25. formation and hence isresponsible to increase the harvestindex and grain yield in rice. Theoretical Applied Genetics. Vol 120: 875–893.
  26. Xu, X.B., B.S. Vergara. 1986. Morphological changes in rice panicle development: a review of literature. IRRI Research Paper Series. Vol. 117: 1-13.
  27. Yang, J., J. Zhang, Z. Wang, Q. Zhu, W. Wang. 2001. Hormonal changesin the grains of rice subjected to water stress during grain filling. Plant
  28. Physiology. Vol. 127: 315–323.
  29. You, C., H. Zhu, B. Xu, Huang, W., Wang, S., Ding, Y,. Liu, Z., Li, Z., Chen, L., Ding, C., Tang, S. 2016. Effect of removing superior spikelets on
  30. grain filling of inferior spikelets in rice. Frontiers in Plant Science Vol. 7: 1-16.
  31. Young, J.M., Y.K. Ki, S.P. Hyun, C.K. Jong, C.S. Woon, K.N. Jeong, K.K. Bo, K.K. Jae. 2012. Changes in the panicle-related traits of different
  32. rice varieties under high temperature condition. Australian Journal of Crop Science. Vol. 6(3): 436-443.
  33. Zahedi, M., C.F. Jenner. 2003. Analysis of effect in wheat of high temperature on grain filling attributes estimated from mathematical models
  34. on grain filling. Journal of Agricultural Science. Vol. 141: 203-212.
  35. Zang, W., Z .Cao, Q. Zhou, J. Chen, G. Xu, J. Gu, L. Liu, Z. Wang, J. Yang, H. Zang. 2016. Grain filling characteristics and their relations with
  36. endogenous hormones in large- and small-grain mutants of rice. Research article PLOS one. October 25. DOI:10.1371.journal.pone.0165321.